1
|
Srivastava A, Wang Q, Orrù CD, Fernandez M, Compta Y, Ghetti B, Zanusso G, Zou WQ, Caughey B, Beauchemin CAA. Enhanced quantitation of pathological α-synuclein in patient biospecimens by RT-QuIC seed amplification assays. PLoS Pathog 2024; 20:e1012554. [PMID: 39302978 PMCID: PMC11451978 DOI: 10.1371/journal.ppat.1012554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/04/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024] Open
Abstract
Disease associated pathological aggregates of alpha-synuclein (αSynD) exhibit prion-like spreading in synucleinopathies such as Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Seed amplification assays (SAAs) such as real-time quaking-induced conversion (RT-QuIC) have shown high diagnostic sensitivity and specificity for detecting proteopathic αSynD seeds in a variety of biospecimens from PD and DLB patients. However, the extent to which relative proteopathic seed concentrations are useful as indices of a patient's disease stage or prognosis remains unresolved. One feature of current SAAs that complicates attempts to correlate SAA results with patients' clinical and other laboratory findings is their quantitative imprecision, which has typically been limited to discriminating large differences (e.g. 5-10 fold) in seed concentration. We used end-point dilution (ED) RT-QuIC assays to determine αSynD seed concentrations in patient biospecimens and tested the influence of various assay variables such as serial dilution factor, replicate number and data processing methods. The use of 2-fold versus 10-fold dilution factors and 12 versus 4 replicate reactions per dilution reduced ED-RT-QuIC assay error by as much as 70%. This enhanced assay format discriminated as little as 2-fold differences in αSynD seed concentration besides detecting ~2-16-fold seed reductions caused by inactivation treatments. In some scenarios, analysis of the data using Poisson and midSIN algorithms provided more consistent and statistically significant discrimination of different seed concentrations. We applied our improved assay strategies to multiple diagnostically relevant PD and DLB antemortem patient biospecimens, including cerebrospinal fluid, skin, and brushings of the olfactory mucosa. Using ED αSyn RT-QuIC as a model SAA, we show how to markedly improve the inter-assay reproducibility and quantitative accuracy. Enhanced quantitative SAA accuracy should facilitate assessments of pathological seeding activities as biomarkers in proteinopathy diagnostics and prognostics, as well as in patient cohort selection and assessments of pharmacodynamics and target engagement in drug trials.
Collapse
Affiliation(s)
- Ankit Srivastava
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, Montana, United States of America
| | - Qinlu Wang
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy, and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Christina D. Orrù
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, Montana, United States of America
| | - Manel Fernandez
- Parkinson’s Disease & Movement Disorders Unit, Neurology Service, Hospital Clínic I Universitari de Barcelona; IDIBAPS, CIBERNED (CB06/05/0018-ISCIII), ERN- RND, Institut Clínic de Neurociències (Maria de Maeztu Excellence Centre), Universitat de Barcelona. Barcelona, Catalonia, Spain
| | - Yaroslau Compta
- Parkinson’s Disease & Movement Disorders Unit, Neurology Service, Hospital Clínic I Universitari de Barcelona; IDIBAPS, CIBERNED (CB06/05/0018-ISCIII), ERN- RND, Institut Clínic de Neurociències (Maria de Maeztu Excellence Centre), Universitat de Barcelona. Barcelona, Catalonia, Spain
| | - Bernardino Ghetti
- Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Gianluigi Zanusso
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Wen-Quan Zou
- Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Institute of Neurology, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Byron Caughey
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, Montana, United States of America
| | - Catherine A. A. Beauchemin
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
- Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS) at RIKEN, Wako, Japan
| |
Collapse
|
2
|
Uzuegbunam BC, Librizzi D, Hooshyar Yousefi B. PET Radiopharmaceuticals for Alzheimer's Disease and Parkinson's Disease Diagnosis, the Current and Future Landscape. Molecules 2020; 25:E977. [PMID: 32098280 PMCID: PMC7070523 DOI: 10.3390/molecules25040977] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
Ironically, population aging which is considered a public health success has been accompanied by a myriad of new health challenges, which include neurodegenerative disorders (NDDs), the incidence of which increases proportionally to age. Among them, Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common, with the misfolding and the aggregation of proteins being common and causal in the pathogenesis of both diseases. AD is characterized by the presence of hyperphosphorylated τ protein (tau), which is the main component of neurofibrillary tangles (NFTs), and senile plaques the main component of which is β-amyloid peptide aggregates (Aβ). The neuropathological hallmark of PD is α-synuclein aggregates (α-syn), which are present as insoluble fibrils, the primary structural component of Lewy body (LB) and neurites (LN). An increasing number of non-invasive PET examinations have been used for AD, to monitor the pathological progress (hallmarks) of disease. Notwithstanding, still the need for the development of novel detection tools for other proteinopathies still remains. This review, although not exhaustively, looks at the timeline of the development of existing tracers used in the imaging of Aβ and important moments that led to the development of these tracers.
Collapse
Affiliation(s)
| | - Damiano Librizzi
- Department of Nuclear Medicine, Philipps-University of Marburg, 35043 Marburg, Germany;
| | - Behrooz Hooshyar Yousefi
- Nuclear Medicine Department, and Neuroimaging Center, Technical University of Munich, 81675 Munich, Germany;
- Department of Nuclear Medicine, Philipps-University of Marburg, 35043 Marburg, Germany;
| |
Collapse
|
3
|
Zimmer L. [PET imaging for better understanding of normal and pathological neurotransmission]. Biol Aujourdhui 2019; 213:109-120. [PMID: 31829931 DOI: 10.1051/jbio/2019025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Indexed: 11/14/2022]
Abstract
Positron emission tomography imaging is still an expanding field of preclinical and clinical investigations exploring the brain and its normal and pathological functions. In addition to technological improvements in PET scanners, the availability of suitable radiotracers for unexplored pharmacological targets is a key factor in this expansion. Many radiotracers (or radiopharmaceuticals, when administered to humans) have been developed by multidisciplinary teams to visualize and quantify a growing numbers of brain receptors, transporters, enzymes and other targets. The development of new PET radiotracers still represents an exciting challenge, given the large number of neurochemical functions that remain to be explored. In this article, we review the development context of the first preclinical radiotracers and their passage to humans. The main current contributions of PET radiotracers are described in terms of imaging neuronal metabolism, quantification of receptors and transporters, neurodegenerative and neuroinflammatory imaging. The different approaches to functional imaging of neurotransmission are also discussed. Finally, the contributions of PET imaging to the research and development of new brain drugs are described.
Collapse
Affiliation(s)
- Luc Zimmer
- Centre de Recherche en Neurosciences de Lyon (CNRS - INSERM - Université Claude Bernard Lyon 1), Lyon, France - CERMEP-Imagerie du Vivant, Hospices Civils de Lyon, Bron, France - Institut National des Sciences et Techniques Nucléaires, CEA, Saclay, France
| |
Collapse
|
4
|
Josephson L, Stratman N, Liu Y, Qian F, Liang SH, Vasdev N, Patel S. The Binding of BF-227-Like Benzoxazoles to Human α-Synuclein and Amyloid β Peptide Fibrils. Mol Imaging 2019; 17:1536012118796297. [PMID: 30213230 PMCID: PMC6144582 DOI: 10.1177/1536012118796297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Development of an α-synuclein (α-Syn) positron emission tomography agent for the
diagnosis and evaluation of Parkinson disease therapy is a key goal of neurodegenerative
disease research. BF-227 has been described as an α-Syn binder and hence was employed as a
lead to generate a library of α-Syn-binding compounds. [3H]BF-227 bound to
α-Syn and amyloid β peptide (Aβ) fibrils with affinities (KD) of 46.0 nM and
15.7 nM, respectively. Affinities of BF-227-like compounds (expressed as Ki)
for α-Syn and Aβ fibrils were determined, along with 5 reference compounds (flutafuranol,
flutemetamol, florbetapir, BF-227, and PiB). Selectivity for α-Syn binding, defined as the
Ki(Aβ)/Ki(α-Syn) ratio, was 0.23 for BF-227. A similar or lower
ratio was measured for analogues decorated with alkyl or oxyethylene chains attached to
the oxygen at the 6 position of BF-227, suggesting a lack of involvement of the side chain
in fibril binding. BF-227-like iodobenzoxazoles had lower affinities and poor α-Syn
selectivity. However, BF-227-like fluorobenzoxazoles had improved α-Syn selectively having
Ki(Aβ)/Ki(α-Syn) ranging from 2.2 to 5.1 with appreciable fibril
affinity, although not sufficient to warrant further investigation. Compounds based on
fluorobenzoxazoles might offer an approach to obtaining an α-Syn imaging agent with an
appropriate affinity and selectivity.
Collapse
Affiliation(s)
- Lee Josephson
- 1 MedChem Imaging, LLC, Boston, MA, USA.,2 Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nancy Stratman
- 3 Biomarkers Preclinical Imaging and Pharmacology, Research and Early Development, Biogen, MA, USA
| | - YuTing Liu
- 4 Biologics Drug Discovery, Biogen, Cambridge, MA, USA
| | - Fang Qian
- 4 Biologics Drug Discovery, Biogen, Cambridge, MA, USA
| | - Steven H Liang
- 2 Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Neil Vasdev
- 1 MedChem Imaging, LLC, Boston, MA, USA.,2 Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shil Patel
- 5 Translational Imaging Engine, Eisai AiM Institute, MA, USA. Vasdev is now with Azrieli Centre for Neuro-Radiochemistry, Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Stoddard-Bennett T, Reijo Pera R. Treatment of Parkinson's Disease through Personalized Medicine and Induced Pluripotent Stem Cells. Cells 2019; 8:E26. [PMID: 30621042 PMCID: PMC6357081 DOI: 10.3390/cells8010026] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/28/2018] [Accepted: 12/30/2018] [Indexed: 12/18/2022] Open
Abstract
Parkinson's Disease (PD) is an intractable disease resulting in localized neurodegeneration of dopaminergic neurons of the substantia nigra pars compacta. Many current therapies of PD can only address the symptoms and not the underlying neurodegeneration of PD. To better understand the pathophysiological condition, researchers continue to seek models that mirror PD's phenotypic manifestations as closely as possible. Recent advances in the field of cellular reprogramming and personalized medicine now allow for previously unattainable cell therapies and patient-specific modeling of PD using induced pluripotent stem cells (iPSCs). iPSCs can be selectively differentiated into a dopaminergic neuron fate naturally susceptible to neurodegeneration. In iPSC models, unlike other artificially-induced models, endogenous cellular machinery and transcriptional feedback are preserved, a fundamental step in accurately modeling this genetically complex disease. In addition to accurately modeling PD, iPSC lines can also be established with specific genetic risk factors to assess genetic sub-populations' differing response to treatment. iPS cell lines can then be genetically corrected and subsequently transplanted back into the patient in hopes of re-establishing function. Current techniques focus on iPSCs because they are patient-specific, thereby reducing the risk of immune rejection. The year 2018 marked history as the year that the first human trial for PD iPSC transplantation began in Japan. This form of cell therapy has shown promising results in other model organisms and is currently one of our best options in slowing or even halting the progression of PD. Here, we examine the genetic contributions that have reshaped our understanding of PD, as well as the advantages and applications of iPSCs for modeling disease and personalized therapies.
Collapse
Affiliation(s)
- Theo Stoddard-Bennett
- Department of Cell Biology and Neurosciences, Montana State University, Bozeman, MT 59717, USA.
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Renee Reijo Pera
- Department of Cell Biology and Neurosciences, Montana State University, Bozeman, MT 59717, USA.
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
6
|
Liu ZY, Liu FT, Zuo CT, Koprich JB, Wang J. Update on Molecular Imaging in Parkinson's Disease. Neurosci Bull 2017; 34:330-340. [PMID: 29282614 DOI: 10.1007/s12264-017-0202-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 11/04/2017] [Indexed: 12/14/2022] Open
Abstract
Advances in radionuclide tracers have allowed for more accurate imaging that reflects the actions of numerous neurotransmitters, energy metabolism utilization, inflammation, and pathological protein accumulation. All of these achievements in molecular brain imaging have broadened our understanding of brain function in Parkinson's disease (PD). The implementation of molecular imaging has supported more accurate PD diagnosis as well as assessment of therapeutic outcome and disease progression. Moreover, molecular imaging is well suited for the detection of preclinical or prodromal PD cases. Despite these advances, future frontiers of research in this area will focus on using multi-modalities combining positron emission tomography and magnetic resonance imaging along with causal modeling with complex algorithms.
Collapse
Affiliation(s)
- Zhen-Yang Liu
- Department of Neurology and National Clinical Research Center for Ageing and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Feng-Tao Liu
- Department of Neurology and National Clinical Research Center for Ageing and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Chuan-Tao Zuo
- PET Center, Huashan Hospital, Fudan University, Shanghai, 200235, China
| | - James B Koprich
- Department of Neurology and National Clinical Research Center for Ageing and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.,Krembil Institute, Toronto Western Hospital, University Health Network, Toronto, ON, M5T 2S8, Canada
| | - Jian Wang
- Department of Neurology and National Clinical Research Center for Ageing and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
7
|
Magnetic resonance imaging and tensor-based morphometry in the MPTP non-human primate model of Parkinson's disease. PLoS One 2017; 12:e0180733. [PMID: 28738061 PMCID: PMC5524324 DOI: 10.1371/journal.pone.0180733] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 06/20/2017] [Indexed: 12/30/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder producing a variety of motor and cognitive deficits with the causes remaining largely unknown. The gradual loss of the nigrostriatal pathway is currently considered the pivotal pathological event. To better understand the progression of PD and improve treatment management, defining the disease on a structural basis and expanding brain analysis to extra-nigral structures is indispensable. The anatomical complexity and the presence of neuromelanin, make the use of non-human primates an essential element in developing putative imaging biomarkers of PD. To this end, ex vivo T2-weighted magnetic resonance images were acquired from control and 1-methyl-4 phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated marmosets. Volume measurements of the caudate, putamen, and substantia nigra indicated significant atrophy and cortical thinning. Tensor-based morphometry provided a more extensive and hypothesis free assessment of widespread changes caused by the toxin insult to the brain, especially highlighting regional cortical atrophy. The results highlight the importance of developing imaging biomarkers of PD in non-human primate models considering their distinct neuroanatomy. It is essential to further develop these biomarkers in vivo to provide non-invasive tools to detect pre-symptomatic PD and to monitor potential disease altering therapeutics.
Collapse
|
8
|
Shahraki S, Shojaei S, Shojaei S. Inhibitory Role of β-Casein on the α-Synuclein Aggregation Associated with Parkinson’s Disease In Vitro. Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9600-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Mallik AK, Drzezga A, Minoshima S. Molecular Imaging and Precision Medicine in Dementia and Movement Disorders. PET Clin 2017; 12:119-136. [DOI: 10.1016/j.cpet.2016.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Bu LL, Yang K, Xiong WX, Liu FT, Anderson B, Wang Y, Wang J. Toward precision medicine in Parkinson's disease. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:26. [PMID: 26889479 DOI: 10.3978/j.issn.2305-5839.2016.01.21] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Precision medicine refers to an innovative approach selected for disease prevention and health promotion according to the individual characteristics of each patient. The goal of precision medicine is to formulate prevention and treatment strategies based on each individual with novel physiological and pathological insights into a certain disease. A multidimensional data-driven approach is about to upgrade "precision medicine" to a higher level of greater individualization in healthcare, a shift towards the treatment of individual patients rather than treating a certain disease including Parkinson's disease (PD). As one of the most common neurodegenerative diseases, PD is a lifelong chronic disease with clinical and pathophysiologic complexity, currently it is treatable but neither preventable nor curable. At its advanced stage, PD is associated with devastating chronic complications including both motor dysfunction and non-motor symptoms which impose an immense burden on the life quality of patients. Advances in computational approaches provide opportunity to establish the patient's personalized disease data at the multidimensional levels, which finally meeting the need for the current concept of precision medicine via achieving the minimal side effects and maximal benefits individually. Hence, in this review, we focus on highlighting the perspectives of precision medicine in PD based on multi-dimensional information about OMICS, molecular imaging, deep brain stimulation (DBS) and wearable sensors. Precision medicine in PD is expected to integrate the best evidence-based knowledge to individualize optimal management in future health care for those with PD.
Collapse
Affiliation(s)
- Lu-Lu Bu
- 1 Department & Institute of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China ; 2 School of Computing, National University of Singapore, Singapore
| | - Ke Yang
- 1 Department & Institute of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China ; 2 School of Computing, National University of Singapore, Singapore
| | - Wei-Xi Xiong
- 1 Department & Institute of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China ; 2 School of Computing, National University of Singapore, Singapore
| | - Feng-Tao Liu
- 1 Department & Institute of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China ; 2 School of Computing, National University of Singapore, Singapore
| | - Boyd Anderson
- 1 Department & Institute of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China ; 2 School of Computing, National University of Singapore, Singapore
| | - Ye Wang
- 1 Department & Institute of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China ; 2 School of Computing, National University of Singapore, Singapore
| | - Jian Wang
- 1 Department & Institute of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China ; 2 School of Computing, National University of Singapore, Singapore
| |
Collapse
|
11
|
Ruffmann C, Calboli FCF, Bravi I, Gveric D, Curry LK, de Smith A, Pavlou S, Buxton JL, Blakemore AIF, Takousis P, Molloy S, Piccini P, Dexter DT, Roncaroli F, Gentleman SM, Middleton LT. Cortical Lewy bodies and Aβ burden are associated with prevalence and timing of dementia in Lewy body diseases. Neuropathol Appl Neurobiol 2015; 42:436-50. [DOI: 10.1111/nan.12294] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/24/2015] [Accepted: 11/03/2015] [Indexed: 01/16/2023]
Affiliation(s)
- C. Ruffmann
- Neuroepidemiology and Ageing Research Unit; School of Public Health; Imperial College; London UK
- Centro Parkinson; Istituti Clinici di Perfezionamento di Milano; Milano Italy
| | - F. C. F. Calboli
- Neuroepidemiology and Ageing Research Unit; School of Public Health; Imperial College; London UK
| | - I. Bravi
- Division of Brain Sciences; Department of Medicine; Imperial College; London UK
| | - D. Gveric
- Division of Brain Sciences; Department of Medicine; Imperial College; London UK
| | - L. K. Curry
- Neuroepidemiology and Ageing Research Unit; School of Public Health; Imperial College; London UK
| | - A. de Smith
- Genomics of Common Disease; School of Public Health; Imperial College; London UK
- Department of Epidemiology and Biostatistics; University of California, San Francisco; San Francisco CA USA
| | - S. Pavlou
- Genomics of Common Disease; School of Public Health; Imperial College; London UK
- Department of Molecular Virology; Cyprus Institute of Neurology and Genetics; Nicosia Cyprus
| | - J. L. Buxton
- Section of Investigative Medicine; Department of Medicine; Imperial College; London UK
| | - A. I. F. Blakemore
- Section of Investigative Medicine; Department of Medicine; Imperial College; London UK
| | - P. Takousis
- Neuroepidemiology and Ageing Research Unit; School of Public Health; Imperial College; London UK
| | - S. Molloy
- Division of Brain Sciences; Department of Medicine; Imperial College; London UK
| | - P. Piccini
- Division of Brain Sciences; Department of Medicine; Imperial College; London UK
| | - D. T. Dexter
- Division of Brain Sciences; Department of Medicine; Imperial College; London UK
| | - F. Roncaroli
- Institute of Brain Behaviour and Mental Health; University of Manchester; Manchester UK
| | - S. M. Gentleman
- Division of Brain Sciences; Department of Medicine; Imperial College; London UK
| | - L. T. Middleton
- Neuroepidemiology and Ageing Research Unit; School of Public Health; Imperial College; London UK
| |
Collapse
|
12
|
Weingarten CP, Sundman MH, Hickey P, Chen NK. Neuroimaging of Parkinson's disease: Expanding views. Neurosci Biobehav Rev 2015; 59:16-52. [PMID: 26409344 PMCID: PMC4763948 DOI: 10.1016/j.neubiorev.2015.09.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 09/07/2015] [Accepted: 09/15/2015] [Indexed: 12/14/2022]
Abstract
Advances in molecular and structural and functional neuroimaging are rapidly expanding the complexity of neurobiological understanding of Parkinson's disease (PD). This review article begins with an introduction to PD neurobiology as a foundation for interpreting neuroimaging findings that may further lead to more integrated and comprehensive understanding of PD. Diverse areas of PD neuroimaging are then reviewed and summarized, including positron emission tomography, single photon emission computed tomography, magnetic resonance spectroscopy and imaging, transcranial sonography, magnetoencephalography, and multimodal imaging, with focus on human studies published over the last five years. These included studies on differential diagnosis, co-morbidity, genetic and prodromal PD, and treatments from L-DOPA to brain stimulation approaches, transplantation and gene therapies. Overall, neuroimaging has shown that PD is a neurodegenerative disorder involving many neurotransmitters, brain regions, structural and functional connections, and neurocognitive systems. A broad neurobiological understanding of PD will be essential for translational efforts to develop better treatments and preventive strategies. Many questions remain and we conclude with some suggestions for future directions of neuroimaging of PD.
Collapse
Affiliation(s)
- Carol P Weingarten
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, United States.
| | - Mark H Sundman
- Brain Imaging and Analysis Center, Duke University Medical Center, United States
| | - Patrick Hickey
- Department of Neurology, Duke University School of Medicine, United States
| | - Nan-kuei Chen
- Brain Imaging and Analysis Center, Duke University Medical Center, United States; Department of Radiology, Duke University School of Medicine, United States
| |
Collapse
|
13
|
Harrison IF, Crum WR, Vernon AC, Dexter DT. Neurorestoration induced by the HDAC inhibitor sodium valproate in the lactacystin model of Parkinson's is associated with histone acetylation and up-regulation of neurotrophic factors. Br J Pharmacol 2015; 172:4200-15. [PMID: 26040297 DOI: 10.1111/bph.13208] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 05/11/2015] [Accepted: 06/01/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Histone hypoacetylation is associated with Parkinson's disease (PD), due possibly to an imbalance in the activities of enzymes responsible for histone (de)acetylation; correction of which may be neuroprotective/neurorestorative. This hypothesis was tested using the anti-epileptic drug sodium valproate, a known histone deacetylase inhibitor (HDACI), utilizing a delayed-start study design in the lactacystin rat model of PD. EXPERIMENTAL APPROACH The irreversible proteasome inhibitor lactacystin was unilaterally injected into the substantia nigra of Sprague-Dawley rats that subsequently received valproate for 28 days starting 7 days after lactacystin lesioning. Longitudinal motor behavioural testing, structural MRI and post-mortem assessment of nigrostriatal integrity were used to track changes in this model of PD and quantify neuroprotection/restoration. Subsequent cellular and molecular analyses were performed to elucidate the mechanisms underlying valproate's effects. KEY RESULTS Despite producing a distinct pattern of structural re-modelling in the healthy and lactacystin-lesioned brain, delayed-start valproate administration induced dose-dependent neuroprotection/restoration against lactacystin neurotoxicity, characterized by motor deficit alleviation, attenuation of morphological brain changes and restoration of dopaminergic neurons in the substantia nigra. Molecular analyses revealed that valproate alleviated lactacystin-induced histone hypoacetylation and induced up-regulation of brain neurotrophic/neuroprotective factors. CONCLUSIONS AND IMPLICATIONS The histone acetylation and up-regulation of neurotrophic/neuroprotective factors associated with valproate treatment culminate in a neuroprotective and neurorestorative phenotype in this animal model of PD. As valproate induced structural re-modelling of the brain, further research is required to determine whether valproate represents a viable candidate for disease treatment; however, the results suggest that HDACIs could hold potential as disease-modifying agents in PD.
Collapse
Affiliation(s)
- Ian F Harrison
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK.,Parkinson's Disease Research Group, Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - William R Crum
- Department of Neuroimaging, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - David T Dexter
- Parkinson's Disease Research Group, Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
14
|
Liu G, Chen M, Mi N, Yang W, Li X, Wang P, Yin N, Li Y, Yue F, Chan P, Yu S. Increased oligomerization and phosphorylation of α-synuclein are associated with decreased activity of glucocerebrosidase and protein phosphatase 2A in aging monkey brains. Neurobiol Aging 2015; 36:2649-59. [PMID: 26149921 DOI: 10.1016/j.neurobiolaging.2015.06.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 12/15/2022]
Abstract
Aging is associated with an increased risk for Parkinson's disease and dementia with Lewy bodies, in which α-synuclein (α-syn) oligomerization plays key pathogenic roles. Here, we show that oligomeric α-syn levels increase with age in the brain of cynomolgus monkeys and are accompanied by a decrease in the expression and activity of glucocerebrosidase (GCase), a lysosomal enzyme whose dysfunction is linked to accumulation of oligomeric α-syn. Besides, levels of α-syn phosphorylated at serine 129 (pS129 α-syn), a modification that promotes α-syn oligomerization also increase with age in the brain and is associated with a reduction in the activity of protein phosphatase 2A (PP2A), an enzyme that facilitates α-syn dephosphorylation. The inverse relationship between levels of oligomeric α-syn and pS129 α-syn and activity of GCase and PP2A was more evident in brain regions susceptible to neurodegeneration (i.e., the striatum and hippocampus) than those that are less vulnerable (i.e., cerebellum and occipital cortex). In vitro experiments showed that GCase activity was more potently inhibited by oligomeric than by monomeric α-syn in the lysosome-enriched fractions isolated from brain tissues and cultured neuronal cells. Inhibition of GCase activity induced an elevation of oligomeric α-syn levels, which was shown to increase pS129 α-syn levels and reduce PP2A activity in cultured neuronal cells. The alterations in oligomeric and pS129 α-syns and their association with GCase and PP2A in aging brains may explain the vulnerability of certain brain regions to neurodegeneration in Parkinson's disease and dementia with Lewy bodies.
Collapse
Affiliation(s)
- Guangwei Liu
- Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China; Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Min Chen
- Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory for Parkinson's Disease, Beijing, China
| | - Na Mi
- Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China; Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Weiwei Yang
- Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China; Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Xin Li
- Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China; Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Peng Wang
- Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China; Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Na Yin
- Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China; Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Yaohua Li
- Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China; Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Feng Yue
- Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China; Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Piu Chan
- Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China; Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China; Beijing Key Laboratory for Parkinson's Disease, Beijing, China
| | - Shun Yu
- Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China; Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China; Beijing Key Laboratory for Parkinson's Disease, Beijing, China.
| |
Collapse
|
15
|
Brooks DJ. Neuroimaging in Parkinson's disease: a future perspective. Neurodegener Dis Manag 2015; 5:105-8. [PMID: 25894874 DOI: 10.2217/nmt.14.56] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
16
|
Modo M, Kolosnjaj-Tabi J, Nicholls F, Ling W, Wilhelm C, Debarge O, Gazeau F, Clement O. Considerations for the clinical use of contrast agents for cellular MRI in regenerative medicine. CONTRAST MEDIA & MOLECULAR IMAGING 2014; 8:439-55. [PMID: 24375900 DOI: 10.1002/cmmi.1547] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/21/2013] [Accepted: 05/09/2013] [Indexed: 12/24/2022]
Abstract
Advances in regenerative medicine are rapidly transforming healthcare. A cornerstone of regenerative medicine is the introduction of cells that were grown or manipulated in vitro. Key questions that arise after these cells are re-introduced are: whether these cells are localized in the appropriate site; whether cells survive; and whether these cells migrate. These questions predominantly relate to the safety of the therapeutic approach (i.e. tumorigenesis), but certain aspects can also influence the efficacy of the therapeutic approach (e.g. site of injection). The European Medicines Agency has indicated that suitable methods for stem cell tracking should be applied where these methods are available. We here discuss the European regulatory framework, as well as the scientific evidence, that should be considered to facilitate the potential clinical implementation of magnetic resonance imaging contrast media to track implanted/injected cells in human studies.
Collapse
Affiliation(s)
- Michel Modo
- University of Pittsburgh, Department of Radiology, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, 15203, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Boelmans K, Spies L, Sedlacik J, Fiehler J, Jahn H, Gerloff C, Münchau A. A novel computerized algorithm to detect microstructural brainstem pathology in Parkinson's disease using standard 3 Tesla MR imaging. J Neurol 2014; 261:1968-75. [PMID: 25063366 DOI: 10.1007/s00415-014-7440-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 07/10/2014] [Accepted: 07/11/2014] [Indexed: 10/25/2022]
Abstract
Increased deposition of α-synuclein in Parkinson's disease (PD) is known to be prominent in the brainstem and discussed to be clinically relevant for motor and non-motor features. Whether structural magnetic resonance imaging is capable to detect degraded tissue microstructure caused by increased deposition of α-synuclein at this predilection site in PD remains unclear. We hypothesize that microstructural degradation in the brainstem leads to a reduced T1 contrast provoking standard tissue segmentation engines to misclassify tissue as additional grey matter in regions predominantly composed of white matter. High-resolution T1-weighted three-dimensional magnetization prepared rapid gradient echo (MPRAGE) imaging at 3 Tesla in fifty-two PD patients with mild-to-moderate disease severity and in forty age- and gender-matched healthy controls was performed. A dedicated computerized algorithm that comprises standard tissue segmentation in combination with a statistical test was set up that evaluates grey matter composition on voxel level. The algorithm detected a single significant cluster of voxels with enhanced grey matter (cluster volume is 1,368 mm(3), p < 0.05 corrected for false discovery rate) in the pontomedullary junction of the brainstem in PD patients as compared to healthy controls. Furthermore, absolute grey matter volume was significantly higher in the brainstem of the PD group compared to healthy controls. We conclude that this cluster may reflect α-synuclein induced microstructural brainstem pathology in PD.
Collapse
Affiliation(s)
- Kai Boelmans
- Department of Psychiatry, Memory Clinic, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany,
| | | | | | | | | | | | | |
Collapse
|
18
|
Li C, Peng S, Wang R, Chen H, Su W, Zhao X, Zhou J, Chen M. Chemical exchange saturation transfer MR imaging of Parkinson's disease at 3 Tesla. Eur Radiol 2014; 24:2631-9. [PMID: 25038850 DOI: 10.1007/s00330-014-3241-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 05/04/2014] [Accepted: 05/13/2014] [Indexed: 12/23/2022]
Abstract
OBJECTIVES To demonstrate the feasibility of using chemical exchange saturation transfer (CEST) imaging to detect Parkinson's disease (PD) in patients at 3 Tesla. METHODS Twenty-seven PD patients (17 men and 10 women; age range, 54-77 years) and 22 age-matched normal controls (13 men and 9 women; age range, 55-73 years) were examined on a 3-Tesla MRI system. Magnetization transfer spectra with 31 different frequency offsets (-6 to 6 ppm) were acquired at two transverse slices of the head, including the basal ganglia and midbrain. One-way analysis of variance tests was used to compare the differences in CEST imaging signals between PD patients and normal controls. RESULTS Total CEST signal between the offsets of 0 and 4 ppm in the substantia nigra was significantly lower in PD patients than in normal controls (P = 0.006), which could be associated with the loss of dopaminergic neurons. Protein-based CEST imaging signals at the offset of 3.5 ppm in the globus pallidus, putamen and caudate were significantly increased in PD patients, compared to normal controls (P < 0.001, P = 0.003, P < 0.001, respectively). CONCLUSIONS CEST imaging signals could potentially serve as imaging biomarkers to aid in the non-invasive molecular diagnosis of PD. KEY POINTS • Total CEST signal in substantia nigra decreased in PD patients • Protein-based CEST signals in basal ganglia increased in PD patients • CEST could assist with the non-invasive molecular diagnosis for PD patients.
Collapse
Affiliation(s)
- Chunmei Li
- Department of Radiology, Beijing Hospital, No. 1 Da-Hua Road, Dong Dan, Beijing, 100730, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Magnetic resonance spectroscopy in the diagnosis of dementia with Lewy bodies. BIOMED RESEARCH INTERNATIONAL 2014; 2014:809503. [PMID: 25110697 PMCID: PMC4109391 DOI: 10.1155/2014/809503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 05/21/2014] [Accepted: 06/20/2014] [Indexed: 01/03/2023]
Abstract
Dementia with Lewy bodies (DLB) is considered to be the second most frequent primary degenerative dementing illness after Alzheimer's disease (AD). DLB, together with Parkinson's disease (PD), Parkinson's disease with dementia (PDD) belong to α-synucleinopathies—a group of neurodegenerative diseases associated with pathological accumulation of the α-synuclein protein. Dementia due to PD and DLB shares clinical symptoms and neuropsychological profiles. Moreover, the core features and additional clinical signs and symptoms for these two very similar diseases are largely the same. Neuroimaging seems to be a promising method in differential diagnosis of dementia studies. The development of imaging methods or other objective measures to supplement clinical criteria for DLB is needed and a method which would accurately facilitate diagnosis of DLB prior to death is still being searched. Proton magnetic resonance spectroscopy (1H-MRS) provides a noninvasive method of assessing an in vivo biochemistry of brain tissue. This review summarizes the main results obtained from the application of neuroimaging techniques in DLB cases focusing on 1H-MRS.
Collapse
|
20
|
Morra LF, Donovick PJ. Clinical presentation and differential diagnosis of dementia with Lewy bodies: a review. Int J Geriatr Psychiatry 2014; 29:569-76. [PMID: 24150834 DOI: 10.1002/gps.4039] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 09/23/2013] [Indexed: 01/08/2023]
Abstract
BACKGROUND Dementia with Lewy bodies is one of the most prevalent dementia diagnoses. However, differential diagnosis between dementia with Lewy bodies, Alzheimer's disease, and Parkinson's disease with dementia can still be very difficult given the overlap in neuropathology, clinical presentation, cognitive, and neuroanatomical changes. METHOD A literature review of dementia with Lewy bodies, Alzheimer's disease, and Parkinson's disease with dementia was conducted using PubMed. RESULTS AND IMPLICATIONS Accurate diagnosis of dementia with Lewy bodies is crucial in order to more accurately predict the progression of the disease and negative side effects from pharmacological treatment. The differences and similarities between dementia with Lewy bodies, Alzheimer's disease, and Parkinson's disease with dementia are highlighted in order to aid clinicians in differential diagnosis.
Collapse
Affiliation(s)
- L F Morra
- State University of New York at Binghamton, Binghamton, NY, USA
| | | |
Collapse
|
21
|
Sakakibara R, Tateno F, Kishi M, Tsuyusaki Y, Terada H, Inaoka T. MIBG myocardial scintigraphy in pre-motor Parkinson's disease: A review. Parkinsonism Relat Disord 2014; 20:267-73. [DOI: 10.1016/j.parkreldis.2013.11.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 11/01/2013] [Accepted: 11/04/2013] [Indexed: 01/02/2023]
|
22
|
Svenningsson P, Westman E, Ballard C, Aarsland D. Cognitive impairment in patients with Parkinson's disease: diagnosis, biomarkers, and treatment. Lancet Neurol 2012; 11:697-707. [PMID: 22814541 DOI: 10.1016/s1474-4422(12)70152-7] [Citation(s) in RCA: 358] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Dementia is one of the most common and important aspects of Parkinson's disease and has consequences for patients and caregivers, and has health-related costs. Mild cognitive impairment is also common and frequently progresses to dementia. The underlying mechanisms of dementia associated with Parkinson's disease are only partly known and no mechanism-based treatments are available. Both dysmetabolism of α-synuclein and amyloid-protein and cholinergic deficits contribute to cognitive impairment in Parkinson's disease, and preliminary findings show that imaging and neurophysiological and peripheral biomarkers could be useful in diagnosis and prognosis. Rivastigmine is the only licensed treatment for dementia in Parkinson's disease, but emerging evidence suggests that memantine might also be useful. Whether these or other treatments can delay the progression from mild cognitive impairment to dementia in Parkinson's disease is a key research question.
Collapse
Affiliation(s)
- Per Svenningsson
- Centre for Molecular Medicine, Department of Neurology and Clinical Neuroscience, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | | | | | | |
Collapse
|
23
|
Brockschnieder D, Schmitt-Willich H, Heinrich T, Varrone A, Gulyás B, Toth M, Andersson J, Boemer U, Krause S, Friebe M, Dinkelborg L, Halldin C, Dyrks T. Preclinical characterization of a novel class of 18F-labeled PET tracers for amyloid-β. J Nucl Med 2012; 53:1794-801. [PMID: 23008501 DOI: 10.2967/jnumed.112.104810] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
UNLABELLED Imaging of amyloid-β (Aβ) plaques by PET is more and more integrated into concepts for Alzheimer disease (AD) diagnosis and drug development. The objective of this study was to find novel chemical entities that can be transformed into (18)F-labeled Aβ tracers with favorable brain washout kinetics and low background signal. METHODS High-throughput screening of a large chemical library was used to identify new ligands for fibrillar aggregates of Aβ(1-42) peptide. Thirty-two fluorinated derivatives were synthesized and tested for their affinity toward AD brain homogenate. Twelve ligands have been radiolabeled with (18)F. The pharmacokinetic properties of the radioligands were investigated in mouse and monkey biodistribution studies. Binding characteristics were determined by autoradiography of AD brain sections in vitro and using amyloid precursor protein transgenic mice in vivo. RESULTS The systematic search for Aβ imaging agents revealed several fluorinated derivatives with nanomolar affinity for Aβ. The fluoropyridyl derivative BAY 1008472 showed a high initial brain uptake (6.45 percentage injected dose per gram at 2 min) and rapid brain washout (ratio of percentage of injected dose per gram of tissue at 2 and 30 min after injection, 9.2) in mice. PET studies of healthy rhesus monkeys confirmed the high initial brain uptake of BAY 1008472 (2.52 standardized uptake value at peak) and a fast elimination of total radioactivity from gray and white matter areas (ratio of standardized uptake value at peak uptake and 60 min 11.0). In autoradiographic analysis, BAY 1008472 selectively detected Aβ deposits in human AD brain sections with high contrast and did not bind to τ- or α-synuclein pathologies. Finally, ex vivo autoradiography of brain sections from amyloid precursor protein-transgenic mice confirmed that BAY 1008472 is indeed suitable for the in vivo detection of Aβ plaques. CONCLUSION A new chemical class of Aβ tracers has been identified by high-throughput screening. The fluoropyridyl derivative BAY 1008472 shows a favorable preclinical profile including low background binding in gray and white matter. These properties might qualify this new tracer, in particular, to detect subtle amounts or changes of Aβ burden in presymptomatic AD and during therapy.
Collapse
|
24
|
Abstract
Accumulation of alpha-synuclein is a pathological feature in several neurological diseases. Its characterization has allowed for a re-grouping of diseases according to the expected pathology. The clinical syndrome of PD can now be classified into forms with and without alpha-synuclein pathology. DLB and PDD are synucleinopathies, and MSA shows alpha-synuclein pathology with glial inclusions. ADHD symptoms commonly occur in persons that will subsequently develop DLB. A similar phenomenon may be the early personality changes and frontotemporal atrophy in patients with SNCA multiplication. RLS is not known to have alpha-synuclein pathology, but as PD and ADHD, involves a hypodopaminergic state. Furthermore, PD and RLS co-occur in families in a way that suggests common inheritance. A proportion of patients with ET have brainstem Lewy body pathology. Gaucher disease and other lysosomal storage disorders also have alpha-synuclein pathology. Alpha-synuclein is a naturally unfolded protein. Non-fibrillar oligomeres may be the toxic species, and Lewy body formation may in fact be protective. Inhibiting alpha-synuclein toxicity seems to be an attractive novel treatment strategy and several approaches are being developed. When such treatments become available, clinicians will need to be familiar with the clinical features that distinguish the synucleinopathies from their look-alikes.
Collapse
|
25
|
Hellman AM, Morley JF, Duda JE. Disease modification in Parkinson’s disease: are we there yet with currently available therapies? Neurodegener Dis Manag 2012. [DOI: 10.2217/nmt.12.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY Management of Parkinson’s disease (PD) is currently based primarily on dopamine-replacement therapy for the alleviation of motor symptoms. Current medical and surgical therapies can provide long-lasting symptomatic benefit, but they do not modify progression of the disease. Research is ongoing to find a therapy that can provide neuroprotection, defined herein as preventing vulnerable neurons from dying. Studies of neuroprotection are limited by a lack of adequate biomarkers of PD progression and by the confounding symptomatic effects of many putative neuroprotective therapies. Studies have shown that levodopa prolongs life, but they have not clearly shown that it modifies disease progression. Trials of dopamine agonists have demonstrated symptomatic effect but no unequivocal neuroprotective benefits. While some studies of monamine oxidase B inhibitors have been promising, they have not conclusively proven disease modification. Exercise provides many benefits to patients with PD, may modify the progression of the disease and should be part of each patient’s treatment plan.
Collapse
Affiliation(s)
- Amy M Hellman
- Parkinson’s Disease Research, Education & Clinical Center, Philadelphia VA Medical Center and Department of Neurology, University of Pennsylvania School of Medicine, PA 19104, USA
| | - James F Morley
- Parkinson’s Disease Research, Education & Clinical Center, Philadelphia VA Medical Center and Department of Neurology, University of Pennsylvania School of Medicine, PA 19104, USA
| | - John E Duda
- Parkinson’s Disease Research, Education & Clinical Center, Philadelphia VA Medical Center and Department of Neurology, University of Pennsylvania School of Medicine, PA 19104, USA
| |
Collapse
|
26
|
Evans MC, Modo M, Talbot K, Sibson N, Turner MR. Magnetic resonance imaging of pathological processes in rodent models of amyotrophic lateral sclerosis. ACTA ACUST UNITED AC 2012; 13:288-301. [DOI: 10.3109/17482968.2011.623300] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Matthew C. Evans
- Oxford University Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital,
Oxford, UK
| | - Michel Modo
- University of Pittsburgh Department of Radiology & McGowan Center for Regenerative Medicine,
Pittsburgh, USA
| | - Kevin Talbot
- Oxford University Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital,
Oxford, UK
| | - Niki Sibson
- Oxford University Gray Institute for Radiation Oncology and Biology, Churchill Hospital,
Oxford, UK
| | - Martin R. Turner
- Oxford University Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital,
Oxford, UK
| |
Collapse
|
27
|
Abstract
Amyloid-related diseases are a group of illnesses in which an abnormal accumulation of proteins into fibrillar structures is evident. Results from a wide range of studies, ranging from identification of amyloid-β dimers in the brain to biophysical characterization of the interactions between amyloidogenic peptides and lipid membranes during fibril growth shed light on the initial events which take place during amyloid aggregation. Accounts of fibril disaggregation and formation of globular aggregates due to interactions with lipids or fatty acids further demonstrate the complexity of the aggregation process and the difficulty to treat amyloid-related diseases. There is an inherent difficulty in generalizing from studies of aggregation in vitro, but the involvement of too many cellular components limits the ability to follow amyloid aggregation in a cellular (or extracellular) context. Fortunately, the development of experimental methods to generate stable globular aggregates suggests new means of studying the molecular events associated with amyloid aggregation. Furthermore, simulation studies enable deeper understanding of the experimental results and provide useful predictions that can be tested in the laboratory. Computer simulations can nowadays provide molecular or even atomistic details that are experimentally not available or very difficult to obtain. In the present review, recent developments on modelling and experiments of amyloid aggregation are reviewed, and an integrative account on how isolated interactions (as observed in vitro and in silico) combine during the course of amyloid-related diseases is presented. Finally, it is argued that an integrative approach is necessary to get a better understanding of the protein aggregation process.
Collapse
|
28
|
Current World Literature. Curr Opin Neurol 2011; 24:409-13. [DOI: 10.1097/wco.0b013e3283499d51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Wenning GK, Litvan I, Tolosa E. Milestones in atypical and secondary Parkinsonisms. Mov Disord 2011; 26:1083-95. [DOI: 10.1002/mds.23713] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
30
|
Turner MR, Modo M. Advances in the application of MRI to amyotrophic lateral sclerosis. EXPERT OPINION ON MEDICAL DIAGNOSTICS 2010; 4:483-496. [PMID: 21516259 PMCID: PMC3080036 DOI: 10.1517/17530059.2010.536836] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
IMPORTANCE OF THE FIELD: With the emergence of therapeutic candidates for the incurable and rapidly progressive neurodegenerative condition of amyotrophic lateral sclerosis (ALS), it will be essential to develop easily obtainable biomarkers for diagnosis, as well as monitoring, in a disease where clinical examination remains the predominant diagnostic tool. Magnetic resonance imaging (MRI) has greatly developed over the past thirty years since its initial introduction to neuroscience. With multi-modal applications, MRI is now offering exciting opportunities to develop practical biomarkers in ALS. AREAS COVERED IN THIS REVIEW: The historical application of MRI to the field of ALS, its state-of-the-art and future aspirations will be reviewed. Specifically, the significance and limitations of structural MRI to detect gross morphological tissue changes in relation to clinical presentation will be discussed. The more recent application of diffusion tensor imaging (DTI), magnetic resonance spectroscopy (MRS), functional and resting-state MRI (fMRI & R-fMRI) will be contrasted in relation to these more conventional MRI assessments. Finally, future aspirations will be sketched out in providing a more disease mechanism-based molecular MRI. WHAT THE READER WILL GAIN: This review will equip the reader with an overview of the application of MRI to ALS and illustrate its potential to develop biomarkers. This discussion is exemplified by key studies, demonstrating the strengths and limitations of each modality. The reader will gain an expert opinion on both the current and future developments of MR imaging in ALS. TAKE HOME MESSAGE: MR imaging generates potential diagnostic, prognostic and therapeutic monitoring biomarkers of ALS. The emerging fusion of structural, functional and potentially molecular imaging will improve our understanding of wider cerebral connectivity and holds the promise of biomarkers sensitive to the earliest changes.
Collapse
Affiliation(s)
- Martin R Turner
- Oxford University Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | | |
Collapse
|