1
|
Vazquez-Roque R, Pacheco-Flores M, Penagos-Corzo JC, Flores G, Aguilera J, Treviño S, Guevara J, Diaz A, Venegas B. The C-terminal fragment of the heavy chain of the tetanus toxin (Hc-TeTx) improves motor activity and neuronal morphology in the limbic system of aged mice. Synapse 2021; 75:e22193. [PMID: 33141999 DOI: 10.1002/syn.22193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/23/2022]
Abstract
In the aging process, the brain presents biochemical and morphological alterations. The neurons of the limbic system show reduced size dendrites, in addition to the loss of dendritic spines. These disturbances trigger a decrease in motor and cognitive function. Likewise, it is reported that during aging, in the brain, there is a significant decrease in neurotrophic factors, which are essential in promoting the survival and plasticity of neurons. The carboxyl-terminal fragment of the heavy chain of the tetanus toxin (Hc-TeTx) acts similarly to neurotrophic factors, inducing neuroprotection in different models of neuronal damage. The aim here, was to evaluate the effect of Hc-TeTx on the motor processes of elderly mice (18 months old), and its impact on the dendritic morphology and density of dendritic spines of neurons in the limbic system. The morphological analysis in the dendrites was evaluated employing Golgi-Cox staining. Hc-TeTx was administered (0.5 mg/kg) intraperitoneally for three days in 18-month-old mice. Locomotor activity was evaluated in a novel environment 30 days after the last administration of Hc-TeTx. Mice treated with Hc-TeTx showed significant changes in their motor behavior, and an increased dendritic spine density of pyramidal neurons in layers 3 and 5 of the prefrontal cortex in the hippocampus, and medium spiny neurons of the nucleus accumbens (NAcc). In conclusion, the Hc-TeTx improves the plasticity of the brain regions of the limbic system of aged mice. Therefore, it is proposed as a pharmacological alternative to prevent or delay brain damage during aging.
Collapse
Affiliation(s)
- Ruben Vazquez-Roque
- Neuropsychiatry Laboratory, Institute of Physiology, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | | | | | - Gonzalo Flores
- Neuropsychiatry Laboratory, Institute of Physiology, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - José Aguilera
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Networked Biomedical Research Center on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Samuel Treviño
- Faculty of Chemical Sciences, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Jorge Guevara
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Alfonso Diaz
- Faculty of Chemical Sciences, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Berenice Venegas
- Faculty of Biological Sciences, Benemérita Universidad Autónoma de Puebla, Puebla, México
| |
Collapse
|
2
|
Monroy E, Diaz A, Tendilla-Beltrán H, de la Cruz F, Flores G. Bexarotene treatment increases dendritic length in the nucleus accumbens without change in the locomotor activity and memory behaviors, in old mice. J Chem Neuroanat 2019; 104:101734. [PMID: 31887346 DOI: 10.1016/j.jchemneu.2019.101734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/28/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023]
Abstract
The aged brain has biochemical and morphological alterations in the dendrites of the pyramidal neurons of the limbic system, which consequently trigger motor and cognitive deficits. Bexarotene 4-[1-(3,5,5,8,8-pentamethyl-6,7-dihydronaphthalen-2-yl)ethenyl]benzoic acid is a selective agonist of X-retinoid receptors which acts by binding to the intracellular retinoic acid receptors (RAR). It decreases oxidative and inflammatory activity, in addition to the transport of lipids, mechanisms that together could have a neuroprotective effect. Our objective was to evaluate the effect of bexarotene on the motor and cognitive processes, as well as its influence on the dendritic morphology of neurons in the limbic system of elderly mice. Dendritic morphology was evaluated with the Golgi-Cox staining procedure followed by the Sholl analysis. Bexarotene was administered at different doses: 0.0; 0.5; 2.5 and 5.0 mg/kg for 60 days in 18-month-old mice. After the treatment, locomotor activity in a novel environment and spatial memory in the water labyrinth were evaluated. Mice treated with bexarotene did not show significant changes in their behavior. Moreover, bexarotene-treated mice only showed a significant increase in the density of the dendritic spines and the dendritic length in the nucleus accumbens (NAcc) neurons. In conclusion, the administration of bexarotene improves the plasticity of the NAcc of aged mice, and therefore could be a pharmacological alternative to prevent or delay neuroplasticity disruptions in brain aging.
Collapse
Affiliation(s)
- Elibeth Monroy
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla. Puebla, Mexico; Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN). CDMX, Mexico
| | - Alfonso Diaz
- Departamento de Farmacia, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla. Puebla, Mexico
| | - Hiram Tendilla-Beltrán
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla. Puebla, Mexico; Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN). CDMX, Mexico
| | - Fidel de la Cruz
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN). CDMX, Mexico
| | - Gonzalo Flores
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla. Puebla, Mexico.
| |
Collapse
|
3
|
Let's make microglia great again in neurodegenerative disorders. J Neural Transm (Vienna) 2017; 125:751-770. [PMID: 29027011 DOI: 10.1007/s00702-017-1792-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/18/2017] [Indexed: 12/12/2022]
Abstract
All of the common neurodegenerative disorders-Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and prion diseases-are characterized by accumulation of misfolded proteins that trigger activation of microglia; brain-resident mononuclear phagocytes. This chronic form of neuroinflammation is earmarked by increased release of myriad cytokines and chemokines in patient brains and biofluids. Microglial phagocytosis is compromised early in the disease process, obfuscating clearance of abnormal proteins. This review identifies immune pathologies shared by the major neurodegenerative disorders. The overarching concept is that aberrant innate immune pathways can be targeted for return to homeostasis in hopes of coaxing microglia into clearing neurotoxic misfolded proteins.
Collapse
|
4
|
Boronat-García A, Guerra-Crespo M, Drucker-Colín R. Historical perspective of cell transplantation in Parkinson’s disease. World J Transplant 2017; 7:179-192. [PMID: 28698835 PMCID: PMC5487308 DOI: 10.5500/wjt.v7.i3.179] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/27/2017] [Accepted: 05/15/2017] [Indexed: 02/05/2023] Open
Abstract
Cell grafting has been considered a therapeutic approach for Parkinson’s disease (PD) since the 1980s. The classical motor symptoms of PD are caused by the loss of dopaminergic neurons in the substantia nigra pars compacta, leading to a decrement in dopamine release in the striatum. Consequently, the therapy of cell-transplantation for PD consists in grafting dopamine-producing cells directly into the brain to reestablish dopamine levels. Different cell sources have been shown to induce functional benefits on both animal models of PD and human patients. However, the observed motor improvements are highly variable between individual subjects, and the sources of this variability are not fully understood. The purpose of this review is to provide a general overview of the pioneering studies done in animal models of PD that established the basis for the first clinical trials in humans, and compare these with the latest findings to identify the most relevant aspects that remain unanswered to date. The main focus of the discussions presented here will be on the mechanisms associated with the survival and functionality of the transplants. These include the role of the dopamine released by the grafts and the capacity of the grafted cells to extend fibers and to integrate into the motor circuit. The complete understanding of these aspects will require extensive research on basic aspects of molecular and cellular physiology, together with neuronal network function, in order to uncover the real potential of cell grafting for treating PD.
Collapse
|
5
|
Hurtado F, Cardenas MAN, Cardenas F, León LA. La Enfermedad de Parkinson: Etiología, Tratamientos y Factores Preventivos. UNIVERSITAS PSYCHOLOGICA 2017. [DOI: 10.11144/javeriana.upsy15-5.epet] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
La enfermedad de Parkinson (EP) es la patología neurodegenerativa motora con mayor incidencia a nivel mundial. Esta afecta a aproximadamente 2-3% de la población mayor a 60 años de edad y sus causas aún no han sido bien determinadas. Actualmente no existe cura para esta patología; sin embargo, es posible contar con diferentes tratamientos que permiten aliviar algunos de sus síntomas y enlentecer su curso. Estos tratamientos tienen como premisa contrarrestar los efectos ocasionados por la pérdida de la función dopaminérgica de la sustancia nigra (SN) sobre estructuras como el núcleo subtálamico (NST) o globo pálido interno (GPi) ya sea por medio de tratamientos farmacológicos, estimulación cerebral profunda (ECP) o con el implante celular. Existen también investigaciones que están dirigiendo su interés al desarrollo de fármacos con potencial terapéutico, que presenten alta especificidad a receptores colinérgicos de nicotina (nAChRs) y antagonistas de receptores de adenosina, específicamente del subtipo A2A. Estos últimos, juegan un papel importante en el control de liberación dopaminérgica y en los procesos de neuroprotección. En esta revisión se pretende ofrecer una panorámica actual sobre algunos de los factores de riesgo asociados a EP, algunos de los tratamientos actuales más utilizados y acerca del rol de sustancias potencialmente útiles en la prevención de esta enfermedad.
Collapse
|
6
|
Steenblock C, Rubin de Celis MF, Androutsellis-Theotokis A, Sue M, Delgadillo Silva LF, Eisenhofer G, Andoniadou CL, Bornstein SR. Adrenal cortical and chromaffin stem cells: Is there a common progeny related to stress adaptation? Mol Cell Endocrinol 2017; 441:156-163. [PMID: 27637345 DOI: 10.1016/j.mce.2016.09.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 12/14/2022]
Abstract
The adrenal gland is a highly plastic organ with the capacity to adapt the body homeostasis to different physiological needs. The existence of stem-like cells in the adrenal cortex has been revealed in many studies. Recently, we identified and characterized in mice a pool of glia-like multipotent Nestin-expressing progenitor cells, which contributes to the plasticity of the adrenal medulla. In addition, we found that these Nestin progenitors are actively involved in the stress response by giving rise to chromaffin cells. Interestingly, we also observed a Nestin-GFP-positive cell population located under the adrenal capsule and scattered through the cortex. In this article, we discuss the possibility of a common progenitor giving rise to subpopulations of cells both in the adrenal cortex and medulla, the isolation and characterization of this progenitor as well as its clinical potential in transplantation therapies and in pathophysiology.
Collapse
Affiliation(s)
- Charlotte Steenblock
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany.
| | | | - Andreas Androutsellis-Theotokis
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany; Stem Cells, Tissue Engineering and Modelling (STEM), Division of Cancer and Stem Cells, University of Nottingham, Nottingham, UK
| | - Mariko Sue
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | | | - Graeme Eisenhofer
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Cynthia L Andoniadou
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany; Department of Craniofacial Development and Stem Cell Biology, King's College London, London, UK
| | - Stefan R Bornstein
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany; Department of Endocrinology and Diabetes, King's College London, London, UK
| |
Collapse
|
7
|
Intrastriatal Grafting of Chromospheres: Survival and Functional Effects in the 6-OHDA Rat Model of Parkinson's Disease. PLoS One 2016; 11:e0160854. [PMID: 27525967 PMCID: PMC4985142 DOI: 10.1371/journal.pone.0160854] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/26/2016] [Indexed: 11/19/2022] Open
Abstract
Cell replacement therapy in Parkinson’s disease (PD) aims at re-establishing dopamine neurotransmission in the striatum by grafting dopamine-releasing cells. Chromaffin cell (CC) grafts produce some transitory improvements of functional motor deficits in PD animal models, and have the advantage of allowing autologous transplantation. However, CC grafts have exhibited low survival, poor functional effects and dopamine release compared to other cell types. Recently, chromaffin progenitor-like cells were isolated from bovine and human adult adrenal medulla. Under low-attachment conditions, these cells aggregate and grow as spheres, named chromospheres. Here, we found that bovine-derived chromosphere-cell cultures exhibit a greater fraction of cells with a dopaminergic phenotype and higher dopamine release than CC. Chromospheres grafted in a rat model of PD survived in 57% of the total grafted animals. Behavioral tests showed that surviving chromosphere cells induce a reduction in motor alterations for at least 3 months after grafting. Finally, we found that compared with CC, chromosphere grafts survive more and produce more robust and consistent motor improvements. However, further experiments would be necessary to determine whether the functional benefits induced by chromosphere grafts can be improved, and also to elucidate the mechanisms underlying the functional effects of the grafts.
Collapse
|
8
|
Analysis of epinephrine, norepinephrine, and dopamine in urine samples of hospital patients by micellar liquid chromatography. Anal Bioanal Chem 2015; 407:9009-18. [DOI: 10.1007/s00216-015-9066-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/15/2015] [Accepted: 09/17/2015] [Indexed: 01/01/2023]
|
9
|
Vukicevic V, Rubin de Celis MF, Pellegata NS, Bornstein SR, Androutsellis-Theotokis A, Ehrhart-Bornstein M. Adrenomedullary progenitor cells: Isolation and characterization of a multi-potent progenitor cell population. Mol Cell Endocrinol 2015; 408:178-84. [PMID: 25575455 DOI: 10.1016/j.mce.2014.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/25/2014] [Accepted: 12/27/2014] [Indexed: 12/19/2022]
Abstract
The adrenal is a highly plastic organ with the ability to adjust to physiological needs by adapting hormone production but also by generating and regenerating both adrenocortical and adrenomedullary tissue. It is now apparent that many adult tissues maintain stem and progenitor cells that contribute to their maintenance and adaptation. Research from the last years has proven the existence of stem and progenitor cells also in the adult adrenal medulla throughout life. These cells maintain some neural crest properties and have the potential to differentiate to the endocrine and neural lineages. In this article, we discuss the evidence for the existence of adrenomedullary multi potent progenitor cells, their isolation and characterization, their differentiation potential as well as their clinical potential in transplantation therapies but also in pathophysiology.
Collapse
Affiliation(s)
- Vladimir Vukicevic
- Division of Molecular Endocrinology, Medical Clinic III, Carl Gustav Carus University Clinic, Technische Universität Dresden, 01307 Dresden, Germany
| | - Maria Fernandez Rubin de Celis
- Division of Molecular Endocrinology, Medical Clinic III, Carl Gustav Carus University Clinic, Technische Universität Dresden, 01307 Dresden, Germany
| | - Natalia S Pellegata
- Institute of Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Stefan R Bornstein
- Medical Clinic III, Carl Gustav Carus University Clinic, Technische Universität Dresden, 01307 Dresden, Germany; Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Andreas Androutsellis-Theotokis
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany; Division of Stem Cell Biology, Medical Clinic III, Carl Gustav Carus University Clinic, Technische Universität Dresden, 01307 Dresden, Germany
| | - Monika Ehrhart-Bornstein
- Division of Molecular Endocrinology, Medical Clinic III, Carl Gustav Carus University Clinic, Technische Universität Dresden, 01307 Dresden, Germany; Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany.
| |
Collapse
|
10
|
Vukicevic V, Schmid J, Hermann A, Lange S, Qin N, Gebauer L, Chunk KF, Ravens U, Eisenhofer G, Storch A, Ader M, Bornstein SR, Ehrhart-Bornstein M. Differentiation of chromaffin progenitor cells to dopaminergic neurons. Cell Transplant 2012; 21:2471-86. [PMID: 22507143 DOI: 10.3727/096368912x638874] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The differentiation of dopamine-producing neurons from chromaffin progenitors might represent a new valuable source for replacement therapies in Parkinson's disease. However, characterization of their differentiation potential is an important prerequisite for efficient engraftment. Based on our previous studies on isolation and characterization of chromaffin progenitors from adult adrenals, this study investigates their potential to produce dopaminergic neurons and means to enhance their dopaminergic differentiation. Chromaffin progenitors grown in sphere culture showed an increased expression of nestin and Mash1, indicating an increase of the progenitor subset. Proneurogenic culture conditions induced the differentiation into neurons positive for neural markers β-III-tubulin, MAP2, and TH accompanied by a decrease of Mash1 and nestin. Furthermore, Notch2 expression decreased concomitantly with a downregulation of downstream effectors Hes1 and Hes5 responsible for self-renewal and proliferation maintenance of progenitor cells. Chromaffin progenitor-derived neurons secreted dopamine upon stimulation by potassium. Strikingly, treatment of differentiating cells with retinoic and ascorbic acid resulted in a twofold increase of dopamine secretion while norepinephrine and epinephrine were decreased. Initiation of dopamine synthesis and neural maturation is controlled by Pitx3 and Nurr1. Both Pitx3 and Nurr1 were identified in differentiating chromaffin progenitors. Along with the gained dopaminergic function, electrophysiology revealed features of mature neurons, such as sodium channels and the capability to fire multiple action potentials. In summary, this study elucidates the capacity of chromaffin progenitor cells to generate functional dopaminergic neurons, indicating their potential use in cell replacement therapies.
Collapse
Affiliation(s)
- Vladimir Vukicevic
- Molecular Endocrinology, Medical Clinic III, University Clinic Dresden, Dresden University of Technology, Fetscherstrasse 74, Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Chromaffin cells probably are the most intensively studied of the neural crest derivates. They are closely related to the nervous system, share with neurons some fundamental mechanisms and thus were the ideal model to study the basic mechanisms of neurobiology for many years. The lessons we have learned from chromaffin cell biology as a peripheral model for the brain and brain diseases pertain more than ever to the cutting edge research in neurobiology. Here, we highlight how studying this cell model can help unravel the basic mechanisms of cell renewal and regeneration both in the central nervous system (CNS) and neuroendocrine tissue and also can help in designing new strategies for regenerative therapies of the CNS.
Collapse
|
12
|
Chung KF, Qin N, Androutsellis-Theotokis A, Bornstein SR, Ehrhart-Bornstein M. Effects of dehydroepiandrosterone on proliferation and differentiation of chromaffin progenitor cells. Mol Cell Endocrinol 2011; 336:141-8. [PMID: 21130143 DOI: 10.1016/j.mce.2010.11.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/24/2010] [Accepted: 11/24/2010] [Indexed: 10/18/2022]
Abstract
Dehydroepiandrosterone producing adrenocortical zona reticularis and the adrenal medulla are in direct contact and are highly intermingled in many species. This results in potentially strong paracrine influences of high local dehydroepiandrosterone concentrations on the adrenal medulla. Dehydroepiandrosterone has neuroprotective properties and increases neural stem cell proliferation and neurogenesis. Therefore, we aimed to establish its effects on chromaffin progenitor cell proliferation and differentiation. Previously, we successfully isolated chromaffin progenitors from bovine adrenal medulla in spherical cultures, so-called chromospheres. Seven days treatment of chromospheres with dehydroepiandrosterone at high concentrations (100 μM) hampered proliferation of chromaffin progenitors. Under differentiation conditions, dehydroepiandrosterone in the presence of retinoic acid, increased tyrosine hydroxylase and decreased dopamine-β-hydroxylase mRNA expression. In addition, there was a tendency to increase dopamine contents. Dehydroepiandrosterone/retinoic acid is therefore suggested to induce dopaminergic differentiation from chromaffin progenitor cells. Furthermore, the high dehydroepiandrosterone concentrations present in the fetal and adult adrenal may play an important role in adrenomedullary cell proliferation and differentiation.
Collapse
Affiliation(s)
- Kuei-Fang Chung
- Medical Clinic III, Carl Gustav Carus University Medical School, Dresden University of Technology, Dresden, Germany
| | | | | | | | | |
Collapse
|
13
|
Ehrhart-Bornstein M, Vukicevic V, Chung KF, Ahmad M, Bornstein SR. Chromaffin progenitor cells from the adrenal medulla. Cell Mol Neurobiol 2010; 30:1417-23. [PMID: 21080061 PMCID: PMC11498770 DOI: 10.1007/s10571-010-9571-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 09/02/2010] [Indexed: 11/26/2022]
Abstract
Chromaffin cells of the adrenal medulla are neural crest-derived cells of the sympathoadrenal lineage. Different lines of evidence suggest the existence of a subpopulation of proliferation-competent progenitor cells even in the adult state. The identification of sympathoadrenal progenitors in the adrenal would greatly enhance the understanding of adrenal physiology and their potential role in adrenal pathogenesis. Isolation and differentiation of these progenitor cells in culture would provide a tool to understand their development in vitro. Furthermore, due to the close relation to sympathetic neurons, these cells might provide an expandable source of cells for cell therapy in the treatment of neurodegenerative diseases. We therefore aim to establish protocols for the efficient isolation, enrichment and differentiation of chromaffin progenitor cells to dopaminergic neurons in culture.
Collapse
|
14
|
Gonzalez-Aparicio R, Flores JA, Fernandez-Espejo E. Antiparkinsonian trophic action of glial cell line-derived neurotrophic factor and transforming growth factor β1 is enhanced after co-infusion in rats. Exp Neurol 2010; 226:136-47. [DOI: 10.1016/j.expneurol.2010.08.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 07/22/2010] [Accepted: 08/10/2010] [Indexed: 02/03/2023]
|
15
|
Pérez-Alvarez A, Hernández-Vivanco A, Albillos A. Past, present and future of human chromaffin cells: role in physiology and therapeutics. Cell Mol Neurobiol 2010; 30:1407-15. [PMID: 21107679 PMCID: PMC11498861 DOI: 10.1007/s10571-010-9582-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 09/02/2010] [Indexed: 12/26/2022]
Abstract
Chromaffin cells are neuroendocrine cells mainly found in the medulla of the adrenal gland. Most existing knowledge of these cells has been the outcome of extensive research performed in animals, mainly in the cow, cat, mouse and rat. However, some insight into the physiology of this neuroendocrine cell in humans has been gained. This review summarizes the main findings reported in human chromaffin cells under physiological or disease conditions and discusses the clinical implications of these results.
Collapse
Affiliation(s)
- Alberto Pérez-Alvarez
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, c/Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Alicia Hernández-Vivanco
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, c/Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Almudena Albillos
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, c/Arzobispo Morcillo 4, 28029 Madrid, Spain
| |
Collapse
|
16
|
Chung KF, Sicard F, Vukicevic V, Hermann A, Storch A, Huttner WB, Bornstein SR, Ehrhart-Bornstein M. Isolation of neural crest derived chromaffin progenitors from adult adrenal medulla. Stem Cells 2010; 27:2602-13. [PMID: 19609938 DOI: 10.1002/stem.180] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chromaffin cells of the adrenal medulla are neural crest-derived cells of the sympathoadrenal lineage. Unlike the closely-related sympathetic neurons, a subpopulation of proliferation-competent cells exists even in the adult. Here, we describe the isolation, expansion, and in vitro characterization of proliferation-competent progenitor cells from the bovine adrenal medulla. Similar to neurospheres, these cells, when prevented from adherence to the culture dish, grew in spheres, which we named chromospheres. These chromospheres were devoid of mRNA specific for smooth muscle cells (MYH11) or endothelial cells (PECAM1). During sphere formation, markers for differentiated chromaffin cells, such as phenylethanolamine-N-methyl transferase, were downregulated while neural progenitor markers nestin, vimentin, musashi 1, and nerve growth factor receptor, as well as markers of neural crest progenitor cells such as Sox1 and Sox9, were upregulated. Clonal analysis and bromo-2'-deoxyuridine-incorporation analysis demonstrated the self-renewing capacity of chromosphere cells. Differentiation protocols using NGF and BMP4 or dexamethasone induced neuronal or endocrine differentiation, respectively. Electrophysiological analyses of neural cells derived from chromospheres revealed functional properties of mature nerve cells, such as tetrodotoxin-sensitive sodium channels and action potentials. Our study provides evidence that proliferation and differentiation competent chromaffin progenitor cells can be isolated from adult adrenal medulla and that these cells might harbor the potential for the treatment of neurodegenerative diseases, such as Parkinson's disease.
Collapse
Affiliation(s)
- Kuei-Fang Chung
- Carl Gustav Carus University Medical School, Medical Clinic III, Dresden University of Technology, Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Tremblay RG, Sikorska M, Sandhu JK, Lanthier P, Ribecco-Lutkiewicz M, Bani-Yaghoub M. Differentiation of mouse Neuro 2A cells into dopamine neurons. J Neurosci Methods 2009; 186:60-7. [PMID: 19903493 DOI: 10.1016/j.jneumeth.2009.11.004] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 10/06/2009] [Accepted: 11/04/2009] [Indexed: 01/19/2023]
Abstract
Neuro 2A (N2a) is a mouse neural crest-derived cell line that has been extensively used to study neuronal differentiation, axonal growth and signaling pathways. A convenient characteristic of these cells is their ability to differentiate into neurons within a few days. However, most differentiation methods reported for N2a cells do not provide information about the neuronal types obtained after each treatment. In this study, we evaluated the generation of N2a dopamine neurons following treatment with a number of factors known to induce neuronal differentiation. Our results showed that N2a cells express Nurr-related factor 1 (Nurr1) and produce low levels of tyrosine hydroxylase (TH) and dopamine. Both TH and dopamine levels were significantly enhanced in the presence of dibutyryl cyclic adenosine monophosphate (dbcAMP), as evidenced by Western blot, immunocytochemistry and high performance liquid chromatography (HPLC). In contrast to dbcAMP, other factors such as transforming growth factor beta1 (TGF beta 1), bone morphogenetic protein 4 (BMP4), glial cell-derived neurotrophic factor (GDNF) and retinoic acid (RA) did not increase TH expression. Further investigation confirmed that the effect of dbcAMP on production of TH-positive neurons was mediated through cyclic AMP (cAMP) responsive element binding protein (CREB) and it was antagonized by RA. Thus, although various treatments can be used to generate N2a neurons, only dbcAMP significantly enhanced the formation of dopamine neurons. Taken together, this study provided a simple and reliable method to generate dopamine neurons for rapid and efficient physiological and pharmacological assays.
Collapse
Affiliation(s)
- Roger G Tremblay
- Neurogenesis and Brain Repair Group, Neurobiology Program, Institute for Biological Sciences, National Research Council Canada, Ottawa, ON, K1A 0R6, Canada
| | | | | | | | | | | |
Collapse
|
18
|
Morphophysiology of the Zuckerkandl's paraganglion: effects of dexamethasone and aging. Neurobiol Aging 2009; 31:2115-27. [PMID: 19167134 DOI: 10.1016/j.neurobiolaging.2008.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 11/26/2008] [Accepted: 12/02/2008] [Indexed: 11/23/2022]
Abstract
The extra-adrenal Zuckerkandl's paraganglion is used as a source of chromaffin cells for transplantation in parkinsonian animals. Aging can affect its viability, and this tissue needs further characterization for improving grafting procedures. The objectives were: (i) to compare the main morpho-functional characteristics of prepubertal and old Zuckerkandl's paraganglion (ZP), and (ii) to discern phenotypic changes after sub-chronic dexamethasone treatment in extra-adrenal tissue of prepubertal rats. For these purposes, immunostaining methods, stereology, voltammetry, cell culture, Western blotting, and ELISA were employed. The findings revealed that all paraganglia were composed of mesenchymal tissue and chromaffin cells. In prepubertal rats, chromaffin cells are arranged as large or small clusters. Large clusters (also known as "cell nests") contain densely packed chromaffin cells, and they are seen as fascicles in longitudinal sections. In old paraganglia, cell nests disappear, and chromaffin cells are found to be arranged as small cell clusters or dispersed throughout the mesenchyma. Paraganglionic chromaffin cells possess a rounded morphology with diameter ranging from 12 to 15 μm, with intracytoplasmic granules (100-500 nm in diameter) containing catecholamines. Prepubertal and old ZP chromaffin cells are mostly noradrenergics, and a few of them are dopaminergics. Aging reduces the amount of chromaffin tissue (28% in adult rats vs. 11% in old animals, both in relation to total volume of the paraganglion), and induces the presence of adrenergic cells and adrenaline. Both prepubertal and old cells express the neurotrophic factors GDNF and TGF-β₁, aging leading to reduced levels of both growth factors. Dexamethasone (50 μg/kg daily, 5 days) leads to the expression of phenylethanolamine-N-methyl-transferase in prepubertal paraganglia, and to a higher content and release of adrenaline.
Collapse
|
19
|
Zheng T, Marshall Ii GP, Chen KA, Laywell ED. Transplantation of neural stem/progenitor cells into developing and adult CNS. Methods Mol Biol 2009; 482:185-197. [PMID: 19089357 DOI: 10.1007/978-1-59745-060-7_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Neural transplantation has been a long-standing goal for the treatment of neurological injury and disease. The recent discovery of persistent pools of neural stem cells within the adult mammalian brain has re-ignited interest in transplant therapeutics. Since neural stem cells are self-renewing, it may be possible to culture and expand neural stem cells and their progenitor cell progeny to sufficient numbers for use in autologous, self-repair strategies. Such approaches will require optimized cultivation protocols, as well as extensive testing of candidate donor cells to assess their capacity for engraftment, survival, and integration. In this chapter, we describe the transplantation of neural stem/progenitor cells-cultivated as either neurospheres or neurogenic astrocyte monolayers-into the persistently neurogenic olfactory bulb system of the adult mouse forebrain, and into the cerebellum of neonatal mutant mice.
Collapse
Affiliation(s)
- Tong Zheng
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | | | | | | |
Collapse
|
20
|
Galan-Rodriguez B, del-Marco A, Flores J, Ramiro-Fuentes S, Gonzalez-Aparicio R, Tunez I, Tasset I, Fernandez-Espejo E. Grafts of extra-adrenal chromaffin cells as aggregates show better survival rate and regenerative effects on parkinsonian rats than dispersed cell grafts. Neurobiol Dis 2008; 29:529-42. [DOI: 10.1016/j.nbd.2007.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 10/29/2007] [Accepted: 11/17/2007] [Indexed: 11/28/2022] Open
|
21
|
Effects of pcDNA3-beta-NGF gene-modified BMSC on the rat model of Parkinson's disease. J Mol Neurosci 2008; 35:161-9. [PMID: 18273710 DOI: 10.1007/s12031-007-9032-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2007] [Accepted: 12/06/2007] [Indexed: 01/08/2023]
Abstract
This study determined the effects of pcDNA3-beta-nerve growth factor (NGF) gene-modified bone marrow stromal cells (BMSC) on the rat model of Parkinson's disease (PD). The recombinant plasmid pcDNA3-beta-NGF was transfected into BMSC, and NGF expression and its biological activity in vitro were detected. BMSC modified by the NGF gene were then grafted into the corpus striatum of PD rats, and the rotation behavior was evaluated at 1, 2, 4, and 6 weeks post-transplantation. A significant improvement in rotation behavior was observed in PD rats subjected to cell transplantation, especially in PD rats receiving NGF-modified BMSC. The genetically modified BMSC survived and expressed beta-NGF but did not differentiate into tyrosine hydroxylase-positive cells in vivo. The present findings suggested that genetically modified BMSC could be effective for PD treatment, and the mechanisms might involve the neuroprotective effects of beta-NGF.
Collapse
|
22
|
Chaturvedi RK, Shukla S, Seth K, Agrawal AK. Zuckerkandl's organ improves long-term survival and function of neural stem cell derived dopaminergic neurons in Parkinsonian rats. Exp Neurol 2007; 210:608-23. [PMID: 18272152 DOI: 10.1016/j.expneurol.2007.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 12/03/2007] [Accepted: 12/10/2007] [Indexed: 10/22/2022]
Abstract
Transplantation of neural stem cells (NSC) derived dopamine (DA) neurons has emerged as an alternative approach to fetal neural cell transplantation in Parkinson's disease (PD). However, similar to fetal neural cell, survival of these neurons following transplantation is also limited due to limited striatal reinnervation (graft with dense neuronal core), limited host-graft interaction, poor axonal outgrowth, lack of continuous neurotrophic factors supply and principally an absence of cell adhesion molecules mediated appropriate developmental cues. In the present study, an attempt has been made to increase survival and function of NSC derived DA neurons, by co-grafting with Zuckerkandl's organ (a paraneural organ that expresses neurotrophic factors as well as cell adhesion molecules); to provide continuous NTF support and developmental cues to transplanted DA neurons in the rat model of PD. 24 weeks post transplantation, a significant number of surviving functional NSC derived DA neurons were observed in the co-transplanted group as evident by an increase in the number of tyrosine hydroxylase immunoreactive (TH-IR) neurons, TH-IR fiber density, TH-mRNA expression and TH-protein level at the transplantation site (striatum). Significant behavioral recovery (amphetamine induced stereotypy and locomotor activity) and neurochemical recovery (DA-D2 receptor binding and DA and DOPAC levels at the transplant site) were also observed in the NSC+ZKO co-transplanted group as compared to the NSC or ZKO alone transplanted group. In vivo results were further substantiated by in vitro studies, which suggest that ZKO increases the NSC derived DA neuronal survival, differentiation, DA release and neurite outgrowth as well as protects against 6-OHDA toxicity in co-culture condition. The present study suggests that long-term and continuous NTF support provided by ZKO to the transplanted NSC derived DA neurons, helped in their better survival, axonal arborization and integration with host cells, leading to long-term functional restoration in the rat model of PD.
Collapse
Affiliation(s)
- R K Chaturvedi
- Developmental Toxicology Division, Industrial Toxicology Research Centre, Post Box-80, M.G. Marg Lucknow-226001, India
| | | | | | | |
Collapse
|
23
|
Lee M, Oh SY, Pathak TS, Paeng IR, Cho BY, Paeng KJ. Selective solid-phase extraction of catecholamines by the chemically modified polymeric adsorbents with crown ether. J Chromatogr A 2007; 1160:340-4. [PMID: 17612551 DOI: 10.1016/j.chroma.2007.06.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 06/13/2007] [Accepted: 06/19/2007] [Indexed: 10/23/2022]
Abstract
A simple and selective one-step solid-phase extraction procedure using chemically modified polymer resin (Amberlite XAD-4) with crown ether was investigated for the measurement of urinary catecholamines. After loading the urine samples (adjusted to pH 4) on the synthesized adsorbent cartridge, the column was washed with methanol followed by water and then the adsorbed catecholamines were eluted by 1.0 mL of 6.0 M acetic acid. The effectiveness of sample clean-up method was demonstrated by reversed-phase ion-pair high-performance liquid chromatography with electrochemical detection. Under optimal condition, the recoveries of epinephrine, norepinephrine, and dopamine from spiked urine sample were >86% for all catecholamines. The detection limits (n=5) for epinephrine, norepinephrine, and dopamine were 37, 52, and 46 nmol/L, respectively.
Collapse
Affiliation(s)
- Myeongho Lee
- Department of Chemistry, Yonsei University, Wonju 220-710, South Korea
| | | | | | | | | | | |
Collapse
|
24
|
Conde SV, Obeso A, Rigual R, Monteiro EC, Gonzalez C. Function of the rat carotid body chemoreceptors in ageing. J Neurochem 2006; 99:711-23. [PMID: 16899065 DOI: 10.1111/j.1471-4159.2006.04094.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Some age-related deficits in the ventilatory responses have been attributed to a decline in the functionality of the carotid body (CB) arterial chemoreceptors, but a systematic study of the CB function in ageing is lacking. In rats aged 3-24 months, we have performed quantitative morphometry on specific chemoreceptor tissue, assessed the function of chemoreceptor cells by measuring the content, synthesis and release of catecholamines (a chemoreceptor cell neurotransmitter) in normoxia and hypoxia, and determined the functional activity of the intact organ by measuring chemosensory activity in the carotid sinus nerve (CSN) in normoxia, hypoxia and hypercapnic acidosis. We found that with age CBs enlarge, but at the same time there is a concomitant decrease in the percentage of chemoreceptor tissue. CB content and turnover time for their catecholamines increase with age. Hypoxic stimulation of chemoreceptor cells elicits a smaller release of catecholamines in rats after 12 months of age, but a non-specific depolarizing stimulus elicits a comparable release at all ages. In parallel, there was a marked decrease in the responsiveness to hypoxia, but not to an acidic-hypercapnic stimulus, assessed as chemosensory activity in the CSN. We conclude that in aged mammals chemoreceptor cells become hypofunctional, leading to a decreased peripheral drive of ventilation.
Collapse
Affiliation(s)
- Silvia V Conde
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina. Universidad de Valladolid, Valladolid, Spain
| | | | | | | | | |
Collapse
|
25
|
|