1
|
Lambrichts SMP, van Oostenbrugge RJ, Foulquier S. TRPV4 in Cerebral Small Vessel Disease: A key interacting partner. Vascul Pharmacol 2025; 159:107492. [PMID: 40112942 DOI: 10.1016/j.vph.2025.107492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/28/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Cerebral small vessel disease (cSVD) is a major cause of vascular cognitive impairment and dementia. The underlying disease mechanisms are centered around the dysfunction of the neurovascular unit and include an impairment of the blood-brain barrier (BBB) permeability, a decreased cerebrovascular reactivity and cerebral hypoperfusion. The cells composing the neurovascular unit express a wide variety of mechanosensitive ion channels that are relevant for these processes. Recent research has increasingly focused on the mechanobiology of cerebral microvessels with recent evidence pointing towards a significant role of transient receptor potential vanilloid 4 (TRPV4). This Ca2+-permeable channel regulates key physiological functions, including vascular tone, angiogenesis, BBB integrity and neuroinflammation. Beyond its physiological role, recent evidence implicates TRPV4 in pathological processes such as cerebrovascular remodelling, impaired cerebrovascular reactivity, and BBB dysfunction. In this review, we explore the multiple roles of TRPV4 within the neurovascular unit, its interactions with key molecular partners, and we discuss evidence for its potential contribution to cSVD.
Collapse
Affiliation(s)
- Sara M P Lambrichts
- Dept of Pharmacology and Toxicology, Maastricht University, the Netherlands; Dept of Neurology, Maastricht University Medical Center, the Netherlands; MHeNS, Mental Health and Neuroscience Research institute, Maastricht University, the Netherlands
| | - Robert J van Oostenbrugge
- Dept of Neurology, Maastricht University Medical Center, the Netherlands; MHeNS, Mental Health and Neuroscience Research institute, Maastricht University, the Netherlands; CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands
| | - Sébastien Foulquier
- Dept of Pharmacology and Toxicology, Maastricht University, the Netherlands; Dept of Neurology, Maastricht University Medical Center, the Netherlands; MHeNS, Mental Health and Neuroscience Research institute, Maastricht University, the Netherlands; CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands.
| |
Collapse
|
2
|
Lin B, Leong YY, Mohamad M. Glymphatic system dysfunction in cerebral infarction: advances and perspectives based on DTI-derived ALPS measures. Am J Transl Res 2025; 17:1630-1642. [PMID: 40226042 PMCID: PMC11982858 DOI: 10.62347/oqre2088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/25/2025] [Indexed: 04/15/2025]
Abstract
The glymphatic pathway plays a crucial role in the clearance of metabolic byproducts and solutes from cerebral tissue. Dysfunction of the glymphatic pathway has been associated with various neurological disorders, including ischemic stroke. Diffusion tensor imaging (DTI) and the derived Analysis aLong the Perivascular Space (ALPS) have emerged as promising tools for evaluating glymphatic pathway function. This review aims to summarize the current evidence on the use of DTI-derived ALPS measures in assessing glymphatic dysfunction in ischemic stroke patients, and to explore their potential implications for diagnosis, prognostication, and treatment monitoring in this patient population.
Collapse
Affiliation(s)
- Bomiao Lin
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan MalaysiaJalan Raja Muda Abdul Aziz, Wilayah Persekutuan Kuala Lumpur, 50300, Malaysia
- Department of Radiology, Zhujiang Hospital of Southern Medical UniversityGuangzhou, Guangdong, China
| | - Yuh Yang Leong
- Department of Radiology, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif Bandar Tun Razak Cheras56000 Kuala Lumpur, Malaysia
| | - Mazlyfarina Mohamad
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan MalaysiaJalan Raja Muda Abdul Aziz, Wilayah Persekutuan Kuala Lumpur, 50300, Malaysia
| |
Collapse
|
3
|
Chen Z, Liu B, Zhou D, Lei M, Yang J, Hu Z, Duan W. AQP4 regulates ferroptosis and oxidative stress of Muller cells in diabetic retinopathy by regulating TRPV4. Exp Cell Res 2024; 439:114087. [PMID: 38735619 DOI: 10.1016/j.yexcr.2024.114087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
Diabetic retinopathy (DR) is a common microvascular complication that causes visual impairment or loss. Aquaporin 4 (AQP4) is a regulatory protein involved in water transport and metabolism. In previous studies, we found that AQP4 is related to hypoxia injury in Muller cells. Transient receptor potential cation channel subfamily V member 4 (TRPV4) is a non-selective cation channel protein involved in the regulation of a variety of ophthalmic diseases. However, the effects of AQP4 and TRPV4 on ferroptosis and oxidative stress in high glucose (HG)-treated Muller cells are unclear. In this study, we investigated the functions of AQP4 and TRPV4 in DR. HG was used to treat mouse Muller cells. Reverse transcription quantitative polymerase chain reaction was used to measure AQP4 mRNA expression. Western blotting was used to detect the protein levels of AQP4, PTGS2, GPX4, and TRPV4. Cell count kit-8, flow cytometry, 5,5',6,6'-tetrachloro-1,1,3,3'-tetraethylbenzimidazolyl carbocyanine iodide staining, and glutathione (GSH), superoxide dismutase (SOD), and malondialdehyde (MDA) kits were used to evaluate the function of the Muller cells. Streptozotocin was used to induce DR in rats. Haematoxylin and eosin staining was performed to stain the retina of rats. GSH, SOD, and MDA detection kits, immunofluorescence, and flow cytometry assays were performed to study the function of AQP4 and TRPV4 in DR rats. Results found that AQP4 and TRPV4 were overexpressed in HG-induced Muller cells and streptozotocin-induced DR rats. AQP4 inhibition promoted proliferation and cell cycle progression, repressed cell apoptosis, ferroptosis, and oxidative stress, and alleviated retinal injury in DR rats. Mechanistically, AQP4 positively regulated TRPV4 expression. Overexpression of TRPV4 enhanced ferroptosis and oxidative stress in HG-treated Muller cells, and inhibition of TRPV4 had a protective effect on DR-induced retinal injury in rats. In conclusion, inhibition of AQP4 inhibits the ferroptosis and oxidative stress in Muller cells by downregulating TRPV4, which may be a potential target for DR therapy.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Ophthalmology, The First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China.
| | - Bingjie Liu
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
| | - Daijiao Zhou
- Department of Ophthalmology, The First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, China
| | - Mingshu Lei
- Department of Ophthalmology, The First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, China
| | - Jingying Yang
- Department of Ophthalmology, The First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
| | - Zhongyin Hu
- Department of Ophthalmology, The First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
| | - Wenhua Duan
- Department of Ophthalmology, The First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
| |
Collapse
|
4
|
Brignone MS, Lanciotti A, Molinari P, Mallozzi C, De Nuccio C, Caprini ES, Petrucci TC, Visentin S, Ambrosini E. Megalencephalic leukoencephalopathy with subcortical cysts protein-1: A new calcium-sensitive protein functionally activated by endoplasmic reticulum calcium release and calmodulin binding in astrocytes. Neurobiol Dis 2024; 190:106388. [PMID: 38141856 DOI: 10.1016/j.nbd.2023.106388] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/04/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023] Open
Abstract
BACKGROUND MLC1 is a membrane protein highly expressed in brain perivascular astrocytes and whose mutations account for the rare leukodystrophy (LD) megalencephalic leukoencephalopathy with subcortical cysts disease (MLC). MLC is characterized by macrocephaly, brain edema and cysts, myelin vacuolation and astrocyte swelling which cause cognitive and motor dysfunctions and epilepsy. In cultured astrocytes, lack of functional MLC1 disturbs cell volume regulation by affecting anion channel (VRAC) currents and the consequent regulatory volume decrease (RVD) occurring in response to osmotic changes. Moreover, MLC1 represses intracellular signaling molecules (EGFR, ERK1/2, NF-kB) inducing astrocyte activation and swelling following brain insults. Nevertheless, to date, MLC1 proper function and MLC molecular pathogenesis are still elusive. We recently reported that in astrocytes MLC1 phosphorylation by the Ca2+/Calmodulin-dependent kinase II (CaMKII) in response to intracellular Ca2+ release potentiates MLC1 activation of VRAC. These results highlighted the importance of Ca2+ signaling in the regulation of MLC1 functions, prompting us to further investigate the relationships between intracellular Ca2+ and MLC1 properties. METHODS We used U251 astrocytoma cells stably expressing wild-type (WT) or mutated MLC1, primary mouse astrocytes and mouse brain tissue, and applied biochemistry, molecular biology, video imaging and electrophysiology techniques. RESULTS We revealed that WT but not mutant MLC1 oligomerization and trafficking to the astrocyte plasma membrane is favored by Ca2+ release from endoplasmic reticulum (ER) but not by capacitive Ca2+ entry in response to ER depletion. We also clarified the molecular events underlining MLC1 response to cytoplasmic Ca2+ increase, demonstrating that, following Ca2+ release, MLC1 binds the Ca2+ effector protein calmodulin (CaM) at the carboxyl terminal where a CaM binding sequence was identified. Using a CaM inhibitor and generating U251 cells expressing MLC1 with CaM binding site mutations, we found that CaM regulates MLC1 assembly, trafficking and function, being RVD and MLC-linked signaling molecules abnormally regulated in these latter cells. CONCLUSION Overall, we qualified MLC1 as a Ca2+ sensitive protein involved in the control of volume changes in response to ER Ca2+ release and astrocyte activation. These findings provide new insights for the comprehension of the molecular mechanisms responsible for the myelin degeneration occurring in MLC and other LD where astrocytes have a primary role in the pathological process.
Collapse
Affiliation(s)
- M S Brignone
- Istituto Superiore di Sanità, Department of Neuroscience, Viale Regina Elena 299, 00161 Rome, Italy
| | - A Lanciotti
- Istituto Superiore di Sanità, Department of Neuroscience, Viale Regina Elena 299, 00161 Rome, Italy
| | - P Molinari
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, Viale Regina Elena 299, 00161 Rome, Italy
| | - C Mallozzi
- Istituto Superiore di Sanità, Department of Neuroscience, Viale Regina Elena 299, 00161 Rome, Italy
| | - C De Nuccio
- Istituto Superiore di Sanità, Research Coordination and Support Service, Viale Regina Elena 299, 00161 Rome, Italy
| | - E S Caprini
- Istituto Superiore di Sanità, Department of Neuroscience, Viale Regina Elena 299, 00161 Rome, Italy
| | - T C Petrucci
- Istituto Superiore di Sanità, Department of Neuroscience, Viale Regina Elena 299, 00161 Rome, Italy
| | - S Visentin
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, Viale Regina Elena 299, 00161 Rome, Italy
| | - E Ambrosini
- Istituto Superiore di Sanità, Department of Neuroscience, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|