1
|
Wehbi A, Kremer EJ, Dopeso-Reyes IG. Location of the Cell Adhesion Molecule "Coxsackievirus and Adenovirus Receptor" in the Adult Mouse Brain. Front Neuroanat 2020; 14:28. [PMID: 32581729 PMCID: PMC7287018 DOI: 10.3389/fnana.2020.00028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/08/2020] [Indexed: 12/30/2022] Open
Abstract
The coxsackievirus and adenovirus receptor (CAR) is a single-pass transmembrane cell adhesion molecule (CAM). CAR is expressed in numerous mammalian tissues including the brain, heart, lung, and testes. In epithelial cells, CAR functions are typical of the quintessential roles of numerous CAMs. However, in the brain the multiple roles of CAR are poorly understood. To better understand the physiological role of CAR in the adult brain, characterizing its location is a primordial step to advance our knowledge of its functions. In addition, CAR is responsible for the attachment, internalization, and retrograde transport of canine adenovirus type 2 (CAV-2) vectors, which have found a niche in the mapping of neuronal circuits and gene transfer to treat and model neurodegenerative diseases. In this study, we used immunohistochemistry and immunofluorescence to document the global location of CAR in the healthy, young adult mouse brain. Globally, we found that CAR is expressed by maturing and mature neurons in the brain parenchyma and located on the soma and on projections. While CAR occasionally colocalizes with glial fibrillary acidic protein, this overlap was restricted to areas that are associated with adult neurogenesis.
Collapse
Affiliation(s)
- Amani Wehbi
- Institut de Génétique Moléculaire de Montpellier, CNRS, Université de Montpellier, Montpellier, France
| | - Eric J Kremer
- Institut de Génétique Moléculaire de Montpellier, CNRS, Université de Montpellier, Montpellier, France
| | - Iria G Dopeso-Reyes
- Institut de Génétique Moléculaire de Montpellier, CNRS, Université de Montpellier, Montpellier, France
| |
Collapse
|
2
|
Das T, Hoarau JJ, Bandjee MCJ, Maquart M, Gasque P. Multifaceted innate immune responses engaged by astrocytes, microglia and resident dendritic cells against Chikungunya neuroinfection. J Gen Virol 2014; 96:294-310. [PMID: 25351727 DOI: 10.1099/vir.0.071175-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Chikungunya virus (CHIKV) has recently affected millions of people in the Indian Ocean, with rare cases of encephalopathy and encephalitis occurring in neonates. In the study described herein, the capacity of mouse brain cells to control infection through innate immune antiviral responses was assessed. In vitro, CHIKV principally infected a subpopulation of mouse GFAP+ primary astrocytes. Oligodendrocytes and neurons could also be infected. An innate immune response was engaged by CHIKV-infected astrocytes with elevated expression of mRNAs for IFN-α-β, inflammatory cytokines (e.g. IL-1β, IL-12, IL-10, IL-24) and proapoptotic factors (e.g. TNF-α, FasL, Lymphotoxin B). Programmed cell death through the intrinsic caspase-9 pathway was observed by immunofluorescence in infected astrocytes and neurons but not in oligodendrocytes. Interestingly, microglia did not replicate CHIKV but responded by elevated mitogen-activated protein kinase (MAPK) activity. Intracerebroventricular injection of CHIKV in neonate mice led to the infection of astrocytes. The astrogliosis response was accompanied by a dendritic CD206+ cell mobilization restricted to the site of infection. The results of this study support the paradigm that a multifaceted innate immune response can be mobilized by both professional immune and glial cells to control CHIKV neuroinfection events in neonates.
Collapse
Affiliation(s)
- Trina Das
- Immunopathology and Infection Research Grouping (IRG, GRI EA4517), University of la Reunion, CHU and CYROI, St Denis, Reunion Island
| | - Jean Jacques Hoarau
- Immunopathology and Infection Research Grouping (IRG, GRI EA4517), University of la Reunion, CHU and CYROI, St Denis, Reunion Island
| | - Marie Christine Jaffar Bandjee
- Virology laboratory, CHU Félix Guyon of la Réunion, St Denis, Reunion Island.,Immunopathology and Infection Research Grouping (IRG, GRI EA4517), University of la Reunion, CHU and CYROI, St Denis, Reunion Island
| | - Marianne Maquart
- CIRAD and CYROI, St Denis, Reunion Island.,CRVOI, St Denis, Reunion Island
| | - Philippe Gasque
- Immunopathology and Infection Research Grouping (IRG, GRI EA4517), University of la Reunion, CHU and CYROI, St Denis, Reunion Island
| |
Collapse
|
3
|
Krivega M, Geens M, Van de Velde H. CAR expression in human embryos and hESC illustrates its role in pluripotency and tight junctions. Reproduction 2014; 148:531-44. [PMID: 25118298 DOI: 10.1530/rep-14-0253] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Coxsackie virus and adenovirus receptor, CXADR (CAR), is present during embryogenesis and is involved in tissue regeneration, cancer and intercellular adhesion. We investigated the expression of CAR in human preimplantation embryos and embryonic stem cells (hESC) to identify its role in early embryogenesis and differentiation. CAR protein was ubiquitously present during preimplantation development. It was localised in the nucleus of uncommitted cells, from the cleavage stage up to the precursor epiblast, and corresponded with the presence of soluble CXADR3/7 splice variant. CAR was displayed on the membrane, involving in the formation of tight junction at compaction and blastocyst stages in both outer and inner cells, and CAR corresponded with the full-length CAR-containing transmembrane domain. In trophectodermal cells of hatched blastocysts, CAR was reduced in the membrane and concentrated in the nucleus, which correlated with the switch in RNA expression to the CXADR4/7 and CXADR2/7 splice variants. The cells in the outer layer of hESC colonies contained CAR on the membrane and all the cells of the colony had CAR in the nucleus, corresponding with the transmembrane CXADR and CXADR4/7. Upon differentiation of hESC into cells representing the three germ layers and trophoblast lineage, the expression of CXADR was downregulated. We concluded that CXADR is differentially expressed during human preimplantation development. We described various CAR expressions: i) soluble CXADR marking undifferentiated blastomeres; ii) transmembrane CAR related with epithelial-like cell types, such as the trophectoderm (TE) and the outer layer of hESC colonies; and iii) soluble CAR present in TE nuclei after hatching. The functions of these distinct forms remain to be elucidated.
Collapse
Affiliation(s)
- M Krivega
- Research Group Reproduction and GeneticsFaculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, BelgiumCentre for Reproductive Medicine (CRG)UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - M Geens
- Research Group Reproduction and GeneticsFaculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, BelgiumCentre for Reproductive Medicine (CRG)UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - H Van de Velde
- Research Group Reproduction and GeneticsFaculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, BelgiumCentre for Reproductive Medicine (CRG)UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium Research Group Reproduction and GeneticsFaculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, BelgiumCentre for Reproductive Medicine (CRG)UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| |
Collapse
|
4
|
Zhang K, Yu H, Xie W, Xu Z, Zhou S, Huang C, Sheng H, He X, Xiong J, Qian G. Expression of coxsackievirus and adenovirus receptor (CAR)-Fc fusion protein in Pichia pastoris and characterization of its anti-coxsackievirus activity. J Biotechnol 2013; 164:461-8. [PMID: 23376619 DOI: 10.1016/j.jbiotec.2013.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/11/2013] [Accepted: 01/12/2013] [Indexed: 11/19/2022]
Abstract
Coxsackievirus and adenovirus receptors (CARs) are the common cellular receptors which mediate coxsackievirus or adenovirus infection. Receptor trap therapy, which uses soluble viral receptors to block the attachment and internalization of virus, has been developed for the inhibition of virus infection. In this study, we have constructed a pPIC3.5K/CAR-Fc expression plasmid for the economical and scale-up production of CAR-Fc fusion protein in Pichia pastoris. The coding sequence of the fusion protein was optimized according to the host codon usage bias. The amount of the CAR-Fc protein to total cell protein was up to 10% by 1% methanol induction for 96h and the purity was up to 96% after protein purification. Next, the virus pull-down assay demonstrated the binding activity of the CAR-Fc to coxsackievirus. The analyses of MTT assay, immunofluorescence staining and quantitative real-time PCR after virus neutralization assay revealed that CAR-Fc could significantly block coxsackievirus B3 infection in vitro. In coxsackievirus B3 infected mouse models, CAR-Fc treatment reduced mortality, myocardial edema, viral loads and inflammation, suggesting the significant virus blocking effect in vivo. Our results indicated that the P. pastoris expression system could be used to produce large quantities of bioactive CAR-Fc for further clinical purpose.
Collapse
Affiliation(s)
- Kebin Zhang
- Center of Medical Experiment & Technology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Singh SK, Unni SK. Chikungunya virus: host pathogen interaction. Rev Med Virol 2011; 21:78-88. [PMID: 21412934 DOI: 10.1002/rmv.681] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Revised: 01/11/2011] [Accepted: 01/14/2011] [Indexed: 11/11/2022]
Abstract
Chikungunya is a re-emerging arthropod-borne viral disease caused by Chikungunya virus (CHIKV) belonging to the Togaviridae family of genus Alphavirus. It is a virus with a single stranded, positive sense RNA, as its genome. It is maintained in a sylvatic and urban cycle involving humans and the mosquito species Aedes aegypti and Aedes albopictus. It has garnered the attention of scientists in the past 5-6 years due to the massive outbreaks in the Indian Ocean region in 2005-2006. It has a major health impact on humans as it causes fever, rashes, arthralgia and myalgia. Polyarthralgia is the most important feature of CHIKV infection which primarily affects the small joints of the wrists and fingers along with the large joints like shoulders and knees. Currently, there are no vaccines or treatment regimens available for CHIKV infection. The molecular mechanism underlying the chronic polyarthralgia observed in patients is not well understood. In this review we have summarized the CHIKV organization, replication, epidemiology, clinical manifestations and pathogenesis with emphasis on the arthralgia.
Collapse
Affiliation(s)
- Sunit Kumar Singh
- Laboratory of Neurovirology & Inflammation Biology, Section of Infectious Diseases, Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Hyderabad 500007, India.
| | | |
Collapse
|
6
|
Del Bigio MR. Ependymal cells: biology and pathology. Acta Neuropathol 2010; 119:55-73. [PMID: 20024659 DOI: 10.1007/s00401-009-0624-y] [Citation(s) in RCA: 255] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 12/03/2009] [Accepted: 12/04/2009] [Indexed: 11/28/2022]
Abstract
The literature was reviewed to summarize the current understanding of the role of ciliated ependymal cells in the mammalian brain. Previous reviews were summarized. Publications from the past 10 years highlight interactions between ependymal cells and the subventricular zone and the possible role of restricted ependymal populations in neurogenesis. Ependymal cells provide trophic support and possibly metabolic support for progenitor cells. Channel proteins such as aquaporins may be important for determining water fluxes at the ventricle wall. The junctional and anchoring proteins are now fairly well understood, as are proteins related to cilia function. Defects in ependymal adhesion and cilia function can cause hydrocephalus through several different mechanisms, one possibility being loss of patency of the cerebral aqueduct. Ependymal cells are susceptible to infection by a wide range of common viruses; while they may act as a line of first defense, they eventually succumb to repeated attacks in long-lived organisms. Ciliated ependymal cells are almost certainly important during brain development. However, the widespread absence of ependymal cells from the adult human lateral ventricles suggests that they may have only regionally restricted value in the mature brain of large size.
Collapse
Affiliation(s)
- Marc R Del Bigio
- Department of Pathology, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
7
|
Bhattacharyya A, McMillan E, Chen SI, Wallace K, Svendsen CN. A critical period in cortical interneuron neurogenesis in down syndrome revealed by human neural progenitor cells. Dev Neurosci 2009; 31:497-510. [PMID: 19738365 DOI: 10.1159/000236899] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 05/30/2009] [Indexed: 12/11/2022] Open
Abstract
Down syndrome (DS) is a developmental disorder whose mental impairment is due to defective cortical development. Human neural progenitor cells (hNPCs) derived from fetal DS cortex initially produce normal numbers of neurons, but generate fewer neurons with time in culture, similar to the pattern of neurogenesis that occurs in DS in vivo. Microarray analysis of DS hNPCs at this critical time reveals gene changes indicative of defects in interneuron progenitor development. In addition, dysregulated expression of many genes involved in neural progenitor cell biology points to changes in the progenitor population and subsequent reduction in interneuron neurogenesis. Delineation of a critical period in interneuron development in DS provides a foundation for investigation of the basis of reduced neurogenesis in DS and defines a time when these progenitor cells may be amenable to therapeutic treatment.
Collapse
Affiliation(s)
- Anita Bhattacharyya
- Stem Cell Research Group, The Waisman Center, University of Wisconsin, Madison, Wisc. 53705, USA.
| | | | | | | | | |
Collapse
|
8
|
Mulder J, Björling E, Jonasson K, Wernérus H, Hober S, Hökfelt T, Uhlén M. Tissue profiling of the mammalian central nervous system using human antibody-based proteomics. Mol Cell Proteomics 2009; 8:1612-22. [PMID: 19351664 DOI: 10.1074/mcp.m800539-mcp200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A need exists for mapping the protein profiles in the human brain both during normal and disease conditions. Here we studied 800 antibodies generated toward human proteins as part of a Human Protein Atlas program and investigated their suitability for detailed analysis of various levels of a rat brain using immuno-based methods. In this way, the parallel, rather limited analysis of the human brain, restricted to four brain areas (cerebellum, cerebral cortex, hippocampus, and lateral subventricular zone), could be extended in the rat model to 25 selected areas of the brain. Approximately 100 antibodies (12%) revealed a distinct staining pattern and passed validation of specificity using Western blot analysis. These antibodies were applied to coronal sections of the rat brain at 0.7-mm intervals covering the entire brain. We have now produced detailed protein distribution profiles for these antibodies and acquired over 640 images that form the basis of a publicly available portal of an antibody-based Rodent Brain Protein Atlas database (www.proteinatlas.org/rodentbrain). Because of the systematic selection of target genes, the majority of antibodies included in this database are generated against proteins that have not been studied in the brain before. Furthermore optimized tissue processing and colchicine treatment allow a high quality, more extended annotation and detailed analysis of subcellular distributions and protein dynamics.
Collapse
Affiliation(s)
- Jan Mulder
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
9
|
Zhang X, Komaki R, Wang L, Fang B, Chang JY. Treatment of radioresistant stem-like esophageal cancer cells by an apoptotic gene-armed, telomerase-specific oncolytic adenovirus. Clin Cancer Res 2008; 14:2813-23. [PMID: 18451249 PMCID: PMC2387204 DOI: 10.1158/1078-0432.ccr-07-1528] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Radioresistance may be caused by cancer stem cells (CSC). Because CSCs require telomerase to proliferate, a telomerase-specific oncolytic adenoviral vector carrying apoptotic tumor necrosis factor-related apoptosis-inducing ligand and E1A gene (Ad/TRAIL-E1) may preferentially target CSCs. EXPERIMENTAL DESIGN We established two pairs of parental and radioresistant (R) esophageal carcinoma cell lines (Seg-1, Seg-1R and TE-2, TE-2R) by fractionated irradiation. Stem cell markers were measured by Western blotting and flow cytometry. Serial sorting was used to enrich stem-like side population cells. Telomerase activity, transgene expression, antitumor activity, apoptosis induction, and viral replication were determined in vitro and/or in vivo. RESULTS Expression of the stem cell markers beta-catenin, Oct3/4, and beta(1) integrin in Seg-1R cells was 29.4%, 27.5%, and 97.3%, respectively, compared with 4.8%, 14.9%, and 45.3% in Seg-1 cells (P < 0.05). SP levels in Seg-1R and TE-2R cells were 14.6% and 2.7%, respectively, compared with 3.4% and 0.3% in Seg-1 and TE-2 cells. Serial sorting of Seg-1R SP cells showed enrichment of the SP cells. Telomerase activities in Seg-1R, Seg-1R SP, and TE-2R cells were significantly higher than in Seg-1, Seg-1R non-SP, and TE-2 cells, respectively (P < 0.05). Seg-1R and TE-2R cells were more sensitive to Ad/TRAIL-E1 than parental cells. Increased Coxsackie-adenovirus receptor and elevated transgene expressions were found in the radioresistant cells. Ad/TRAIL-E1 resulted in significant tumor growth suppression and longer survival in Seg-1R-bearing mice (P < 0.05) with no significant toxicity. CONCLUSION Radioresistant cells established by fractionated irradiation display CSC-like cell properties. Ad/TRAIL-E1 preferentially targets radioresistant CSC-like cells.
Collapse
Affiliation(s)
- Xiaochun Zhang
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Ritsuko Komaki
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Li Wang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Joe Y. Chang
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| |
Collapse
|
10
|
Bradfield PF, Nourshargh S, Aurrand-Lions M, Imhof BA. JAM Family and Related Proteins in Leukocyte Migration (Vestweber Series). Arterioscler Thromb Vasc Biol 2007; 27:2104-12. [PMID: 17615384 DOI: 10.1161/atvbaha.107.147694] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Exploring the role of junctional adhesion molecules (JAMs) has proven to be varied and controversial. The purpose of this review is to discuss the new and exciting roles of these IgSF molecules and how they have evolved to contribute to diverse functions from development to inflammation. In particular, recent research has focused on JAM subfamily members JAM-A, -B, and -C with newly described roles in leukocyte trafficking during inflammation and angiogenesis. However, research on all JAM family members has demonstrated recurring themes with striking similarities in the many diverse processes they are now known to regulate.
Collapse
Affiliation(s)
- Paul F Bradfield
- Department of Pathology and Immunology, University Medical Centre, CH-1211, Geneva 4, Switzerland
| | | | | | | |
Collapse
|
11
|
Segura-Pacheco B, Avalos B, Rangel E, Velazquez D, Cabrera G. HDAC inhibitor valproic acid upregulates CAR in vitro and in vivo. GENETIC VACCINES AND THERAPY 2007; 5:10. [PMID: 17892546 PMCID: PMC2174455 DOI: 10.1186/1479-0556-5-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Accepted: 09/24/2007] [Indexed: 11/29/2022]
Abstract
Background The presence of CAR in diverse tumor types is heterogeneous with implications in tumor transduction efficiency in the context of adenoviral mediated cancer gene therapy. Preliminary studies suggest that CAR transcriptional regulation is modulated through histone acetylation and not through promoter methylation. Furthermore, it has been documented that the pharmacological induction of CAR using histone deacetylase inhibitor (iHDAC) compounds is a viable strategy to enhance adenoviral mediated gene delivery to cancer cells in vitro. The incorporation of HDAC drugs into the overall scheme in adenoviral based cancer gene therapy clinical trials seems rational. However, reports using compounds with iHDAC properties utilized routinely in the clinic are pending. Valproic acid, a short chained fatty acid extensively used in the clinic for the treatment of epilepsy and bipolar disorder has been recently described as an effective HDAC inhibitor at therapeutic concentrations. Methods We studied the effect of valproic acid on histone H3 and H4 acetylation, CAR mRNA upregulation was studied using semiquantitative PCR and adenoviral transduction on HeLa cervical cancer cells, on MCF-7 breast cancer cells, on T24 transitional cell carcinoma of the bladder cells. CAR mRNA was studied using semiquantitative PCR on tumor tissue extracted from patients diagnosed with cervical cancer treated with valproic acid. Results CAR upregulation through HDAC inhibition was observed in the three cancer cell lines with enhancement of adenoviral transduction. CAR upregulation was also observed in tumor samples obtained from patients with cervical cancer treated with therapeutic doses of valproic acid. These results support the addition of the HDAC inhibitor valproic acid to adenoviral mediated cancer gene therapy clinical trials to enhance adenoviral mediated gene delivery to the tumor cells.
Collapse
Affiliation(s)
- Blanca Segura-Pacheco
- Vectorology and Gene Therapy Laboratory, National Cancer Institute, Av. San Fernando No 22, Del. Tlalpan, CP 14080, Mexico City, Mexico
| | - Berenice Avalos
- Vectorology and Gene Therapy Laboratory, National Cancer Institute, Av. San Fernando No 22, Del. Tlalpan, CP 14080, Mexico City, Mexico
| | - Edgar Rangel
- Vectorology and Gene Therapy Laboratory, National Cancer Institute, Av. San Fernando No 22, Del. Tlalpan, CP 14080, Mexico City, Mexico
| | - Dora Velazquez
- Vectorology and Gene Therapy Laboratory, National Cancer Institute, Av. San Fernando No 22, Del. Tlalpan, CP 14080, Mexico City, Mexico
| | - Gustavo Cabrera
- Vectorology and Gene Therapy Laboratory, National Cancer Institute, Av. San Fernando No 22, Del. Tlalpan, CP 14080, Mexico City, Mexico
| |
Collapse
|
12
|
Activation of STAT1 transcription factor precedes up-regulation of coxsackievirus-adenovirus receptor during viral myocarditis. Cardiovasc Pathol 2007; 17:81-92. [PMID: 18329552 DOI: 10.1016/j.carpath.2007.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 07/05/2007] [Accepted: 07/10/2007] [Indexed: 11/22/2022] Open
Abstract
The coxsackievirus-adenovirus receptor (CAR) was originally described as a transmembrane protein involved in viral infection and was later found to be required for normal heart development. However, the role of CAR in virus-induced myocarditis has not been investigated so far. The purpose of this study was to assess myocardial CAR expression in response to cytokine-induced inflammatory reactions during the course of coxsackievirus-induced myocarditis. In Balb/c mice intraperitoneally infected with either 2x10(4) plaque-forming units (PFUs) of coxsackie B3 virus (CVB3) or 10(2) PFUs CVB3, CAR expression and tyrosine phosphorylation of signal transducer and activator of transcription 1 (STAT1), a known cytokine-inducible transcription factor involved in viral defense, were determined. Our results demonstrated that within the first 7 days after virus inoculation, when the viral replication and STAT1 activation in the heart tissue was most prominent, the expression of CAR did not surpass that of uninfected controls. However, the up-regulation of CAR was observed 9 weeks later, when enteroviral RNA was no longer detectable and activation of STAT1 had already ceased. In contrast to the STAT1 target genes Mig and Irf1, interferon gamma stimulation failed to up-regulate Car expression in isolated cardiomyocytes. In human endomyocardial biopsies, Car expression was found to be elevated in approximately one third of patients with dilated cardiomyopathy (9 of 30 patients) as compared with controls. Thus, activation of STAT1 clearly precedes the enhanced CAR expression observed during tissue reorganization, suggesting an essential role of STAT1 transcription factors in orchestrating the sequential actions involved in adaptive immune response.
Collapse
|
13
|
Abstract
The coxsackievirus and adenovirus receptor (CAR) mediates entry of coxsackievirus and adenovirus. CAR possesses an extracellular region that is comprised of 2 immunoglobulin domains termed CAR-D1 and CAR-D2. In the present work, the solution structure of CAR-D2, consisting of residues 142-235 of human CAR, has been determined by NMR spectroscopy. CAR-D2 is shown to be a beta-sandwich motif comprised of two beta-sheets, which are stabilized by two disulfide bonds. The first beta-sheet is comprised of beta-strands A, B, and E, and the second beta-sheet is comprised of beta-strands C, F, and G. A relatively hydrophobic helix is found between beta-strands C and E, which replaces beta-strand D of the classical c-type immunoglobulin fold.
Collapse
Affiliation(s)
- Shaokai Jiang
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | |
Collapse
|
14
|
Kim K, Kanno T, Chapman NM, Tracy S. Genetic determinants of virulence in the group B coxsackieviruses. Future Virol 2006. [DOI: 10.2217/17460794.1.5.597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The group B coxsackieviruses (CVB) are well-studied human enteroviruses that are established causes of numerous serious human diseases. Characterized differences in CVB genomes of different strains affect the ability with which specific strains induce disease in the mouse host and, by inference, in humans as well. The first hurdle is to define specific examples of CVB genetic changes that are associated with pathogenic phenotypes. Such differences have been mapped both to coding and noncoding genomic regions. Many studies have used laboratory-derived strains to identify genetic differences that are essential to phenotype expression, work that is valuable but requires confirmation from studies of wild-type isolates. Rapid viral replication is closely associated with acute disease, indicating a key role for viral damage to the host, while host-mediated responses to the viral infection and viral persistence over a longer period of time indicate other roles for the virus in pathogenesis.
Collapse
Affiliation(s)
- Kisoon Kim
- University of Nebraska Medical Center, Department of Pathology & Microbiology, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Toru Kanno
- University of Nebraska Medical Center, Department of Pathology & Microbiology, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Nora M Chapman
- University of Nebraska Medical Center, Department of Pathology & Microbiology, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Steven Tracy
- University of Nebraska Medical Center, Department of Pathology & Microbiology, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| |
Collapse
|
15
|
Venkatraman G, Behrens M, Pyrski M, Margolis FL. Expression of Coxsackie-Adenovirus receptor (CAR) in the developing mouse olfactory system. ACTA ACUST UNITED AC 2006; 34:295-305. [PMID: 16841169 DOI: 10.1007/s11068-005-8359-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 11/14/2005] [Accepted: 11/14/2005] [Indexed: 10/24/2022]
Abstract
Interest in manipulating gene expression in olfactory sensory neurons (OSNs) has led to the use of adenoviruses (AdV) as gene delivery vectors. OSNs are the first order neurons in the olfactory system and the initial site of odor detection. They are highly susceptible to adenovirus infection although the mechanism is poorly understood. The Coxsackie-Adenovirus receptor (CAR) and members of the integrin family have been implicated in the process of AdV infection in various systems. Multiple serotypes of AdV efficiently bind to the CAR, leading to entry and infection of the host cell by a mechanism that can also involve integrins. Cell lines that do not express CAR are relatively resistant, but not completely immune to AdV infection, suggesting that other mechanisms participate in mediating AdV attachment and entry. Using in situ hybridization and western blot analyses, we show that OSNs and olfactory bulbs (OB) of mice express abundant CAR mRNA at embryonic and neonatal stages, with progressive diminution during postnatal development. By contrast to the olfactory epithelium (OE), CAR mRNA is still present in the adult mouse OB. Furthermore, despite a similar postnatal decline, CAR protein expression in the OE and OB of mice continues into adulthood. Our results suggest that the robust AdV infection observed in the postnatal olfactory system is mediated by CAR and that expression of even small amounts of CAR protein as seen in the adult rodent, permits efficient AdV infection and entry. CAR is an immunoglobulin domain-containing protein that bears homology to cell-adhesion molecules suggesting the possibility that it may participate in organization of the developing olfactory system.
Collapse
Affiliation(s)
- Giri Venkatraman
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, 21201, USA
| | | | | | | |
Collapse
|