1
|
Mokhtarian R, Rajabi S, Zahedian S, Jafarinejad-Farsangi S, Hadizadeh M, Sadeghinejad M. The effect of saffron and its extracts on the treatment of breast cancer: A narrative review. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:629-640. [PMID: 38367937 DOI: 10.1016/j.pharma.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Breast cancer (BC) is the most prevalent malignancy in women and the second most common disease worldwide, affecting approximately one million individuals annually. Despite the efficacy of conventional chemotherapy, medication resistance and adverse effects limit its effectiveness, leading researchers to explore alternative treatments, including herbal remedies. Saffron, a well-known spice derived from the Crocus sativus L. plant, has shown potential as a BC treatment. The active components of saffron exhibit anti-cancer properties by inducing apoptosis, inhibiting cell division, and modulating signaling pathways implicated in cancer development, such as PI3K/AKT, NF-κB, and MAPK. Clinical findings suggest that saffron can alleviate chemotherapy-induced symptoms, reduce serum tumor marker levels, and enhance quality of life. Preliminary clinical trials are investigating the safety and efficacy of saffron in treating BC, with recent evidence indicating that recommended doses of saffron supplementation are well-tolerated and safe. This review provides an overview of the anti-tumor effects of saffron and its unique chemical composition in BC. However, further research and clinical studies are imperative to fully comprehend the potential of saffron in adjuvant therapy for BC patients.
Collapse
Affiliation(s)
- Roya Mokhtarian
- Division of Cellular and Molecular Biology, Department of Biology, NourDanesh Institute of Higher Education, Meymeh, Isfahan, Iran
| | - Soodeh Rajabi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Setareh Zahedian
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeideh Jafarinejad-Farsangi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Morteza Hadizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoumeh Sadeghinejad
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
2
|
Ho PJ, Lim EH, Hartman M, Wong FY, Li J. Breast cancer risk stratification using genetic and non-genetic risk assessment tools for 246,142 women in the UK Biobank. Genet Med 2023; 25:100917. [PMID: 37334786 DOI: 10.1016/j.gim.2023.100917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/20/2023] Open
Abstract
PURPOSE The benefit of using individual risk prediction tools to identify high-risk individuals for breast cancer (BC) screening is uncertain, despite the personalized approach of risk-based screening. METHODS We studied the overlap of predicted high-risk individuals among 246,142 women enrolled in the UK Biobank. Risk predictors assessed include the Gail model (Gail), BC family history (FH, binary), BC polygenic risk score (PRS), and presence of loss-of-function (LoF) variants in BC predisposition genes. Youden J-index was used to select optimal thresholds for defining high-risk. RESULTS In total, 147,399 were considered at high risk for developing BC within the next 2 years by at least 1 of the 4 risk prediction tools examined (Gail2-year > 0.5%: 47%, PRS2-yea r > 0.7%: 30%, FH: 6%, and LoF: 1%); 92,851 (38%) were flagged by only 1 risk predictor. The overlap between individuals flagged as high-risk because of genetic (PRS) and Gail model risk factors was 30%. The best-performing combinatorial model comprises a union of high-risk women identified by PRS, FH, and, LoF (AUC2-year [95% CI]: 62.2 [60.8 to 63.6]). Assigning individual weights to each risk prediction tool increased discriminatory ability. CONCLUSION Risk-based BC screening may require a multipronged approach that includes PRS, predisposition genes, FH, and other recognized risk factors.
Collapse
Affiliation(s)
- Peh Joo Ho
- Laboratory of Women's Health and Genetics, Genome Institute of Singapore, A∗STAR Research Entities, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Elaine H Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Mikael Hartman
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore; Department of Surgery, University Surgical Cluster, National University Hospital, Singapore, Singapore
| | - Fuh Yong Wong
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Jingmei Li
- Laboratory of Women's Health and Genetics, Genome Institute of Singapore, A∗STAR Research Entities, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
3
|
Abstract
Breast cancer is the most common cancer in women globally with enormous associated morbidity, mortality and economic impact. Prevention of breast cancer is a global public health imperative. To date, most of our global efforts have been directed at expanding population breast cancer screening programs for early cancer detection and not at breast cancer prevention efforts. It is imperative that we change the paradigm. As with other diseases, prevention of breast cancer starts with identification of individuals at high risk, and for breast cancer this requires improved identification of individuals who carry a hereditary cancer mutation associated with an elevated risk of breast cancer, and identification of others who are at high risk due to non-genetic, established modifiable and non-modifiable factors. This article will review basic breast cancer genetics and the most common hereditary breast cancer mutations associated with increased risk. We will also discuss the other non-genetic modifiable and non-modifiable breast cancer risk factors, available risk assessment models and an approach to incorporating screening for genetic mutation carriers and identifying high-risk women in clinical practice. A discussion of guidelines for enhanced screening, chemoprevention and surgical management of high-risk women is beyond the scope of this review.
Collapse
Affiliation(s)
- L Larkin
- MS.Medicine, Cincinnati, OH, USA
| |
Collapse
|
4
|
The Other Side of the Coin: May Androgens Have a Role in Breast Cancer Risk? Int J Mol Sci 2021; 23:ijms23010424. [PMID: 35008851 PMCID: PMC8745651 DOI: 10.3390/ijms23010424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022] Open
Abstract
Breast cancer prevention is a major challenge worldwide. During the last few years, efforts have been made to identify molecular breast tissue factors that could be linked to an increased risk of developing the disease in healthy women. In this concern, steroid hormones and their receptors are key players since they are deeply involved in the growth, development and lifetime changes of the mammary gland and play a crucial role in breast cancer development and progression. In particular, androgens, by binding their own receptor, seem to exert a dichotomous effect, as they reduce cell proliferation in estrogen receptor α positive (ERα+) breast cancers while promoting tumour growth in the ERα negative ones. Despite this intricate role in cancer, very little is known about the impact of androgen receptor (AR)-mediated signalling on normal breast tissue and its correlation to breast cancer risk factors. Through an accurate collection of experimental and epidemiological studies, this review aims to elucidate whether androgens might influence the susceptibility for breast cancer. Moreover, the possibility to exploit the AR as a useful marker to predict the disease will be also evaluated.
Collapse
|
5
|
Brédart A, De Pauw A, Anota A, Tüchler A, Dick J, Müller A, Kop JL, Rhiem K, Schmutzler R, Devilee P, Stoppa-Lyonnet D, Dolbeault S. Information needs on breast cancer genetic and non-genetic risk factors in relatives of women with a BRCA1/2 or PALB2 pathogenic variant. Breast 2021; 60:38-44. [PMID: 34455229 PMCID: PMC8403756 DOI: 10.1016/j.breast.2021.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/29/2021] [Accepted: 08/21/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES Comprehensive breast cancer (BC) risk models integrating effects of genetic (GRF) and non-genetic risk factors (NGRF) may refine BC prevention recommendations. We explored the perceived information received on BC risk factors, and related characteristics, in female relatives of women with a BRCA1/2 or PALB2 pathogenic variant, undergoing BC risk assessment using the CanRisk© prediction tool. METHODS Of 200 consecutive cancer-free women approached after the initial genetic consultation, 161 (80.5%) filled in questionnaires on their perception of information received and wished further information on BC risk factors (e.g., being a carrier of a moderate risk altered gene, personal genetic profile, lifestyles). Multilevel multivariate linear models were performed accounting for the clinician who met the counselee and exploring the effect of counselees' socio-demographic, familial and psychological characteristics on the perceived extent of information received. RESULTS Perceived no/little information received and wish for further information were more frequent for NGRF (>50%) than for GRF, especially high-risk genes (<20%). Perceived amount of information received and desire for further information were inversely correlated (p=<0.0001). Higher education level related to lower perceived levels of information received on GRF. Younger counselees' age (β = 0.13, p = 0.02) and less frequent engagement coping (e.g., inclination to solicit information) (β = 0.24, p = 0.02) related to lower perceived information received about NGRF. Other assessed counselees' features were not found to be associated to GRF and NGRF information perception. CONCLUSIONS Awareness of counselees' perceived lack of information on BC risk factors indicates a need to enhance evidence-based information on BC NGRF especially.
Collapse
Affiliation(s)
- Anne Brédart
- Institut Curie, Supportive Care Department, Psycho-oncology Unit, PSL University, 26 rue d'Ulm, Paris, 75005 Paris Cedex 05, France; University of Paris, 71 Avenue Edouard Vaillant, Boulogne-Billancourt, 92774, France.
| | - Antoine De Pauw
- Institut Curie, Cancer Genetic Clinic, PSL University, 26 rue d'Ulm, 75005 Paris Cedex 05, France
| | - Amélie Anota
- Centre Léon Bérard, Department of Clinical Research and Innovation& Human and Social Sciences Department, 28 rue Laennec, Lyon; French National Platform Quality of Life and Cancer, Lyon, 69373, France
| | - Anja Tüchler
- Center for Familial Breast and Ovarian and Cancer for Integrated Oncology (CIO), Kerpener Str. 62 50937 Cologne, University Hospital of Cologne, Cologne, Germany
| | - Julia Dick
- Center for Familial Breast and Ovarian and Cancer for Integrated Oncology (CIO), Kerpener Str. 62 50937 Cologne, University Hospital of Cologne, Cologne, Germany
| | - Anita Müller
- Institut Curie, Supportive Care Department, Psycho-oncology Unit, PSL University, 26 rue d'Ulm, Paris, 75005 Paris Cedex 05, France; VCR, École de Psychologues Praticiens de l'Institut Catholique de Paris, 23 Rue du Montparnasse, 75006, Paris, France
| | - Jean-Luc Kop
- Université de Lorraine, 2LPN, 3 Place Godefroy de Bouillon, Nancy, 54 015 Nancy Cedex, France
| | - Kerstin Rhiem
- Center for Familial Breast and Ovarian and Cancer for Integrated Oncology (CIO), Kerpener Str. 62 50937 Cologne, University Hospital of Cologne, Cologne, Germany
| | - Rita Schmutzler
- Center for Familial Breast and Ovarian and Cancer for Integrated Oncology (CIO), Kerpener Str. 62 50937 Cologne, University Hospital of Cologne, Cologne, Germany
| | - Peter Devilee
- Leiden University Medical Centre, Department of Human Genetics, Department of Pathology, S4-P, P.O. Box 9600, 2300, RC, Leiden, the Netherlands
| | - Dominique Stoppa-Lyonnet
- Institut Curie, Cancer Genetic Clinic, PSL University, 26 rue d'Ulm, 75005 Paris Cedex 05, France
| | - Sylvie Dolbeault
- Institut Curie, Supportive Care Department, Psycho-oncology Unit, PSL University, 26 rue d'Ulm, Paris, 75005 Paris Cedex 05, France; CESP, University Paris-Sud, UVSQ, INSERM, University Paris-Saclay, 16 Avenue Paul Vaillant-Couturier, 94807, Villejuif Cedex, France
| |
Collapse
|
6
|
A Personal Breast Cancer Risk Stratification Model Using Common Variants and Environmental Risk Factors in Japanese Females. Cancers (Basel) 2021; 13:cancers13153796. [PMID: 34359697 PMCID: PMC8345053 DOI: 10.3390/cancers13153796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Breast cancer remains the most common cancer in females, warranting the development of new approaches to prevention. One such approach is personalized prevention using genetic risk models. Here, we developed a risk model using both genetic and environmental risk factors. Results showed that a genetic risk score defined by the number of risk alleles for 14 breast cancer risk SNPs clearly stratified breast cancer risk. Moreover, the combination of this genetic risk score model with an environmental risk model which included established environmental risk factors showed significantly better C-statistics than the environmental risk model alone. This genetic risk score model in combination with the environmental model may be suitable for stratifying individual breast cancer risk, and may form the basis for a new personalized approach to breast cancer prevention. Abstract Personalized approaches to prevention based on genetic risk models have been anticipated, and many models for the prediction of individual breast cancer risk have been developed. However, few studies have evaluated personalized risk using both genetic and environmental factors. We developed a risk model using genetic and environmental risk factors using 1319 breast cancer cases and 2094 controls from three case–control studies in Japan. Risk groups were defined based on the number of risk alleles for 14 breast cancer susceptibility loci, namely low (0–10 alleles), moderate (11–16) and high (17+). Environmental risk factors were collected using a self-administered questionnaire and implemented with harmonization. Odds ratio (OR) and C-statistics, calculated using a logistic regression model, were used to evaluate breast cancer susceptibility and model performance. Respective breast cancer ORs in the moderate- and high-risk groups were 1.69 (95% confidence interval, 1.39–2.04) and 3.27 (2.46–4.34) compared with the low-risk group. The C-statistic for the environmental model of 0.616 (0.596–0.636) was significantly improved by combination with the genetic model, to 0.659 (0.640–0.678). This combined genetic and environmental risk model may be suitable for the stratification of individuals by breast cancer risk. New approaches to breast cancer prevention using the model are warranted.
Collapse
|
7
|
Pashayan N, Antoniou AC, Ivanus U, Esserman LJ, Easton DF, French D, Sroczynski G, Hall P, Cuzick J, Evans DG, Simard J, Garcia-Closas M, Schmutzler R, Wegwarth O, Pharoah P, Moorthie S, De Montgolfier S, Baron C, Herceg Z, Turnbull C, Balleyguier C, Rossi PG, Wesseling J, Ritchie D, Tischkowitz M, Broeders M, Reisel D, Metspalu A, Callender T, de Koning H, Devilee P, Delaloge S, Schmidt MK, Widschwendter M. Personalized early detection and prevention of breast cancer: ENVISION consensus statement. Nat Rev Clin Oncol 2020; 17:687-705. [PMID: 32555420 PMCID: PMC7567644 DOI: 10.1038/s41571-020-0388-9] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2020] [Indexed: 02/07/2023]
Abstract
The European Collaborative on Personalized Early Detection and Prevention of Breast Cancer (ENVISION) brings together several international research consortia working on different aspects of the personalized early detection and prevention of breast cancer. In a consensus conference held in 2019, the members of this network identified research areas requiring development to enable evidence-based personalized interventions that might improve the benefits and reduce the harms of existing breast cancer screening and prevention programmes. The priority areas identified were: 1) breast cancer subtype-specific risk assessment tools applicable to women of all ancestries; 2) intermediate surrogate markers of response to preventive measures; 3) novel non-surgical preventive measures to reduce the incidence of breast cancer of poor prognosis; and 4) hybrid effectiveness-implementation research combined with modelling studies to evaluate the long-term population outcomes of risk-based early detection strategies. The implementation of such programmes would require health-care systems to be open to learning and adapting, the engagement of a diverse range of stakeholders and tailoring to societal norms and values, while also addressing the ethical and legal issues. In this Consensus Statement, we discuss the current state of breast cancer risk prediction, risk-stratified prevention and early detection strategies, and their implementation. Throughout, we highlight priorities for advancing each of these areas.
Collapse
Affiliation(s)
- Nora Pashayan
- Department of Applied Health Research, Institute of Epidemiology and Healthcare, University College London, London, UK
| | - Antonis C Antoniou
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Urska Ivanus
- Epidemiology and Cancer Registry, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Laura J Esserman
- Carol Franc Buck Breast Care Center, University of California, San Francisco, CA, USA
| | - Douglas F Easton
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - David French
- Division of Psychology & Mental Health, School of Health Sciences, University of Manchester, Manchester, UK
| | - Gaby Sroczynski
- Department of Public Health, Health Services Research and Health Technology Assessment, Institute of Public Health, Medical Decision Making and Health Technology Assessment, UMIT-University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
- Division of Health Technology Assessment, Oncotyrol - Center for Personalized Cancer Medicine, Innsbruck, Austria
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - Jack Cuzick
- Wolfson Institute of Preventive Medicine, Barts and The London, Centre for Cancer Prevention, Queen Mary University of London, London, UK
| | - D Gareth Evans
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester, UK
| | - Jacques Simard
- Genomics Center, CHU de Québec - Université Laval Research Center, Québec, Canada
| | | | - Rita Schmutzler
- Center of Family Breast and Ovarian Cancer, University Hospital Cologne, Cologne, Germany
| | - Odette Wegwarth
- Max Planck Institute for Human Development, Center for Adaptive Rationality, Harding Center for Risk Literacy, Berlin, Germany
| | - Paul Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
| | | | | | | | - Zdenko Herceg
- Epigenetic Group, International Agency for Research on Cancer (IARC), WHO, Lyon, France
| | - Clare Turnbull
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | | | - Paolo Giorgi Rossi
- Epidemiology Unit, Azienda USL di Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Jelle Wesseling
- Division of Molecular Pathology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, Netherlands
| | - David Ritchie
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Mireille Broeders
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, Netherlands
| | - Dan Reisel
- Department of Women's Cancer, Institute for Women's Health, University College London, London, UK
| | - Andres Metspalu
- The Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Thomas Callender
- Department of Applied Health Research, Institute of Epidemiology and Healthcare, University College London, London, UK
| | - Harry de Koning
- Department of Public Health, Erasmus MC, Rotterdam, Netherlands
| | - Peter Devilee
- Department of Human Genetics, Department of Pathology, Leiden University Medical Centre, Leiden, Netherlands
| | - Suzette Delaloge
- Breast Cancer Department, Gustave Roussy Institute, Paris, France
| | - Marjanka K Schmidt
- Division of Molecular Pathology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, Netherlands
| | - Martin Widschwendter
- Department of Women's Cancer, Institute for Women's Health, University College London, London, UK.
- Universität Innsbruck, Innsbruck, Austria.
- European Translational Oncology Prevention and Screening (EUTOPS) Institute, Hall in Tirol, Austria.
| |
Collapse
|
8
|
An Update on Screening and Prevention for Breast and Gynecological Cancers in Average and High Risk Individuals. Am J Med Sci 2020; 360:489-510. [DOI: 10.1016/j.amjms.2020.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/22/2020] [Accepted: 06/03/2020] [Indexed: 11/21/2022]
|
9
|
Wood ME, McKinnon W, Garber J. Risk for breast cancer and management of unaffected individuals with non-BRCA hereditary breast cancer. Breast J 2020; 26:1528-1534. [PMID: 32741080 DOI: 10.1111/tbj.13969] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022]
Abstract
About 5%-10% of breast cancer is hereditary with BRCA1 and BRCA2 being the most common genes associated with hereditary breast cancer (HBC). Several additional genes have recently been associated with HBC. These genes can be classified as highly or moderately penetrant genes with lifetime risk >30% or 17%-30%, respectively. Highly penetrant genes associated with HBC include TP53, PTEN, CDH1, STK11, and PALB2. While, moderately penetrant genes include CHEK2, ATM, BARD1, BRIP1, NBN, NF1, RAD51D, and MSH6. Breast cancer risk and recommendations for screening and risk-reduction vary by gene. In general, screening breast MRI is recommended for women at >20% lifetime risk, which includes women with mutations in highly penetrant genes and the majority (but not all) moderately penetrant genes. Consideration of chemoprevention is recommended for women with mutations in high and moderately penetrant genes. Risk-reducing mastectomy does reduce the risk of breast cancer to the greatest extent and can be considered for women with highly penetrant genes. However, this procedure is associated with significant morbidities that should be considered, especially given the benefit of using screening breast MRI for high-risk women. BSO is only recommended for women with mutations in genes associate with increased risk for ovarian cancer and not as a breast cancer risk-reducing strategy. As more women undergo testing, additional genes may be identified and risk estimates for current genes and management recommendations may be modified.
Collapse
|
10
|
Sexual Health in the Era of Cancer Genetic Testing: A Systematic Review. Sex Med Rev 2020; 8:231-241. [PMID: 31928932 DOI: 10.1016/j.sxmr.2019.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/24/2019] [Accepted: 11/05/2019] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Genetic testing for germline cancer mutations allows individuals to gain specific knowledge of their hereditary cancer risks. Although risk-reducing strategies such as increased screening, prophylactic surgeries, and chemoprevention may be potentially lifesaving, these options can also significantly impact sexual health and function. AIM This study overviews current challenges at the intersection of cancer genetic testing and sexual health and describes a systematic review that summarizes this evidence, identifies methodological limitations, and provides future research directions. METHODS Articles on the intersection of genetic testing and/or family history of cancer, cancer risk, and sexual health were searched in Medline, PsycINFO, and PsycARTICLES databases. MAIN OUTCOME MEASURE The main outcome measure was sexual health in women who pursued risk-reducing surgery. RESULTS On the basis of the inclusion criteria, 32 studies were reviewed. 31 contained empiric data from 3,367 participants; one was a conceptual study. All studies were published between 2000 and 2019. Mean ages ranged from 38 to 51.2. CONCLUSION Given the prevalence of sexual dysfunction after risk-reducing surgery, evidence-based interventions are needed. Furthermore, quality of life that includes sexual health, in at-risk women who pursue preventive surgery, remains an understudied aspect of cancer genetic testing. Yusufov M, Bober SL. Sexual Health in the Era of Cancer Genetic Testing: A Systematic Review. Sex Med Rev 2020;8:231-241.
Collapse
|
11
|
Visvanathan K, Fabian CJ, Bantug E, Brewster AM, Davidson NE, DeCensi A, Floyd JD, Garber JE, Hofstatter EW, Khan SA, Katapodi MC, Pruthi S, Raab R, Runowicz CD, Somerfield MR. Use of Endocrine Therapy for Breast Cancer Risk Reduction: ASCO Clinical Practice Guideline Update. J Clin Oncol 2019; 37:3152-3165. [DOI: 10.1200/jco.19.01472] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE To update the ASCO guideline on pharmacologic interventions for breast cancer risk reduction and provide guidance on clinical issues that arise when deciding to use endocrine therapy for breast cancer risk reduction. METHODS An Expert Panel conducted targeted systematic literature reviews to identify new studies. RESULTS A randomized clinical trial that evaluated the use of anastrozole for reduction of estrogen receptor–positive breast cancers in postmenopausal women at increased risk of developing breast cancer provided the predominant basis for the update. UPDATED RECOMMENDATIONS In postmenopausal women at increased risk, the choice of endocrine therapy now includes anastrozole (1 mg/day) in addition to exemestane (25 mg/day), raloxifene (60 mg/day), or tamoxifen (20 mg/day). The decision regarding choice of endocrine therapy should take into consideration age, baseline comorbidities, and adverse effect profiles. Clinicians should not prescribe anastrozole, exemestane, or raloxifene for breast cancer risk reduction to premenopausal women. Tamoxifen 20 mg/day for 5 years is still considered standard of care for risk reduction in premenopausal women who are at least 35 years old and have completed childbearing. Data on low-dose tamoxifen as an alternative to the standard dose for both pre- and postmenopausal women with intraepithelial neoplasia are discussed in the Clinical Considerations section of this article. Additional information is available at www.asco.org/breast-cancer-guidelines .
Collapse
Affiliation(s)
- Kala Visvanathan
- Johns Hopkins School of Medicine and Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | | | | | | | | | - Andrea DeCensi
- National Hospital E.O. Ospedali Galliera S.C. Oncologia Medica, Genoa, Italy; and Queen Mary University of London, United Kingdom
| | | | | | | | - Seema A. Khan
- Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | | | - Rachal Raab
- Cancer Care of Western North Carolina, Asheville, NC
| | | | | |
Collapse
|
12
|
Liu WJ, Zhao G, Zhang CY, Yang CQ, Zeng XB, Li J, Zhu K, Zhao SQ, Lu HM, Yin DC, Lin SX. Comparison of the roles of estrogens and androgens in breast cancer and prostate cancer. J Cell Biochem 2019; 121:2756-2769. [PMID: 31693255 DOI: 10.1002/jcb.29515] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/10/2019] [Indexed: 12/29/2022]
Abstract
Breast cancer (BC) and prostate cancer (PC) are the second most common malignant tumors in women and men in western countries, respectively. The risks of death are 14% for BC and 9% for PC. Abnormal estrogen and androgen levels are related to carcinogenesis of the breast and prostate. Estradiol stimulates cancer development in BC. The effect of estrogen on PC is concentration-dependent, and estrogen can regulate androgen production, further affecting PC. Estrogen can also increase the risk of androgen-induced PC. Androgen has dual effects on BC via different metabolic pathways, and the role of the androgen receptor (AR) in BC also depends on cell subtype and downstream target genes. Androgen and AR can stimulate both primary PC and castration-resistant PC. Understanding the mechanisms of the effects of estrogen and androgen on BC and PC may help us to improve curative BC and PC treatment strategies.
Collapse
Affiliation(s)
- Wen-Jing Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Gang Zhao
- Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chen-Yan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Chang-Qing Yang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Xiang-Bin Zeng
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Jin Li
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Kun Zhu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Shi-Qi Zhao
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Hui-Meng Lu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Da-Chuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Sheng-Xiang Lin
- Department of Molecular Medicine, Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Centre (CHUQ, CHUL), Laval University, Québec, Canada
| |
Collapse
|
13
|
Qiu C, Huang F, Zhang Q, Chen W, Zhang H. miR-205-3p promotes proliferation and reduces apoptosis of breast cancer MCF-7 cells and is associated with poor prognosis of breast cancer patients. J Clin Lab Anal 2019; 33:e22966. [PMID: 31578772 PMCID: PMC6805278 DOI: 10.1002/jcla.22966] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 12/24/2022] Open
Abstract
Background To study the expression of microribonucleic acid (miR)‐205 in breast cancer and its effects on the proliferation and apoptosis of breast cancer cells. Methods Breast cancer cell line MCF‐7 cells with stable expression of miR‐205‐3p were constructed. Cell proliferation, invasion, and apoptosis were detected via MTT assay, transwell assay, and flow cytometry, respectively. The expressions of Ezrin, LaminA/C, cleaved caspase‐3, Bcl‐2, and Bax were detected via Western blotting. The expressions of miR‐205‐3p in breast cancer tissues and para‐carcinoma tissues were detected via quantitative PCR (qPCR). Results In transfection group, cell proliferation and invasion capacities were increased significantly (P < 0.01), but apoptotic cells were significantly reduced (P < 0.01). In addition, the expressions of Ezrin, LaminA/C, and cleaved caspase‐3 in the transfection group were significantly decreased (P < 0.01), but the Bcl‐2/Bax ratio was significantly increased (P < 0.01). The miR‐205‐3p expression in tumor tissues of breast cancer patients was significantly higher than that in para‐carcinoma tissue, but Ezrin, LaminA/C, and cleaved caspase‐3 expressions in tumor tissues were remarkably declined (P < 0.01), while the Bcl‐2/Bax ratio was remarkably increased (P < 0.01). Moreover, the 5‐year survival of patients with high expression of miR‐205‐3p was significantly shorter than patients with normal or low expression (P < 0.01). Conclusion Highly expressed miR‐205‐3p can promote the proliferation and invasion and reduce the apoptosis of breast cancer cells, and the high expression of miR‐205‐3p can significantly reduce the survival time of patients.
Collapse
Affiliation(s)
- Changhong Qiu
- Department of General Surgery, The First People's Hospital of ZhaoQing, ZhaoQing, China
| | - Fei Huang
- Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-Sen University (Shen Zhen), Shen Zhen, China
| | - Qing Zhang
- Department of General Surgery, The First People's Hospital of ZhaoQing, ZhaoQing, China
| | - Wei Chen
- Department of General Surgery, The First People's Hospital of ZhaoQing, ZhaoQing, China
| | - Huiting Zhang
- Department of General Surgery, The First People's Hospital of ZhaoQing, ZhaoQing, China
| |
Collapse
|
14
|
Canadas-Sousa A, Santos M, Leal B, Medeiros R, Dias-Pereira P. Estrogen receptors genotypes and canine mammary neoplasia. BMC Vet Res 2019; 15:325. [PMID: 31506083 PMCID: PMC6734279 DOI: 10.1186/s12917-019-2062-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/25/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Estrogens are essential for the development and proper function of several hormone-dependent organs. There are, however, several lines of evidence associating estrogens with mammary carcinogenesis. A marked individual genetic variability concerning estrogens biosynthesis, metabolism and mechanism of action was recognized and associated with human breast cancer susceptibility, clinical features and progression. Although some genetic variations in canine ESR1 gene were reported, their influence in clinicopathological features and progression of canine mammary tumors has not been fully evaluated. This study aims to assess the influence of SNPs in ESR1 gene (rs397512133, rs397510462, rs851327560, rs397510612, rs852887655, rs852684753 and rs852398698) in canine mammary tumors characteristics and progression. A group of 155 non-neutered bitches with mammary tumors was included in the study. Follow-up information was assessed 24 months after surgery. RESULTS Genetic profiles associated with a later onset of mammary tumors and less aggressive clinicopathological features, namely smaller tumor size (≤ 3 cm) with extensive tubular differentiation and low canine-adapted prognostic index (vet-NPI), were identified in this study. CONCLUSIONS Our data suggest that the ESR1 genetic profile may help on the decision regarding the selection of individual tailored preventive measures against canine mammary tumors development, such as early neutering.
Collapse
Affiliation(s)
- Ana Canadas-Sousa
- Department of Pathology and Molecular Immunology, Instituto Ciências Biomédicas Abel Salazar, ICBAS - UPorto, University of Porto, Porto, Portugal.
| | - Marta Santos
- Department of Microscopy, Instituto Ciências Biomédicas Abel Salazar, ICBAS - UPorto, University of Porto, Porto, Portugal
| | - Bárbara Leal
- Department of Pathology and Molecular Immunology, Instituto Ciências Biomédicas Abel Salazar, ICBAS - UPorto, University of Porto, Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Patrícia Dias-Pereira
- Department of Pathology and Molecular Immunology, Instituto Ciências Biomédicas Abel Salazar, ICBAS - UPorto, University of Porto, Porto, Portugal
| |
Collapse
|
15
|
Tharmapalan P, Mahendralingam M, Berman HK, Khokha R. Mammary stem cells and progenitors: targeting the roots of breast cancer for prevention. EMBO J 2019; 38:e100852. [PMID: 31267556 PMCID: PMC6627238 DOI: 10.15252/embj.2018100852] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/11/2019] [Accepted: 04/11/2019] [Indexed: 12/24/2022] Open
Abstract
Breast cancer prevention is daunting, yet not an unsurmountable goal. Mammary stem and progenitors have been proposed as the cells-of-origin in breast cancer. Here, we present the concept of limiting these breast cancer precursors as a risk reduction approach in high-risk women. A wealth of information now exists for phenotypic and functional characterization of mammary stem and progenitor cells in mouse and human. Recent work has also revealed the hormonal regulation of stem/progenitor dynamics as well as intrinsic lineage distinctions between mammary epithelial populations. Leveraging these insights, molecular marker-guided chemoprevention is an achievable reality.
Collapse
Affiliation(s)
| | - Mathepan Mahendralingam
- Princess Margaret Cancer CentreUniversity Health NetworkUniversity of TorontoTorontoONCanada
| | - Hal K Berman
- Princess Margaret Cancer CentreUniversity Health NetworkUniversity of TorontoTorontoONCanada
| | - Rama Khokha
- Princess Margaret Cancer CentreUniversity Health NetworkUniversity of TorontoTorontoONCanada
| |
Collapse
|
16
|
Kotsopoulos J. BRCA Mutations and Breast Cancer Prevention. Cancers (Basel) 2018; 10:E524. [PMID: 30572612 PMCID: PMC6315560 DOI: 10.3390/cancers10120524] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/05/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022] Open
Abstract
Women who inherit a deleterious BRCA1 or BRCA2 mutation face substantially increased risks of developing breast cancer, which is estimated at 70%. Although annual screening with magnetic resonance imaging (MRI) and mammography promotes the earlier detection of the disease, the gold standard for the primary prevention of breast cancer remains bilateral mastectomy. In the current paper, I review the evidence regarding the management of healthy BRCA mutation carriers, including key risk factors and protective factors, and also discuss potential chemoprevention options. I also provide an overview of the key findings from the literature published to date, with a focus on data from studies that are well-powered, and preferably prospective in nature.
Collapse
Affiliation(s)
- Joanne Kotsopoulos
- Women's College Research Institute, Women's College Hospital, 76 Grenville Street, 6th Floor, Toronto, ON M5S 1B2, Canada.
- Dalla Lana School of Public Health, University of Toronto, 155 College St, Toronto, ON M5T 3M7, Canada.
| |
Collapse
|
17
|
Spaeth E, Starlard-Davenport A, Allman R. Bridging the Data Gap in Breast Cancer Risk Assessment to Enable Widespread Clinical Implementation across the Multiethnic Landscape of the US. ACTA ACUST UNITED AC 2018; 2:1-6. [PMID: 30662981 PMCID: PMC6334765 DOI: 10.29245/2578-2967/2018/4.1137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Breast cancer remains the second leading cause of cancer death among women and is the most commonly diagnosed cancer in women. Breast cancer risk assessment has been clinically available for nearly 30 years yet is under-utilized in practice for multiple reasons. Incorporation of polygenic risk as well as breast density measurements, promise to increase the accuracy of risk assessment. With that comes the hope that both prevention and screening become more personalized and thus more effective. Incidence rates have been static over the past 15 years and have even increased slightly in African American and Asian/Pacific Islander populations despite the robust data on breast cancer risk reduction measures that exist. Current challenges in reducing breast cancer incidence begin with robust data curation that allows for appropriate risk stratification across our multiethnic population and conclude with the implementation of prevention strategies within our fractured healthcare system.
Collapse
Affiliation(s)
| | - Athena Starlard-Davenport
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | |
Collapse
|