1
|
Green B, Waters A, Jimenez-Shahed J. Pain in Tourette Syndrome: A Comprehensive Review. J Child Adolesc Psychopharmacol 2025; 35:23-36. [PMID: 39558767 DOI: 10.1089/cap.2024.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Objectives: Recent survey data suggest that a high proportion of patients with Tourette syndrome (TS) experience pain, yet pain features in TS have not been previously investigated in a systematic manner. This article reviews the current understanding and impact of pain in TS as well as identifies possible areas for emphasis for future research on pain in TS. Methods: Using a comprehensive search strategy in two relevant research databases (PubMed and Scopus), we searched for relevant peer-reviewed, primary research articles, and review articles. Search terms used were Tourette syndrome, tic disorder, pain, pain management, sensory, and sensory gating. Results: A total of 116 pertinent articles were identified. Pain is reported by 47%-60% of individuals with TS and may relate to different aspects of tic phenomenology or other causes. Pain is more prevalent among TS patients than in the general population and negatively impacts quality of life. To standardize future research efforts, we propose the following classification: tic-related immediate pain, tic-related delayed injury/pain, suppression-related pain, premonitory urge-related pain, and associated primary pain syndromes. Altered sensory gating and interoceptive processing abnormalities are possible mechanisms contributing to pain in TS but warrant further study. Despite pain prevalence, most TS clinical rating scales and outcome measures used in therapeutic studies do not incorporate sufficient information regarding pain. Therapies known to improve pain in non-TS conditions that are also reported to improve tics have not been investigated for their effects on pain among TS patients. Conclusion: TS can be associated with a chronic pain syndrome that negatively affects quality of life. Future research using a systematic framework is needed to better understand pain cause(s) and prevalence, develop appropriate assessment methods, establish outcome measures, and understand mechanisms of pain in TS. Such investigations are likely to lead to therapeutic options for this troublesome symptom.
Collapse
Affiliation(s)
- Bryan Green
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Allison Waters
- Psychiatry and Neuroscience, Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Joohi Jimenez-Shahed
- Neurology and Neurosurgery, Medical Director, Movement Disorders Neuromodulation & Brain Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
2
|
Zhang KK, Matin R, Gorodetsky C, Ibrahim GM, Gouveia FV. Systematic review of rodent studies of deep brain stimulation for the treatment of neurological, developmental and neuropsychiatric disorders. Transl Psychiatry 2024; 14:186. [PMID: 38605027 PMCID: PMC11009311 DOI: 10.1038/s41398-023-02727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 04/13/2024] Open
Abstract
Deep brain stimulation (DBS) modulates local and widespread connectivity in dysfunctional networks. Positive results are observed in several patient populations; however, the precise mechanisms underlying treatment remain unknown. Translational DBS studies aim to answer these questions and provide knowledge for advancing the field. Here, we systematically review the literature on DBS studies involving models of neurological, developmental and neuropsychiatric disorders to provide a synthesis of the current scientific landscape surrounding this topic. A systematic analysis of the literature was performed following PRISMA guidelines. 407 original articles were included. Data extraction focused on study characteristics, including stimulation protocol, behavioural outcomes, and mechanisms of action. The number of articles published increased over the years, including 16 rat models and 13 mouse models of transgenic or healthy animals exposed to external factors to induce symptoms. Most studies targeted telencephalic structures with varying stimulation settings. Positive behavioural outcomes were reported in 85.8% of the included studies. In models of psychiatric and neurodevelopmental disorders, DBS-induced effects were associated with changes in monoamines and neuronal activity along the mesocorticolimbic circuit. For movement disorders, DBS improves symptoms via modulation of the striatal dopaminergic system. In dementia and epilepsy models, changes to cellular and molecular aspects of the hippocampus were shown to underlie symptom improvement. Despite limitations in translating findings from preclinical to clinical settings, rodent studies have contributed substantially to our current knowledge of the pathophysiology of disease and DBS mechanisms. Direct inhibition/excitation of neural activity, whereby DBS modulates pathological oscillatory activity within brain networks, is among the major theories of its mechanism. However, there remain fundamental questions on mechanisms, optimal targets and parameters that need to be better understood to improve this therapy and provide more individualized treatment according to the patient's predominant symptoms.
Collapse
Affiliation(s)
- Kristina K Zhang
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rafi Matin
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - George M Ibrahim
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada
| | | |
Collapse
|
3
|
de Oliveira RP, Yokoyama T, Cardoso Thomaz LDS, de Andrade JS, Santos ADA, de Carvalho Mendonça V, Rosentock T, Carrera M, Medeiros P, Cruz FC, Coimbra NC, Silva RCB. Prepulse inhibition of the acoustic startle reflex impairment by 5-HT2A receptor activation in the inferior colliculusis prevented by GABAA receptor blockade in the pedunculopontine tegmental nucleus. Behav Brain Res 2023; 448:114436. [PMID: 37061200 DOI: 10.1016/j.bbr.2023.114436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/10/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
The relationship between serotonin dysfunction and schizophrenia commenced with the discovery of the effects of lysergic acid diethylamide (LSD) that has high affinity for 5-HT2A receptors. Activation of these receptors produces perceptual and behavioural changes such as illusions, visual hallucinations and locomotor hyperactivity. Using prepulse inhibition (PPI) of the acoustic startle, which is impaired in schizophrenia,we aimed to investigate:i) the existence of a direct and potentially inhibitory neural pathway between the inferior colliculus (IC) and the pedunculopontine tegmental nucleus (PPTg) involved in the mediation of PPI responses by a neural tract tracing procedure;ii) if the microinjection of the 5-HT2A receptors agonist DOI in IC would activate neurons in this structure and in the PPTg by a c-Fos protein immunohistochemistry study;iii) whether the deficits in PPI responses, observed after the administration of DOI in the IC, could be prevented by the concomitant microinjection of the GABAA receptor antagonist bicuculline in the PPTg.Male Wistar rats were used in this study. An IC-PPTg reciprocated neuronal pathway was identified by neurotracing. The number of c-Fos labelled cells was lower in the DOI group in IC and PPTg, suggesting that this decrease could be due to the high levels of GABA in both structures. The concomitant microinjections of bicuculline in PPTg and DOI in IC prevented the PPI deficit observed after the IC microinjection of DOI. Ourfindings suggest that IC 5-HT2A receptors may be at least partially involved in the regulation of inhibitory pathways mediating PPI response in IC and PPTg structures.
Collapse
Affiliation(s)
- Rodolpho Pereira de Oliveira
- Laboratory of Psychobiology of Schizophrenia, Departmentof Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street 136, Santos, 11015-020, São Paulo, Brazil
| | - Thais Yokoyama
- Department of Pharmacology, - Federal University of São Paulo (UNIFESP), São Paulo-SP, 04023-062, Brazil
| | - Lucas de Santana Cardoso Thomaz
- Laboratory of Psychobiology of Schizophrenia, Departmentof Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street 136, Santos, 11015-020, São Paulo, Brazil
| | - José Simões de Andrade
- Laboratory of Psychobiology of Schizophrenia, Departmentof Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street 136, Santos, 11015-020, São Paulo, Brazil
| | - Alexia Dos Anjos Santos
- Department of Pharmacology, - Federal University of São Paulo (UNIFESP), São Paulo-SP, 04023-062, Brazil
| | - Vinícius de Carvalho Mendonça
- Laboratory of Psychobiology of Schizophrenia, Departmentof Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street 136, Santos, 11015-020, São Paulo, Brazil
| | - Tatiana Rosentock
- Sygnature Discovery, Department of Bioscience, BioCity, Pennyfoot Street, Nottingham, NG1 1GR, United Kingdom
| | - Marinete Carrera
- Behavioral Pharmacology Group, Laboratory of Animal Morphology and Pathology, State University of North Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, 28013-602, RJ, Brazil
| | - Priscila Medeiros
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, RibeirãoPreto Medical School of the Univertsity of São Paulo (FMRP-USP), Av. Bandeirantes, 30900, RibeirãoPreto, 14049-900, São Paulo, Brazil; Laboratory of Neurosciences of Pain & Emotion, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; InstituteofNeuroscienceandBehavior (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, 14050-220, São Paulo, Brazil; Interdisciplinary Center for PainCare, Federal Universityof São Carlos (UFSCar), Universidade Federal de São Carlos, Rodovia Washington Luiz, Km 235, Caixa Postal 676, CEP 13565-905, SP, Brazil; Department of General and Specialized Nursing - EERP/USP RibeirãoPreto College of Nursing - USP
| | - Fábio Cardoso Cruz
- Department of Pharmacology, - Federal University of São Paulo (UNIFESP), São Paulo-SP, 04023-062, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, RibeirãoPreto Medical School of the Univertsity of São Paulo (FMRP-USP), Av. Bandeirantes, 30900, RibeirãoPreto, 14049-900, São Paulo, Brazil; Laboratory of Neurosciences of Pain & Emotion, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; InstituteofNeuroscienceandBehavior (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, 14050-220, São Paulo, Brazil
| | - Regina Cláudia Barbosa Silva
- Laboratory of Psychobiology of Schizophrenia, Departmentof Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street 136, Santos, 11015-020, São Paulo, Brazil; InstituteofNeuroscienceandBehavior (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, 14050-220, São Paulo, Brazil.
| |
Collapse
|
4
|
Oliveras I, Cañete T, Sampedro-Viana D, Río-Álamos C, Tobeña A, Corda MG, Giorgi O, Fernández-Teruel A. Neurobehavioral Profiles of Six Genetically-based Rat Models of Schizophrenia- related Symptoms. Curr Neuropharmacol 2023; 21:1934-1952. [PMID: 36809938 PMCID: PMC10514524 DOI: 10.2174/1570159x21666230221093644] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/02/2022] [Accepted: 11/28/2022] [Indexed: 02/24/2023] Open
Abstract
Schizophrenia is a chronic and severe mental disorder with high heterogeneity in its symptoms clusters. The effectiveness of drug treatments for the disorder is far from satisfactory. It is widely accepted that research with valid animal models is essential if we aim at understanding its genetic/ neurobiological mechanisms and finding more effective treatments. The present article presents an overview of six genetically-based (selectively-bred) rat models/strains, which exhibit neurobehavioral schizophrenia-relevant features, i.e., the Apomorphine-susceptible (APO-SUS) rats, the Low-prepulse inhibition rats, the Brattleboro (BRAT) rats, the Spontaneously Hypertensive rats (SHR), the Wisket rats and the Roman High-Avoidance (RHA) rats. Strikingly, all the strains display impairments in prepulse inhibition of the startle response (PPI), which remarkably, in most cases are associated with novelty-induced hyperlocomotion, deficits of social behavior, impairment of latent inhibition and cognitive flexibility, or signs of impaired prefrontal cortex (PFC) function. However, only three of the strains share PPI deficits and dopaminergic (DAergic) psychostimulant-induced hyperlocomotion (together with prefrontal cortex dysfunction in two models, the APO-SUS and RHA), which points out that alterations of the mesolimbic DAergic circuit are a schizophrenia-linked trait that not all models reproduce, but it characterizes some strains that can be valid models of schizophrenia-relevant features and drug-addiction vulnerability (and thus, dual diagnosis). We conclude by putting the research based on these genetically-selected rat models in the context of the Research Domain Criteria (RDoC) framework, suggesting that RDoC-oriented research programs using selectively-bred strains might help to accelerate progress in the various aspects of the schizophrenia-related research agenda.
Collapse
Affiliation(s)
- Ignasi Oliveras
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine & Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Toni Cañete
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine & Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Daniel Sampedro-Viana
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine & Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, 08193, Spain
| | | | - Adolf Tobeña
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine & Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Maria Giuseppa Corda
- Department of Life and Environmental Sciences (DiSVA), University of Cagliari, Sardinia, Italy
| | - Osvaldo Giorgi
- Department of Life and Environmental Sciences (DiSVA), University of Cagliari, Sardinia, Italy
| | - Alberto Fernández-Teruel
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine & Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, 08193, Spain
| |
Collapse
|
5
|
Lippmann B, Barmashenko G, Funke K. Effects of repetitive transcranial magnetic and deep brain stimulation on long-range synchrony of oscillatory activity in a rat model of developmental schizophrenia. Eur J Neurosci 2021; 53:2848-2869. [PMID: 33480084 DOI: 10.1111/ejn.15125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/23/2020] [Accepted: 01/19/2021] [Indexed: 12/14/2022]
Abstract
Aberrant neuronal network activity likely resulting from disturbed interactions of excitatory and inhibitory systems may be a major cause of cognitive deficits in neuropsychiatric diseases, like within the spectrum of schizophrenic phenotypes. In particular, the synchrony and pattern of oscillatory brain activity appears to be disturbed within limbic networks, e.g. between prefrontal cortex and hippocampus. In a rat model of maternal immune activation (MIA), we compared the acute effects of deep brain stimulation within either medial prefrontal cortex or ventral hippocampus with the effects of repetitive transcranial magnetic stimulation (rTMS), using the intermittent theta-burst protocol (iTBS), on oscillatory activity within limbic structures. Simultaneous local field potential recordings were made from medial prefrontal cortex, ventral hippocampus, nucleus accumbens and rostral part of ventral tegmental area before and after deep brain stimulation in anaesthetized rats previously (~3 h) treated with sham or verum rTMS. We found a waxing and waning pattern of theta and gamma activity in all structures which was less synchronous in particular between medial prefrontal cortex and ventral hippocampus in MIA offspring. Deep brain stimulation in medial prefrontal cortex and pre-treatment with iTBS-rTMS partly improved this pattern. Gamma-theta cross-frequency coupling was stronger in MIA offspring and could partly be reduced by deep brain stimulation in medial prefrontal cortex. We can confirm aberrant limbic network activity in a rat MIA model, and at least acute normalizing effects of the neuromodulatory methods. It has to be proven whether these procedures can have chronic effects suitable for therapeutic purposes.
Collapse
Affiliation(s)
- Benjamin Lippmann
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Gleb Barmashenko
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany.,AIO-Studien-gGmbH, Berlin, Germany
| | - Klaus Funke
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
6
|
Schleyken S, Baldermann J, Huys D, Franklin J, Visser-Vandewalle V, Kuhn J, Kohl S. Deep brain stimulation and sensorimotor gating in tourette syndrome and obsessive-compulsive disorder. J Psychiatr Res 2020; 129:272-280. [PMID: 32829082 DOI: 10.1016/j.jpsychires.2020.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/05/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022]
Abstract
Recent translational data suggest that deep brain stimulation (DBS) of the cortico-striato-thalamo-cortical (CSTC) loops improves sensorimotor gating in psychiatric disorders that show deficient prepulse inhibition (PPI), a robust operational measure of sensorimotor gating. To our knowledge we are the first to investigate this effect in patients with Tourette syndrome (TS). We measured PPI of the acoustic startle reflex in patients with TS (N = 10) or Obsessive-Compulsive Disorder (OCD) (N = 8) treated with DBS of the centromedian and ventro-oral internal thalamic nucleus and the anterior limb of internal capsule-nucleus accumbens area respectively, and aged- and gender-matched healthy controls (HC). PPI of the DBS groups was measured in randomized order in the ON and OFF stimulation condition. Statistical analysis revealed no significant difference in PPI (%) of patients with TS between ON (M = 20.5, SD = 14.9) and OFF (M = 25.2, SD = 29.7) condition. There were significantly reduced PPI levels in patients with TS in the ON condition compared to HC (M = 49.2, SD = 10.7), but no significant difference in PPI between TS in the OFF condition and HC. Furthermore, we found no significant stimulation or group effect for OCD and HC (OCD ON: M = 57.0, SD = 8.3; OCD OFF: 67.8, SD = 19.6; HC: M = 63.0, SD = 24.3). Our study has a number of limitations. Sample sizes are small due to the restricted patient collective. The study was not controlled for use of psychoactive medication or nicotine. Furthermore, we were not able to assess presurgical PPI measurements. In conclusion, we were able to show that PPI is impaired in patients with TS. This finding is in line with recent translational work. With respect to the OCD cohort we were not able to replicate our previously published data. A disability in sensorimotor gating plays a pivotal role in many psychiatric disorders therefore more research should be conducted to disentangle the potential and limitations of modulating sensorimotor gating via brain stimulation techniques.
Collapse
Affiliation(s)
- Sophia Schleyken
- Department of Psychiatry and Psychotherapy, University Hospital of Cologne, Kerpener Strasse 62, 50937, Cologne, Germany.
| | - Juan Baldermann
- Department of Psychiatry and Psychotherapy, University Hospital of Cologne, Kerpener Strasse 62, 50937, Cologne, Germany
| | - Daniel Huys
- Department of Psychiatry and Psychotherapy, University Hospital of Cologne, Kerpener Strasse 62, 50937, Cologne, Germany
| | - Jeremy Franklin
- Institute of Medical Statistics and Computational Biology, University of Cologne, Kerpener Strasse 62, 50937, Cologne, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, University of Cologne, Kerpener Strasse 62, 50937, Cologne, Germany
| | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, University Hospital of Cologne, Kerpener Strasse 62, 50937, Cologne, Germany; Johanniter Hospital Oberhausen, Department of Psychiatry, Psychotherapy and Psychosomatics, Steinbrinkstrasse 96A, 46145, Oberhausen, Germany
| | - Sina Kohl
- Department of Psychiatry and Psychotherapy, University Hospital of Cologne, Kerpener Strasse 62, 50937, Cologne, Germany
| |
Collapse
|
7
|
Elle T, Alam M, Voigt C, Krauss JK, John N, Schwabe K. Deep brain stimulation of the thalamic centromedian-parafascicular nucleus improves behavioural and neuronal traits in a rat model of Tourette. Behav Brain Res 2020; 378:112251. [DOI: 10.1016/j.bbr.2019.112251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 01/23/2023]
|
8
|
Schwabe K, Krauss JK. What rodent models of deep brain stimulation can teach us about the neural circuit regulation of prepulse inhibition in neuropsychiatric disorders. Schizophr Res 2018; 198:45-51. [PMID: 28663025 DOI: 10.1016/j.schres.2017.06.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 11/29/2022]
Abstract
Deep brain stimulation (DBS) is routinely used for treatment of movement disorders and it is also under investigation for neuropsychiatric disorders with deficient sensorimotor gating, such as schizophrenia, Tourette's syndrome and obsessive compulsive disorder. Electrical stimulation induces excitation and inhibition both at the stimulation site and at projection sites, thus modulating synchrony and oscillatory behavior of neuronal networks. We first provide background information on DBS in neuropsychiatric disorders accompanied by deficient sensorimotor gating. We then introduce prepulse inhibition (PPI) as a measure for sensorimotor gating in these disorders. Thereafter, we report on the use of DBS in rat models with deficient PPI induced by pharmacologic, genetic and neurodevelopmental manipulation. These models offer the opportunity to define the neuronal circuit regulation that is of relevance to PPI and its deficits in neuropsychiatric disorders with disturbed sensorimotor gating. Finally, we report on the use of the PPI paradigm in human patients operated for DBS on/off stimulation, which may further elucidate the neuronal network involved in regulation of PPI.
Collapse
Affiliation(s)
- Kerstin Schwabe
- Department of Neurosurgery, Medical University Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| | - Joachim K Krauss
- Department of Neurosurgery, Medical University Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| |
Collapse
|
9
|
Assous M, Tepper JM. Excitatory extrinsic afferents to striatal interneurons and interactions with striatal microcircuitry. Eur J Neurosci 2018; 49:593-603. [PMID: 29480942 DOI: 10.1111/ejn.13881] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 01/24/2023]
Abstract
The striatum constitutes the main input structure of the basal ganglia and receives two major excitatory glutamatergic inputs, from the cortex and the thalamus. Excitatory cortico- and thalamostriatal connections innervate the principal neurons of the striatum, the spiny projection neurons (SPNs), which constitute the main cellular input as well as the only output of the striatum. In addition, corticostriatal and thalamostriatal inputs also innervate striatal interneurons. Some of these inputs have been very well studied, for example the thalamic innervation of cholinergic interneurons and the cortical innervation of striatal fast-spiking interneurons, but inputs to most other GABAergic interneurons remain largely unstudied, due in part to the relatively recent identification and characterization of many of these interneurons. In this review, we will discuss and reconcile some older as well as more recent data on the extrinsic excitatory inputs to striatal interneurons. We propose that the traditional feed-forward inhibitory model of the cortical input to the fast-spiking interneuron then inhibiting the SPN, often assumed to be the prototype of the main functional organization of striatal interneurons, is incomplete. We provide evidence that the extrinsic innervation of striatal interneurons is not uniform but shows great cell-type specificity. In addition, we will review data showing that striatal interneurons are themselves interconnected in a highly cell-type-specific manner. These data suggest that the impact of the extrinsic inputs on striatal activity critically depends on synaptic interactions within interneuronal circuitry.
Collapse
Affiliation(s)
- Maxime Assous
- Center for Molecular and Behavioral Neuroscience, Rutgers, the State University of New Jersey, 197 University Avenue, Newark, NJ, 07102, USA
| | - James M Tepper
- Center for Molecular and Behavioral Neuroscience, Rutgers, the State University of New Jersey, 197 University Avenue, Newark, NJ, 07102, USA
| |
Collapse
|
10
|
Assous M, Kaminer J, Shah F, Garg A, Koós T, Tepper JM. Differential processing of thalamic information via distinct striatal interneuron circuits. Nat Commun 2017; 8:15860. [PMID: 28604688 PMCID: PMC5477498 DOI: 10.1038/ncomms15860] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/03/2017] [Indexed: 11/23/2022] Open
Abstract
Recent discoveries of striatal GABAergic interneurons require a new conceptualization of the organization of intrastriatal circuitry and their cortical and thalamic inputs. We investigated thalamic inputs to the two populations of striatal neuropeptide Y (NPY) interneurons, plateau low threshold spike (PLTS) and NPY-neurogliaform (NGF) cells. Optogenetic activation of parafascicular inputs evokes suprathreshold monosynaptic glutamatergic excitation in NGF interneurons and a disynaptic, nicotinic excitation through cholinergic interneurons. In contrast, the predominant response of PLTS interneurons is a disynaptic inhibition dependent on thalamic activation of striatal tyrosine hydroxylase interneurons (THINs). In contrast, THINs do not innervate NGF or fast spiking interneurons, showing significant specificity in THINs outputs. Chemospecific ablation of THINs impairs prepulse inhibition of the acoustic startle response suggesting an important behavioural role of this disynaptic pathway. Our findings demonstrate that the impact of the parafascicular nucleus on striatal activity and some related behaviour critically depend on synaptic interactions within interneuronal circuits. The responses of striatal GABAergic interneurons to thalamic inputs are not well characterised. Here, the authors demonstrate that complex intrastriatal circuitry is responsible for thalamic-evoked monosynaptic and disynaptic excitation in NPY-NGF interneurons but a disynaptic inhibition in the NPY-PLTS.
Collapse
Affiliation(s)
- Maxime Assous
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102, USA
| | - Jaime Kaminer
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102, USA
| | - Fulva Shah
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102, USA
| | - Arpan Garg
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102, USA
| | - Tibor Koós
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102, USA
| | - James M Tepper
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102, USA
| |
Collapse
|
11
|
Testini P, Min HK, Bashir A, Lee KH. Deep Brain Stimulation for Tourette's Syndrome: The Case for Targeting the Thalamic Centromedian-Parafascicular Complex. Front Neurol 2016; 7:193. [PMID: 27891112 PMCID: PMC5102892 DOI: 10.3389/fneur.2016.00193] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 10/24/2016] [Indexed: 12/13/2022] Open
Abstract
Tourette’s syndrome (TS) is a neurologic condition characterized by both motor and phonic tics and is typically associated with psychiatric comorbidities, including obsessive-compulsive disorder/behavior and attention-deficit hyperactivity disorder, and can be psychologically and socially debilitating. It is considered a disorder of the cortico–striato–thalamo–cortical circuitry, as suggested by pathophysiology studies and therapeutic options. Among these, deep brain stimulation (DBS) of the centromedian–parafascicular nucleus (CM-Pf) of the thalamus is emerging as a valuable treatment modality for patients affected by severe, treatment-resistant TS. Here, we review the most recent experimental evidence for the pivotal role of CM-Pf in the pathophysiology of TS, discuss potential mechanisms of action that may mediate the effects of CM-Pf DBS in TS, and summarize its clinical efficacy.
Collapse
Affiliation(s)
- Paola Testini
- Department of Neurosurgery, Mayo Clinic , Rochester, MN , USA
| | - Hoon-Ki Min
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Asif Bashir
- Department of Neurosurgery, JFK New Jersey Neuroscience Institute , Edison, NJ , USA
| | - Kendall H Lee
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
12
|
Swerdlow NR, Braff DL, Geyer MA. Sensorimotor gating of the startle reflex: what we said 25 years ago, what has happened since then, and what comes next. J Psychopharmacol 2016; 30:1072-1081. [PMID: 27539931 PMCID: PMC6036900 DOI: 10.1177/0269881116661075] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Our 1992 paper, 'The neural substrates of sensorimotor gating of the startle reflex: a review of recent findings and their implications', reviewed a series of (then) new and preliminary findings from cross-species studies of prepulse inhibition of the startle reflex, and commented on their implications. At the time that the report was composed, PubMed listed about 40 citations for studies using the search term 'prepulse inhibition'. In the ensuing 25 years, the field has added about 2700 such reports, reflecting the substantial growth in interest in prepulse inhibition and its utility across a number of different experimental applications. The 30th anniversary of the Journal of Psychopharmacology provides an opportunity to comment briefly on what was described in that 1992 report, how the field has progressed in the subsequent decades, and the paths forward for studies of prepulse inhibition and its use as an operational measure of sensorimotor gating. Among these future paths, we highlight the use of prepulse inhibition as: an endophenotype for genomic studies, and a biomarker for healthy brain circuitry, which may predict sensitivity to psychotherapeutics. Our 1992 report was highly speculative and based on paper-thin empirical data, yet viewed in a certain light, it appears to have contained a basic roadmap for a journey spanning the next 25 years of prepulse inhibition research… and 'what a long, strange trip it's been'.
Collapse
Affiliation(s)
- Neal R Swerdlow
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - David L Braff
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Mark A Geyer
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
13
|
Bikovsky L, Hadar R, Soto-Montenegro ML, Klein J, Weiner I, Desco M, Pascau J, Winter C, Hamani C. Deep brain stimulation improves behavior and modulates neural circuits in a rodent model of schizophrenia. Exp Neurol 2016; 283:142-50. [PMID: 27302677 DOI: 10.1016/j.expneurol.2016.06.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/07/2016] [Accepted: 06/10/2016] [Indexed: 12/11/2022]
Abstract
Schizophrenia is a debilitating psychiatric disorder with a significant number of patients not adequately responding to treatment. Deep brain stimulation (DBS) is a surgical technique currently investigated for medically-refractory psychiatric disorders. Here, we use the poly I:C rat model of schizophrenia to study the effects of medial prefrontal cortex (mPFC) and nucleus accumbens (Nacc) DBS on two behavioral schizophrenia-like deficits, i.e. sensorimotor gating, as reflected by disrupted prepulse inhibition (PPI), and attentional selectivity, as reflected by disrupted latent inhibition (LI). In addition, the neurocircuitry influenced by DBS was studied using FDG PET. We found that mPFC- and Nacc-DBS alleviated PPI and LI abnormalities in poly I:C offspring, whereas Nacc- but not mPFC-DBS disrupted PPI and LI in saline offspring. In saline offspring, mPFC-DBS increased metabolism in the parietal cortex, striatum, ventral hippocampus and Nacc, while reducing it in the brainstem, cerebellum, hypothalamus and periaqueductal gray. Nacc-DBS, on the other hand, increased activity in the ventral hippocampus and olfactory bulb and reduced it in the septal area, brainstem, periaqueductal gray and hypothalamus. In poly I:C offspring changes in metabolism following mPFC-DBS were similar to those recorded in saline offspring, except for a reduced activity in the brainstem and hypothalamus. In contrast, Nacc-DBS did not induce any statistical changes in brain metabolism in poly I:C offspring. Our study shows that mPFC- or Nacc-DBS delivered to the adult progeny of poly I:C treated dams improves deficits in PPI and LI. Despite common behavioral responses, stimulation in the two targets induced different metabolic effects.
Collapse
Affiliation(s)
- Lior Bikovsky
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ravit Hadar
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | | | - Julia Klein
- Department of Psychiatry and Psychotherapy, Charité University Medicine Berlin, Campus Charité Mitte, Berlin, Germany
| | - Ina Weiner
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; CIBERSAM, Madrid, Spain; Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Spain
| | - Javier Pascau
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; CIBERSAM, Madrid, Spain; Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Spain
| | - Christine Winter
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.
| | - Clement Hamani
- Behavioural Neurobiology Laboratory, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada; Campbell Family Mental Health Research Institute, CAMH, Canada; Division of Neurosurgery, Toronto Western Hospital, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada
| |
Collapse
|
14
|
Rattka M, Fluri F, Krstić M, Asan E, Volkmann J. A Novel Approach to Assess Motor Outcome of Deep Brain Stimulation Effects in the Hemiparkinsonian Rat: Staircase and Cylinder Test. J Vis Exp 2016. [PMID: 27284739 DOI: 10.3791/53951] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Deep brain stimulation of the subthalamic nucleus is an effective treatment option for Parkinson's disease. In our lab we established a protocol to screen different neurostimulation patterns in hemiparkinsonian (unilateral lesioned) rats. It consists of creating a unilateral Parkinson's lesion by injecting 6-hydroxydopamine (6-OHDA) into the right medial forebrain bundle, implanting chronic stimulation electrodes into the subthalamic nucleus and evaluating motor outcomes at the end of 24 hr periods of cable-bound external neurostimulation. The stimulation was conducted with constant current stimulation. The amplitude was set 20% below the individual threshold for side effects. The motor outcome evaluation was done by the assessment of spontaneous paw use in the cylinder test according to Shallert and by the assessment of skilled reaching in the staircase test according to Montoya. This protocol describes in detail the training in the staircase box, the cylinder test, as well as the use of both in hemiparkinsonian rats. The use of both tests is necessary, because the staircase test seems to be more sensitive for fine motor skill impairment and exhibits greater sensitivity to change during neurostimulation. The combination of the unilateral Parkinson model and the two behavioral tests allows the assessment of different stimulation parameters in a standardized way.
Collapse
Affiliation(s)
- Marta Rattka
- Department of Neurology, University Hospital Wuerzburg;
| | - Felix Fluri
- Department of Neurology, University Hospital Wuerzburg
| | - Miloš Krstić
- Department of Neurology, University Hospital Wuerzburg
| | - Esther Asan
- Institute of Anatomy and Cell Biology, University Wuerzburg
| | - Jens Volkmann
- Department of Neurology, University Hospital Wuerzburg;
| |
Collapse
|
15
|
McCairn KW, Iriki A, Isoda M. Common therapeutic mechanisms of pallidal deep brain stimulation for hypo- and hyperkinetic movement disorders. J Neurophysiol 2015; 114:2090-104. [PMID: 26180116 PMCID: PMC4595610 DOI: 10.1152/jn.00223.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/06/2015] [Indexed: 12/31/2022] Open
Abstract
Abnormalities in cortico-basal ganglia (CBG) networks can cause a variety of movement disorders ranging from hypokinetic disorders, such as Parkinson's disease (PD), to hyperkinetic conditions, such as Tourette syndrome (TS). Each condition is characterized by distinct patterns of abnormal neural discharge (dysrhythmia) at both the local single-neuron level and the global network level. Despite divergent etiologies, behavioral phenotypes, and neurophysiological profiles, high-frequency deep brain stimulation (HF-DBS) in the basal ganglia has been shown to be effective for both hypo- and hyperkinetic disorders. The aim of this review is to compare and contrast the electrophysiological hallmarks of PD and TS phenotypes in nonhuman primates and discuss why the same treatment (HF-DBS targeted to the globus pallidus internus, GPi-DBS) is capable of ameliorating both symptom profiles. Recent studies have shown that therapeutic GPi-DBS entrains the spiking of neurons located in the vicinity of the stimulating electrode, resulting in strong stimulus-locked modulations in firing probability with minimal changes in the population-scale firing rate. This stimulus effect normalizes/suppresses the pathological firing patterns and dysrhythmia that underlie specific phenotypes in both the PD and TS models. We propose that the elimination of pathological states via stimulus-driven entrainment and suppression, while maintaining thalamocortical network excitability within a normal physiological range, provides a common therapeutic mechanism through which HF-DBS permits information transfer for purposive motor behavior through the CBG while ameliorating conditions with widely different symptom profiles.
Collapse
Affiliation(s)
- Kevin W McCairn
- Systems Neuroscience and Movement Disorders Laboratory, Korea Brain Research Institute, Daegu, Republic of Korea;
| | - Atsushi Iriki
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Wako, Saitama, Japan; and
| | - Masaki Isoda
- Department of Physiology, Kansai Medical University School of Medicine, Hirakata, Osaka, Japan
| |
Collapse
|
16
|
Abstract
About 200 journal articles reported research on Tourette syndrome and other tic disorders in 2014. Here we briefly summarize a few of the reports that seemed most important or interesting, ranging from animal models to human studies. Readers can comment on our choices or provide their own favorites using the tools on the online article.
Collapse
Affiliation(s)
- Cheryl A Richards
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Kevin J Black
- Departments of Psychiatry, Neurology, Radiology, and Anatomy & Neurobiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
17
|
Medial Forebrain Bundle Deep Brain Stimulation has Symptom-specific Anti-depressant Effects in Rats and as Opposed to Ventromedial Prefrontal Cortex Stimulation Interacts With the Reward System. Brain Stimul 2015; 8:714-23. [PMID: 25819024 DOI: 10.1016/j.brs.2015.02.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/18/2015] [Accepted: 02/22/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND In recent years, deep brain stimulation (DBS) has emerged as a promising treatment option for patients suffering from treatment-resistant depression (TRD). Several stimulation targets have successfully been tested in clinical settings, including the subgenual cingulum (Cg25) and the medial forebrain bundle (MFB). MFB-DBS has led to remarkable results, surpassing the effect of previous targets in terms of response latency and number of responders. However, the question remains as to which mechanisms underlie this difference. OBJECTIVE/HYPOTHESIS The aim of the present study was to thoroughly study the anti-depressant effect of MFB-DBS in the Flinders sensitive line (FSL) rat model of depression as well as to investigate whether MFB-DBS and Cg25-DBS operate through the same neurobiological circuits. METHODS FSL and control rats received bilateral high-frequency stimulation to the MFB at the level of the lateral hypothalamus, while being subjected to a variety of depression- and anxiety-related behavioral paradigms. To further compare the effects of MFB-DBS and Cg25-DBS on reward-related behavior, animals were stimulated in either the MFB or ventromedial prefrontal cortex (vmPFC, rodent analog to Cg25), while being tested in the intra-cranial self-stimulation paradigm. RESULTS A marked symptom-specific anti-depressant effect of MFB-DBS was demonstrated. The ICSS-paradigm revealed that MFB-DBS, as opposed to vmPFC-DBS interacts with the reward system. CONCLUSION Our data suggest that MFB-DBS and Cg25-DBS do not operate via the same neurobiological circuits. This differentiation might be of interest when selecting patients for either Cg25- or MFB-DBS.
Collapse
|
18
|
Swerdlow NR, Light GA. Animal Models of Deficient Sensorimotor Gating in Schizophrenia: Are They Still Relevant? Curr Top Behav Neurosci 2015; 28:305-25. [PMID: 27311762 DOI: 10.1007/7854_2015_5012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Animal models of impaired sensorimotor gating, as assessed by prepulse inhibition (PPI) of startle, have demonstrated clear validity at face, predictive, and construct levels for schizophrenia therapeutics, neurophysiological endophenotypes, and potential causative insults for this group of disorders. However, with the growing recognition of the heterogeneity of the schizophrenias, and the less sanguine view of the clinical value of antipsychotic (AP) medications, our field must look beyond "validity," to assess the actual utility of these models. At a substantial cost in terms of research support and intellectual capital, what has come from these models, that we can say has actually helped schizophrenia patients? Such introspection is timely, as we are reassessing not only our view of the genetic and pathophysiological diversity of these disorders, but also the predominant strategies for SZ therapeutics; indeed, our field is gaining awareness that we must move away from a "find what's broke and fix it" approach, toward identifying spared neural and cognitive function in SZ patients, and matching these residual neural assets with learning-based therapies. Perhaps, construct-valid models that identify evidence of "spared function" in neural substrates might reveal opportunities for future therapeutics and allow us to study these substrates at a mechanistic level to maximize opportunities for neuroplasticity. Such an effort will require a retooling of our models, and more importantly, a re-evaluation of their utility. For animal models to remain relevant in the search for schizophrenia therapeutics, they will need to focus less on what is valid and focus more on what is useful.
Collapse
Affiliation(s)
- Neal R Swerdlow
- Department of Psychiatry, School of Medicine, University of California, San Diego, 9500 Gilman Dr. La Jolla, San Diego, CA, 92093-0804, USA.
| | - Gregory A Light
- Department of Psychiatry, School of Medicine, University of California, San Diego, 9500 Gilman Dr. La Jolla, San Diego, CA, 92093-0804, USA
| |
Collapse
|