1
|
Xu E, Pitts S, Dahill-Fuchel J, Scherrer S, Nauvel T, Overton JG, Riva-Posse P, Crowell A, Figee M, Alagapan S, Rozell CJ, Choi KS, Mayberg HS, Waters AC. Neural Interoceptive Processing Is Modulated by Deep Brain Stimulation to Subcallosal Cingulate Cortex for Treatment-Resistant Depression. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025; 10:495-503. [PMID: 39622471 PMCID: PMC12058420 DOI: 10.1016/j.bpsc.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/11/2024]
Abstract
BACKGROUND Symptoms of depression are associated with impaired interoceptive processing of bodily sensation. The antidepressant effects of subcallosal cingulate deep brain stimulation (SCC DBS) include acute change in bodily sensation, and the SCC target is connected to cortical regions critically involved in interoception. This study tested whether cortical interoceptive processing is modulated by SCC DBS for treatment-resistant depression. METHODS In 8 patients receiving SCC DBS for treatment-resistant depression, we used electroencephalography to measure the heartbeat-evoked potential (HEP), a putative readout of neural interoception, before surgery and over 6 months of treatment with DBS. We also examined the immediate effect of DBS on the HEP and correlated HEP change over time with outcomes of treatment for depression. RESULTS HEP amplitude increased from baseline to 6 months of DBS treatment, and this increase was associated with faster antidepressant response. Recording with stimulation on (vs. off) had an immediate effect on HEP in the laboratory. Overall, modulation of the HEP was most pronounced in sensors over the left parietal cortex. CONCLUSIONS Brain-based evidence implies an interoceptive element in the mechanism of treatment efficacy with DBS for treatment-resistant depression and substantiates a theorized connection between interoception and depression.
Collapse
Affiliation(s)
- Elisa Xu
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Samantha Pitts
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Sara Scherrer
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Tanya Nauvel
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jacqueline Guerra Overton
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Patricio Riva-Posse
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Andrea Crowell
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Martijn Figee
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sankaraleengam Alagapan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Christopher J Rozell
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Ki Sueng Choi
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Helen S Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Allison C Waters
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
2
|
Cui B, Mocchi MM, Metzger BA, Kalva P, Magnotti JF, Fiedorowicz JG, Waters A, Kovach CK, Reed YY, Mathura RK, Steger C, Pascuzzi B, Kanja K, Veerakumar A, Tiruvadi V, Crowell A, Denison L, Rozell CJ, Pouratian N, Goodman W, Riva Posse P, Mayberg HS, Bijanki KR. Affective bias predicts changes in depression during deep brain stimulation therapy. Front Hum Neurosci 2025; 19:1539857. [PMID: 40201337 PMCID: PMC11977254 DOI: 10.3389/fnhum.2025.1539857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/05/2025] [Indexed: 04/10/2025] Open
Abstract
Introduction Deep brain stimulation (DBS) is a promising treatment for refractory depression, utilizing surgically implanted electrodes to stimulate specific anatomical targets within the brain. However, limitations of patient-reported and clinician-administered mood assessments pose obstacles in evaluating DBS treatment efficacy. In this study, we investigated whether an affective bias task, which leverages the inherent negative interpretation bias seen in individuals with depression, could serve as a reliable measure of mood changes during DBS therapy in patients with treatment-resistant depression. Methods Two cohorts of patients (n = 8, n = 2) undergoing DBS for treatment-resistant depression at different academic medical centers completed an affective bias task at multiple time points before and after DBS implantation. The affective bias task involved rating the emotional content of a series of static photographic stimuli of facial expressions throughout their DBS treatment. Patients' ratings were compared with those of non-depressed controls to calculate affective bias scores. Linear mixed-effects modeling was used to assess changes in bias scores over time and their relationship with depression severity measured by the Hamilton Depression Rating Scale (HDRS-17). Results We observed significant improvements in total affective bias scores over the course of DBS treatment in both cohorts. Pre-DBS, patients exhibited a negative affective bias, which was nearly eliminated post-DBS, with total bias scores approaching those of non-depressed controls. Positive valence trials showed significant improvement post-DBS, while negative valence trials showed no notable change. A control analysis indicated that stimulation status did not significantly affect bias scores, and thus stimulation status was excluded from further modeling. Linear mixed-effects modeling revealed that more negative bias scores were associated with higher HDRS-17 scores, particularly for positive valence stimuli. Additionally, greater time elapsed since DBS implantation was associated with a decrease in HDRS-17 scores, indicating clinical improvement over time. Discussion Our findings demonstrate that the affective bias task leverages the inherent negative interpretation bias seen in individuals with depression, providing a standardized measure of how these biases change over time. Unlike traditional mood assessments, which rely on subjective introspection, the affective bias task consistently measures changes in mood, offering potential as a tool to monitor mood changes and evaluate the candidacy of DBS treatment in refractory depression.
Collapse
Affiliation(s)
- Brian Cui
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Madaline M. Mocchi
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Brian A. Metzger
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Prathik Kalva
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - John F. Magnotti
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Jess G. Fiedorowicz
- Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Allison Waters
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Christopher K. Kovach
- Department of Neurosurgery, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Yvonne Y. Reed
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Raissa K. Mathura
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Camille Steger
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Bailey Pascuzzi
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Kourtney Kanja
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Ashan Veerakumar
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Vineet Tiruvadi
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Andrea Crowell
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Lydia Denison
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Christopher J. Rozell
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Nader Pouratian
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX, United States
| | - Wayne Goodman
- Department of Psychiatry, Baylor College of Medicine, Houston, TX, United States
| | - Patricio Riva Posse
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Helen S. Mayberg
- Department of Neurosurgery, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Kelly Rowe Bijanki
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
3
|
Elias GJB, Germann J, Boutet A, Beyn ME, Giacobbe P, Song HN, Choi KS, Mayberg HS, Kennedy SH, Lozano AM. Local neuroanatomical and tract-based proxies of optimal subcallosal cingulate deep brain stimulation. Brain Stimul 2023; 16:1259-1272. [PMID: 37611657 DOI: 10.1016/j.brs.2023.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/02/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Deep brain stimulation of the subcallosal cingulate area (SCC-DBS) is a promising neuromodulatory therapy for treatment-resistant depression (TRD). Biomarkers of optimal target engagement are needed to guide surgical targeting and stimulation parameter selection and to reduce variance in clinical outcome. OBJECTIVE/HYPOTHESIS We aimed to characterize the relationship between stimulation location, white matter tract engagement, and clinical outcome in a large (n = 60) TRD cohort treated with SCC-DBS. A smaller cohort (n = 22) of SCC-DBS patients with differing primary indications (bipolar disorder/anorexia nervosa) was utilized as an out-of-sample validation cohort. METHODS Volumes of tissue activated (VTAs) were constructed in standard space using high-resolution structural MRI and individual stimulation parameters. VTA-based probabilistic stimulation maps (PSMs) were generated to elucidate voxelwise spatial patterns of efficacious stimulation. A whole-brain tractogram derived from Human Connectome Project diffusion-weighted MRI data was seeded with VTA pairs, and white matter streamlines whose overlap with VTAs related to outcome ('discriminative' streamlines; Puncorrected < 0.05) were identified using t-tests. Linear modelling was used to interrogate the potential clinical relevance of VTA overlap with specific structures. RESULTS PSMs varied by hemisphere: high-value left-sided voxels were located more anterosuperiorly and squarely in the lateral white matter, while the equivalent right-sided voxels fell more posteroinferiorly and involved a greater proportion of grey matter. Positive discriminative streamlines localized to the bilateral (but primarily left) cingulum bundle, forceps minor/rostrum of corpus callosum, and bilateral uncinate fasciculus. Conversely, negative discriminative streamlines mostly belonged to the right cingulum bundle and bilateral uncinate fasciculus. The best performing linear model, which utilized information about VTA volume overlap with each of the positive discriminative streamline bundles as well as the negative discriminative elements of the right cingulum bundle, explained significant variance in clinical improvement in the primary TRD cohort (R = 0.46, P < 0.001) and survived repeated 10-fold cross-validation (R = 0.50, P = 0.040). This model was also able to predict outcome in the out-of-sample validation cohort (R = 0.43, P = 0.047). CONCLUSION(S) These findings reinforce prior indications of the importance of white matter engagement to SCC-DBS treatment success while providing new insights that could inform surgical targeting and stimulation parameter selection decisions.
Collapse
Affiliation(s)
- Gavin J B Elias
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada; Krembil Research Institute, University of Toronto, Toronto, M5T 0S8, Canada
| | - Jürgen Germann
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada; Krembil Research Institute, University of Toronto, Toronto, M5T 0S8, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada; Krembil Research Institute, University of Toronto, Toronto, M5T 0S8, Canada; Joint Department of Medical Imaging, University of Toronto, Toronto, M5T 1W7, Canada
| | - Michelle E Beyn
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada
| | - Peter Giacobbe
- Department of Psychiatry, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, M4N 3M5, Canada
| | - Ha Neul Song
- Nash Family Center for Advanced Circuit Therapeutics, Mount Sinai West, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA
| | - Ki Sueng Choi
- Nash Family Center for Advanced Circuit Therapeutics, Mount Sinai West, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Helen S Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Mount Sinai West, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA; Departments of Neurology and Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sidney H Kennedy
- Krembil Research Institute, University of Toronto, Toronto, M5T 0S8, Canada; ASR Suicide and Depression Studies Unit, St. Michael's Hospital, University of Toronto, M5B 1M8, Canada; Department of Psychiatry, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada; Krembil Research Institute, University of Toronto, Toronto, M5T 0S8, Canada.
| |
Collapse
|
4
|
Hodges TE, Lee GY, Noh SH, Galea LA. Sex and age differences in cognitive bias and neural activation in response to cognitive bias testing. Neurobiol Stress 2022; 18:100458. [PMID: 35586750 PMCID: PMC9109184 DOI: 10.1016/j.ynstr.2022.100458] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/28/2022] [Accepted: 05/02/2022] [Indexed: 12/29/2022] Open
Abstract
Cognitive symptoms of depression, including negative cognitive bias, are more severe in women than in men. Current treatments to reduce negative cognitive bias are not effective and sex differences in the neural activity underlying cognitive bias may play a role. Here we examined sex and age differences in cognitive bias and functional connectivity in a novel paradigm. Male and female rats underwent an 18-day cognitive bias procedure, in which they learned to discriminate between two contexts (shock paired context A, no-shock paired context B), during either adolescence (postnatal day (PD 40)), young adulthood (PD 100), or middle-age (PD 210). Cognitive bias was measured as freezing behaviour in response to an ambiguous context (context C), with freezing levels akin to the shock paired context coded as negative bias. All animals learned to discriminate between the two contexts, regardless of sex or age. However, adults (young adults, middle-aged) displayed a greater negative cognitive bias compared to adolescents, and middle-aged males had a greater negative cognitive bias than middle-aged females. Females had greater neural activation of the nucleus accumbens, amygdala, and hippocampal regions to the ambiguous context compared to males, and young rats (adolescent, young adults) had greater neural activation in these regions compared to middle-aged rats. Functional connectivity between regions involved in cognitive bias differed by age and sex, and only adult males had negative correlations between the frontal regions and hippocampal regions. These findings highlight the importance of examining age and sex when investigating the underpinnings of negative cognitive bias and lay the groundwork for determining what age- and sex-specific regions to target in future cognitive bias studies.
Collapse
Affiliation(s)
- Travis E. Hodges
- Department of Psychology, University of British Columbia, Canada
| | - Grace Y. Lee
- Department of Psychology, University of British Columbia, Canada
| | - Sophia H. Noh
- Department of Psychology, University of British Columbia, Canada
| | - Liisa A.M. Galea
- Department of Psychology, University of British Columbia, Canada
- Graduate Program in Neuroscience, University of British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Canada
| |
Collapse
|
5
|
Little evidence for a reduced late positive potential to unpleasant stimuli in major depressive disorder. NEUROIMAGE: REPORTS 2022. [DOI: 10.1016/j.ynirp.2022.100077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Elias GJB, Germann J, Boutet A, Loh A, Li B, Pancholi A, Beyn ME, Naheed A, Bennett N, Pinto J, Bhat V, Giacobbe P, Woodside DB, Kennedy SH, Lozano AM. 3 T MRI of rapid brain activity changes driven by subcallosal cingulate deep brain stimulation. Brain 2021; 145:2214-2226. [PMID: 34919630 DOI: 10.1093/brain/awab447] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 11/14/2022] Open
Abstract
Deep brain stimulation targeting the subcallosal cingulate area (SCC-DBS), a hub with multiple axonal projections, has shown therapeutic potential for treatment-resistant mood disorders. While SCC-DBS drives long-term metabolic changes in corticolimbic circuits, the brain areas that are directly modulated by electrical stimulation of this region are not known. We used 3.0 Tesla functional MRI to map the topography of acute brain changes produced by stimulation in an initial cohort of twelve patients with fully implanted SCC-DBS devices. Four additional SCC-DBS patients were also scanned and employed as a validation cohort. Participants underwent resting state scans (n=78 acquisitions overall) during i) inactive DBS; ii) clinically optimal active DBS; iii) suboptimal active DBS. All scans were acquired within a single MRI session, each separated by a 5-minute washout period. Analysis of the amplitude of low frequency fluctuations (ALFF) in each sequence indicated that clinically optimal SCC-DBS reduced spontaneous brain activity in several areas, including bilateral dorsal anterior cingulate cortex (dACC), posterior cingulate cortex (PCC), precuneus, and left inferior parietal lobule (pBonferroni<0.0001). Stimulation-induced dACC signal reduction correlated with immediate within-session mood fluctuations, was greater at optimal versus suboptimal settings, and related to local cingulum bundle engagement. Moreover, linear modelling showed that immediate changes in dACC, PCC, and precuneus activity could predict individual long-term antidepressant improvement. A model derived from the primary cohort that incorporated ALFF changes in these three areas (along with pre-operative symptom severity) explained 55% of the variance in clinical improvement in that cohort. The same model also explained 93% of the variance in the out-of-sample validation cohort. Additionally all three brain areas exhibited significant changes in functional connectivity between active and inactive DBS states (pBonferroni<0.01). These results provide insight into the network-level mechanisms of SCC-DBS and point towards potential acute biomarkers of clinical response that could help to optimize and personalize this therapy.
Collapse
Affiliation(s)
- Gavin J B Elias
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada.,Krembil Research Institute, University of Toronto, Toronto, Canada
| | - Jürgen Germann
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada.,Krembil Research Institute, University of Toronto, Toronto, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada.,Krembil Research Institute, University of Toronto, Toronto, Canada.,Joint Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Aaron Loh
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada.,Krembil Research Institute, University of Toronto, Toronto, Canada
| | - Bryan Li
- Joint Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Aditya Pancholi
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Michelle E Beyn
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Asma Naheed
- Joint Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Nicole Bennett
- Joint Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Jessica Pinto
- Joint Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Venkat Bhat
- Department of Psychiatry, University Health Network and University of Toronto, Toronto, Canada
| | - Peter Giacobbe
- Department of Psychiatry, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, Canada
| | - D Blake Woodside
- Department of Psychiatry, University Health Network and University of Toronto, Toronto, Canada
| | - Sidney H Kennedy
- Krembil Research Institute, University of Toronto, Toronto, Canada.,Department of Psychiatry, University Health Network and University of Toronto, Toronto, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada.,Krembil Research Institute, University of Toronto, Toronto, Canada
| |
Collapse
|
7
|
Gunning FM, Oberlin LE, Schier M, Victoria LW. Brain-based mechanisms of late-life depression: Implications for novel interventions. Semin Cell Dev Biol 2021; 116:169-179. [PMID: 33992530 PMCID: PMC8548387 DOI: 10.1016/j.semcdb.2021.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 05/01/2021] [Indexed: 12/11/2022]
Abstract
Late-life depression (LLD) is a particularly debilitating illness. Older adults suffering from depression commonly experience poor outcomes in response to antidepressant treatments, medical comorbidities, and declines in daily functioning. This review aims to further our understanding of the brain network dysfunctions underlying LLD that contribute to disrupted cognitive and affective processes and corresponding clinical manifestations. We provide an overview of a network model of LLD that integrates the salience network, the default mode network (DMN) and the executive control network (ECN). We discuss the brain-based structural and functional mechanisms of LLD with an emphasis on their link to clinical subtypes that often fail to respond to available treatments. Understanding the brain networks that underlie these disrupted processes can inform the development of targeted interventions for LLD. We propose behavioral, cognitive, or computational approaches to identifying novel, personalized interventions that may more effectively target the key cognitive and affective symptoms of LLD.
Collapse
Affiliation(s)
- Faith M Gunning
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Lauren E Oberlin
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Maddy Schier
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lindsay W Victoria
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
8
|
Godlewska BR, Harmer CJ. Cognitive neuropsychological theory of antidepressant action: a modern-day approach to depression and its treatment. Psychopharmacology (Berl) 2021; 238:1265-1278. [PMID: 31938879 PMCID: PMC8062380 DOI: 10.1007/s00213-019-05448-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/27/2019] [Indexed: 12/12/2022]
Abstract
Depression is a leading cause of disability worldwide and improving its treatment is a core research priority for future programmes. A change in the view of psychological and biological processes, from seeing them as separate to complementing one another, has introduced new perspectives on pathological mechanisms of depression and treatment mode of action. This review presents a theoretical model that incorporated this novel approach, the cognitive neuropsychological hypothesis of antidepressant action. This model proposes that antidepressant treatments decrease the negative bias in the processing of emotionally salient information early in the course of antidepressant treatment, which leads to the clinically significant mood improvement later in treatment. The paper discusses the role of negative affective biases in the development of depression and response to antidepressant treatments. It also discusses whether the model can be applied to other antidepressant interventions and its potential translational value, including treatment choice, prediction of response and drug development.
Collapse
Affiliation(s)
- Beata R Godlewska
- Department of Psychiatry, Psychopharmacology Research Unit, University Department of Psychiatry (PPRU), University of Oxford, Oxford, UK.
- Department of Psychiatry, Psychopharmacology and Emotion Research Laboratory (PERL), University of Oxford, Oxford, UK.
- Oxford Health Foundation Trust, University Department of Psychiatry, Warneford Hospital, Oxford, OX3 7JX, UK.
| | - Catherine J Harmer
- Department of Psychiatry, Psychopharmacology and Emotion Research Laboratory (PERL), University of Oxford, Oxford, UK
- Oxford Health Foundation Trust, University Department of Psychiatry, Warneford Hospital, Oxford, OX3 7JX, UK
| |
Collapse
|
9
|
Khairuddin S, Ngo FY, Lim WL, Aquili L, Khan NA, Fung ML, Chan YS, Temel Y, Lim LW. A Decade of Progress in Deep Brain Stimulation of the Subcallosal Cingulate for the Treatment of Depression. J Clin Med 2020; 9:jcm9103260. [PMID: 33053848 PMCID: PMC7601903 DOI: 10.3390/jcm9103260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Major depression contributes significantly to the global disability burden. Since the first clinical study of deep brain stimulation (DBS), over 446 patients with depression have now undergone this neuromodulation therapy, and 29 animal studies have investigated the efficacy of subgenual cingulate DBS for depression. In this review, we aim to provide a comprehensive overview of the progress of DBS of the subcallosal cingulate in humans and the medial prefrontal cortex, its rodent homolog. For preclinical animal studies, we discuss the various antidepressant-like behaviors induced by medial prefrontal cortex DBS and examine the possible mechanisms including neuroplasticity-dependent/independent cellular and molecular changes. Interestingly, the response rate of subcallosal cingulate Deep brain stimulation marks a milestone in the treatment of depression. DBS achieved response and remission rates of 64–76% and 37–63%, respectively, from clinical studies monitoring patients from 6–24 months. Although some studies showed its stimulation efficacy was limited, it still holds great promise as a therapy for patients with treatment-resistant depression. Overall, further research is still needed, including more credible clinical research, preclinical mechanistic studies, precise selection of patients, and customized electrical stimulation paradigms.
Collapse
Affiliation(s)
- Sharafuddin Khairuddin
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L4 Laboratory Block, 21 Sassoon Road, Hong Kong, China; (S.K.); (F.Y.N.); (W.L.L.); (M.-L.F.); (Y.-S.C.)
| | - Fung Yin Ngo
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L4 Laboratory Block, 21 Sassoon Road, Hong Kong, China; (S.K.); (F.Y.N.); (W.L.L.); (M.-L.F.); (Y.-S.C.)
| | - Wei Ling Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L4 Laboratory Block, 21 Sassoon Road, Hong Kong, China; (S.K.); (F.Y.N.); (W.L.L.); (M.-L.F.); (Y.-S.C.)
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway 47500, Malaysia
| | - Luca Aquili
- School of Psychological and Clinical Sciences, Charles Darwin University, NT0815 Darwin, Australia;
| | - Naveed Ahmed Khan
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah 26666, UAE;
| | - Man-Lung Fung
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L4 Laboratory Block, 21 Sassoon Road, Hong Kong, China; (S.K.); (F.Y.N.); (W.L.L.); (M.-L.F.); (Y.-S.C.)
| | - Ying-Shing Chan
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L4 Laboratory Block, 21 Sassoon Road, Hong Kong, China; (S.K.); (F.Y.N.); (W.L.L.); (M.-L.F.); (Y.-S.C.)
| | - Yasin Temel
- Departments of Neuroscience and Neurosurgery, Maastricht University, 6229ER Maastricht, The Netherlands;
| | - Lee Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L4 Laboratory Block, 21 Sassoon Road, Hong Kong, China; (S.K.); (F.Y.N.); (W.L.L.); (M.-L.F.); (Y.-S.C.)
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway 47500, Malaysia
- Correspondence:
| |
Collapse
|
10
|
Habelt B, Arvaneh M, Bernhardt N, Minev I. Biomarkers and neuromodulation techniques in substance use disorders. Bioelectron Med 2020; 6:4. [PMID: 32232112 PMCID: PMC7098236 DOI: 10.1186/s42234-020-0040-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 01/29/2020] [Indexed: 01/10/2023] Open
Abstract
Addictive disorders are a severe health concern. Conventional therapies have just moderate success and the probability of relapse after treatment remains high. Brain stimulation techniques, such as transcranial Direct Current Stimulation (tDCS) and Deep Brain Stimulation (DBS), have been shown to be effective in reducing subjectively rated substance craving. However, there are few objective and measurable parameters that reflect neural mechanisms of addictive disorders and relapse. Key electrophysiological features that characterize substance related changes in neural processing are Event-Related Potentials (ERP). These high temporal resolution measurements of brain activity are able to identify neurocognitive correlates of addictive behaviours. Moreover, ERP have shown utility as biomarkers to predict treatment outcome and relapse probability. A future direction for the treatment of addiction might include neural interfaces able to detect addiction-related neurophysiological parameters and deploy neuromodulation adapted to the identified pathological features in a closed-loop fashion. Such systems may go beyond electrical recording and stimulation to employ sensing and neuromodulation in the pharmacological domain as well as advanced signal analysis and machine learning algorithms. In this review, we describe the state-of-the-art in the treatment of addictive disorders with electrical brain stimulation and its effect on addiction-related neurophysiological markers. We discuss advanced signal processing approaches and multi-modal neural interfaces as building blocks in future bioelectronics systems for treatment of addictive disorders.
Collapse
Affiliation(s)
- Bettina Habelt
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Mahnaz Arvaneh
- Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, UK
| | - Nadine Bernhardt
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ivan Minev
- Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, UK
| |
Collapse
|
11
|
Veerakumar A, Tiruvadi V, Howell B, Waters AC, Crowell AL, Voytek B, Riva-Posse P, Denison L, Rajendra JK, Edwards JA, Bijanki KR, Choi KS, Mayberg HS. Field potential 1/ f activity in the subcallosal cingulate region as a candidate signal for monitoring deep brain stimulation for treatment-resistant depression. J Neurophysiol 2019; 122:1023-1035. [PMID: 31314668 PMCID: PMC6766743 DOI: 10.1152/jn.00875.2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 01/22/2023] Open
Abstract
Subcallosal cingulate cortex deep brain stimulation (SCC-DBS) is an experimental therapy for treatment-resistant depression (TRD). Refinement and optimization of SCC-DBS will benefit from increased study of SCC electrophysiology in context of ongoing high-frequency SCC-DBS therapy. The study objective was a 7-mo observation of frequency-domain 1/f slope in off-stimulation local field potentials (SCC-LFPs) alongside standardized measurements of depression severity in 4 patients undergoing SCC-DBS. SCC was implanted bilaterally with a combined neurostimulation-LFP recording system. Following a 1-mo off-stimulation postoperative phase with multiple daily recordings, patients received bilateral SCC-DBS therapy (130 Hz, 90 μs) and weekly resting-state SCC-LFP recordings over a 6-mo treatment phase. 1/f slopes for each time point were estimated via linear regression of log-transformed Welch periodograms. General linear mixed-effects models were constructed to estimate pretreatment sources of 1/f slope variance, and 95% bootstrap confidence intervals were constructed to estimate treatment phase 1/f slope association with treatment response (50% decrease in preimplantation symptom severity). Results show the time of recording was a prominent source of pretreatment 1/f slope variance bilaterally, with increased 1/f slope magnitude observed during night hours (2300-0659). Increase in right 1/f slope was observed in the setting of treatment response, with bootstrap analysis supporting this observation in 3 of 4 subjects. We conclude that 1/f slope can be measured longitudinally in a combined SCC-DBS/LFP recording system and likely conforms to known 1/f circadian variability. The preliminary evidence of 1/f slope increase during treatment response suggests a potential utility as a candidate biomarker for ongoing development of adaptive TRD-neuromodulation strategies.NEW & NOTEWORTHY In four patients with treatment-resistant depression undergoing therapeutic deep brain stimulation (DBS), we present the first longitudinal observations of local field potentials (LFP) from the subcallosal cingulate region outside the postoperative period. Specifically, our results demonstrate that frequency-domain 1/f activity is measurable in a combined DBS-LFP recording system and that right hemisphere recordings appear sensitive to mood state, thus suggesting a potential readout suitable for consideration in ongoing efforts to develop adaptive DBS delivery systems.
Collapse
Affiliation(s)
- Ashan Veerakumar
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia
| | - Vineet Tiruvadi
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Bryan Howell
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Allison C Waters
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia
- Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Andrea L Crowell
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia
| | - Bradley Voytek
- Department of Cognitive Science, University of California San Diego, La Jolla, California
| | - Patricio Riva-Posse
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia
| | - Lydia Denison
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia
| | - Justin K Rajendra
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia
- Scientific and Statistical Computational Core. National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Johnathan A Edwards
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia
- Department of Biomedical Informatics, Emory University, Atlanta, Georgia
| | - Kelly R Bijanki
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia
- Department of Neurosurgery, Emory University, Atlanta, Georgia
| | - Ki Sueng Choi
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia
- Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Helen S Mayberg
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia
- Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
12
|
Victoria LW, Alexopoulos GS, Ilieva I, Stein AT, Hoptman MJ, Chowdhury N, Respino M, Morimoto SS, Kanellopoulos D, Avari JN, Gunning FM. White matter abnormalities predict residual negative self-referential thinking following treatment of late-life depression with escitalopram: A preliminary study. J Affect Disord 2019; 243:62-69. [PMID: 30236759 PMCID: PMC6186199 DOI: 10.1016/j.jad.2018.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/03/2018] [Accepted: 09/09/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Negative self-referential thinking is a common symptom of depression associated with poor treatment response. In late-life depression, white matter abnormalities may contribute to negative self-referential thoughts following antidepressant treatment. We investigated the association of fractional anisotropy (FA) in select regions of the negative valence system (NVS) with residual negative self-referential thoughts following treatment with escitalopram for late-life depression. METHODS The participants were older adults with major depression and psychiatrically normal controls. Depressed participants received 12 weeks of treatment with escitalopram. To assess self-referential thinking, participants completed a Trait Adjective Task at baseline and at week 12. Baseline MRI scans included a diffusion imaging sequence for FA analyses. RESULTS Participants with late-life depression differed from controls on all performance measures of the Trait Adjective Task at baseline and at 12 weeks. Depressed participants endorsed fewer negative personality traits and more positive personality traits at week 12 compared to baseline. Lower FA in the dorsal anterior cingulate and in the uncinate fasciculus in depressed participants was correlated with residual negative self-referential thinking (e.g., more endorsed negative adjectives, fewer rejected negative adjectives) at treatment end. LIMITATIONS The sample size is modest so the findings are preliminary. FA analyses were restricted to predetermined regions. CONCLUSIONS Negative self-referential thinking improved in depressed older adults following 12 weeks of treatment with escitalopram. Baseline FA in select white matter regions of the NVS was associated with residual negative self-referential thinking. These findings may help identify treatment targets for residual negative self-referential thoughts.
Collapse
Affiliation(s)
- Lindsay W Victoria
- Weill Cornell Institute of Geriatric Psychiatry, Department of Psychiatry, Weill Cornell Medicine, 21 Bloomingdale Road, White Plains, NY, United States.
| | - George S Alexopoulos
- Weill Cornell Institute of Geriatric Psychiatry, Department of Psychiatry, Weill Cornell Medicine, 21 Bloomingdale Road, White Plains, NY, United States
| | - Irena Ilieva
- Weill Cornell Institute of Geriatric Psychiatry, Department of Psychiatry, Weill Cornell Medicine, 21 Bloomingdale Road, White Plains, NY, United States
| | - Aliza T Stein
- Department of Psychology, University of Texas at Austin, Austin, TX, United States
| | - Matthew J Hoptman
- Schizophrenia Research Division, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States; Department of Psychiatry, New York University School of Medicine, New York, NY, United States
| | - Naib Chowdhury
- Weill Cornell Institute of Geriatric Psychiatry, Department of Psychiatry, Weill Cornell Medicine, 21 Bloomingdale Road, White Plains, NY, United States
| | - Matteo Respino
- Weill Cornell Institute of Geriatric Psychiatry, Department of Psychiatry, Weill Cornell Medicine, 21 Bloomingdale Road, White Plains, NY, United States
| | - Sarah Shizuko Morimoto
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Dora Kanellopoulos
- Weill Cornell Institute of Geriatric Psychiatry, Department of Psychiatry, Weill Cornell Medicine, 21 Bloomingdale Road, White Plains, NY, United States
| | - Jimmy N Avari
- Weill Cornell Institute of Geriatric Psychiatry, Department of Psychiatry, Weill Cornell Medicine, 21 Bloomingdale Road, White Plains, NY, United States
| | - Faith M Gunning
- Weill Cornell Institute of Geriatric Psychiatry, Department of Psychiatry, Weill Cornell Medicine, 21 Bloomingdale Road, White Plains, NY, United States
| |
Collapse
|
13
|
Yu HH, Gu SM, Yao FM, Wang ZR, Fu WQ. Electrophysiological Characteristics in Depressive Personality Disorder: An Event-Related Potential Study. Front Psychol 2019; 9:2711. [PMID: 30687171 PMCID: PMC6335292 DOI: 10.3389/fpsyg.2018.02711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 12/17/2018] [Indexed: 12/29/2022] Open
Abstract
This study aimed to investigate the neurophysiological characteristics of young people with depressive personality disorder using event-related potentials (ERP). To explore the effects of visual-emotional words on ERP, mainly N350, we recruited 19 individuals with a depressive personality disorder and 10 healthy controls. ERP were recorded while the subjects took decisions on target words that were classified into three categories: emotionally positive, negative, and neutral. The ERP signals were then separately averaged according to the subjects' classifications. Data analysis showed that the amplitude of N350 was larger in response to positive and negative words than to neutral words. The latency of N350 was longer in negative words, in contrast with positive and neutral words. However, no difference was found between the two groups. These results suggest that neurophysiological characteristics of young people with a depressive personality disorder in visual-emotional word processing have not yet been influenced by their personality traits. To some extent, N350 reflected semantic processes and was not sensitive to participants' mood state.
Collapse
Affiliation(s)
- Hong-Hua Yu
- Beijing Huilongguan Hospital, Peking University, Beijing, China
| | - Si-meng Gu
- School of Psychology, Jiangsu University Medical Center, Zhenjiang, China
| | - Fang-Min Yao
- Department of Psychology, Medical College of Suzhou University, Suzhou, China
| | - Zhi-Ren Wang
- Beijing Huilongguan Hospital, Peking University, Beijing, China
| | - Wen-Qing Fu
- Department of Psychology, Medical College of Suzhou University, Suzhou, China
| |
Collapse
|
14
|
Pinter A, Szatmari S, Horvath T, Penzlin AI, Barlinn K, Siepmann M, Siepmann T. Cardiac dysautonomia in depression - heart rate variability biofeedback as a potential add-on therapy. Neuropsychiatr Dis Treat 2019; 15:1287-1310. [PMID: 31190834 PMCID: PMC6529729 DOI: 10.2147/ndt.s200360] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/21/2019] [Indexed: 01/05/2023] Open
Abstract
Depressive disorders are among the most important health problems and are predicted to constitute the leading cause of disease burden by the year 2030. Aside significant impact on quality of life, psychosocial well-being and socioeconomic status of affected patients, depression is associated with impaired cardiovascular health and increased mortality. The link between affective and cardiovascular disease has largely been attributed to dysregulation of the autonomic nervous system resulting in a chronic shift toward increased sympathetic and decreased parasympathetic activity and, consecutively, cardiac dysautonomia. Among proposed surrogate parameters to capture and quantitatively analyze this shift, heart rate variability (HRV) and baroreflex sensitivity have emerged as reliable tools. Attenuation of these parameters is frequently seen in patients suffering from depression and is closely linked to cardiovascular morbidity and mortality. Therefore, diagnostic and therapeutic strategies were designed to assess and counteract cardiac dysautonomia. While psychopharmacological treatment can effectively improve affective symptoms of depression, its effect on cardiac dysautonomia is limited. HRV biofeedback is a non-invasive technique which is based on a metronomic breathing technique to increase parasympathetic tone. While some small studies observed beneficial effects of HRV biofeedback on dysautonomia in patients with depressive disorders, larger confirmatory trials are lacking. We reviewed the current literature on cardiac dysautonomia in patients suffering from depression with a focus on the underlying pathophysiology as well as diagnostic workup and treatment.
Collapse
Affiliation(s)
- Alexandra Pinter
- Division of Health Care Sciences, Dresden International University, Dresden, Germany.,Department of Family Medicine, Semmelweis University, Budapest, Hungary
| | - Szabolcs Szatmari
- Division of Health Care Sciences, Dresden International University, Dresden, Germany.,Department of Neurology, Semmelweis University, Budapest, Hungary.,Janos Szentagothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Tamas Horvath
- Department of Hydrodynamic Systems, Budapest University of Technology and Economics, Budapest, Hungary
| | - Ana Isabel Penzlin
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kristian Barlinn
- Department of Neurology, Carl Gustav Carus University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Martin Siepmann
- Department of Psychosomatic Medicine and Psychotherapy, Carl Gustav Carus University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Timo Siepmann
- Division of Health Care Sciences, Dresden International University, Dresden, Germany.,Department of Neurology, Carl Gustav Carus University Hospital, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
15
|
Godlewska BR. Cognitive neuropsychological theory: Reconciliation of psychological and biological approaches for depression. Pharmacol Ther 2018; 197:38-51. [PMID: 30578809 DOI: 10.1016/j.pharmthera.2018.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
New antidepressants and individualized approaches to treatment, matching specific therapies to individual patients, are urgently needed. For this, a better understanding of processes underpinning the development of depressive symptoms and response to medications are required. The cognitive neuropsychological model offers a novel approach uniquely combining biological and psychological approaches to explain how antidepressants exert their effect, why there is a delay in the onset of their clinical effect, and how changes in emotional processing are an essential step for a clinical antidepressant effect to take place. The paper presents the model and its underpinnings in the form of research in both healthy and depressed individuals, as well as the potential for its practical use.
Collapse
Affiliation(s)
- Beata R Godlewska
- Psychopharmacology Research Unit, University Department of Psychiatry (PPRU), University of Oxford, Oxford, UK.
| |
Collapse
|
16
|
Drobisz D, Damborská A. Deep brain stimulation targets for treating depression. Behav Brain Res 2018; 359:266-273. [PMID: 30414974 DOI: 10.1016/j.bbr.2018.11.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/10/2018] [Accepted: 11/05/2018] [Indexed: 12/18/2022]
Abstract
Deep brain stimulation (DBS) is a new therapeutic approach for treatment-resistant depression (TRD). There is a preliminary evidence of the efficacy and safety of DBS for TRD in the subgenual anterior cingulate cortex, the ventral capsule/ventral striatum, the nucleus accumbens, the lateral habenula, the inferior thalamic peduncle, the medial forebrain bundle, and the bed nucleus of the stria terminalis. Optimal stimulation targets, however, have not yet been determined. Here we provide updated knowledge substantiating the suitability of each of the current and potential future DBS targets for treating depression. In this review, we discuss the future outlook for DBS treatment of depression in light of the fact that antidepressant effects of DBS can be achieved using different targets.
Collapse
Affiliation(s)
- Dominik Drobisz
- Department of Psychiatry, University Hospital and Masaryk University, Brno, Czech Republic
| | - Alena Damborská
- Department of Psychiatry, University Hospital and Masaryk University, Brno, Czech Republic; Department of Basic Neurosciences, University of Geneva, Campus Biotech, Geneva, Switzerland; CEITEC - Central European Institute of Technology, Brain and Mind Research Program, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
17
|
Wu HF, Chen YJ, Chu MC, Hsu YT, Lu TY, Chen IT, Chen PS, Lin HC. Deep Brain Stimulation Modified Autism-Like Deficits via the Serotonin System in a Valproic Acid-Induced Rat Model. Int J Mol Sci 2018; 19:ijms19092840. [PMID: 30235871 PMCID: PMC6164279 DOI: 10.3390/ijms19092840] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/13/2018] [Accepted: 09/18/2018] [Indexed: 01/30/2023] Open
Abstract
Deep brain stimulation (DBS) is known to be a promising treatment for resistant depression, which acts via the serotonin (5-hydroxytryptamine, 5-HT) system in the infralimbic prefrontal cortex (ILPFC). Previous study revealed that dysfunction of brain 5-HT homeostasis is related to a valproate (VPA)-induced rat autism spectrum disorder (ASD) model. Whether ILPFC DBS rescues deficits in VPA-induced offspring through the 5-HT system is not known. Using VPA-induced offspring, we therefore explored the effect of DBS in autistic phenotypes and further investigated the underlying mechanism. Using combined behavioral and molecular approaches, we observed that applying DBS and 5-HT1A receptor agonist treatment with 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) reversed sociability deficits, anxiety and hyperactivity in the VPA-exposed offspring. We then administered the selective 5-HT1A receptor antagonist N-[2-[4-(2-Methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide maleate (WAY 100635), following which the effect of DBS in terms of improving autistic behaviors was blocked in the VPA-exposed offspring. Furthermore, we found that both 8-OH-DPAT and DBS treatment rescued autistic behaviors by decreasing the expressions of NR2B subunit of N-methyl-D-aspartate receptors (NMDARs) and the β₃ subunit of γ-aminobutyric acid type A receptors (GABAAR) in the PFC region. These results provided the first evidence of characteristic behavioral changes in VPA-induced offspring caused by DBS via the 5-HT system in the ILPFC.
Collapse
Affiliation(s)
- Han-Fang Wu
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Yi-Ju Chen
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Ming-Chia Chu
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Ya-Ting Hsu
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Ting-Yi Lu
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
| | - I-Tuan Chen
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Po See Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
- Addiction Research Center, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Hui-Ching Lin
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- Brain Research Center, National Yang-Ming University, Taipei 11221, Taiwan.
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
18
|
Dandekar MP, Fenoy AJ, Carvalho AF, Soares JC, Quevedo J. Deep brain stimulation for treatment-resistant depression: an integrative review of preclinical and clinical findings and translational implications. Mol Psychiatry 2018; 23:1094-1112. [PMID: 29483673 DOI: 10.1038/mp.2018.2] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 12/05/2017] [Accepted: 12/15/2017] [Indexed: 02/07/2023]
Abstract
Although deep brain stimulation (DBS) is an established treatment choice for Parkinson's disease (PD), essential tremor and movement disorders, its effectiveness for the management of treatment-resistant depression (TRD) remains unclear. Herein, we conducted an integrative review on major neuroanatomical targets of DBS pursued for the treatment of intractable TRD. The aim of this review article is to provide a critical discussion of possible underlying mechanisms for DBS-generated antidepressant effects identified in preclinical studies and clinical trials, and to determine which brain target(s) elicited the most promising outcomes considering acute and maintenance treatment of TRD. Major electronic databases were searched to identify preclinical and clinical studies that have investigated the effects of DBS on depression-related outcomes. Overall, 92 references met inclusion criteria, and have evaluated six unique DBS targets namely the subcallosal cingulate gyrus (SCG), nucleus accumbens (NAc), ventral capsule/ventral striatum or anterior limb of internal capsule (ALIC), medial forebrain bundle (MFB), lateral habenula (LHb) and inferior thalamic peduncle for the treatment of unrelenting TRD. Electrical stimulation of these pertinent brain regions displayed differential effects on mood transition in patients with TRD. In addition, 47 unique references provided preclinical evidence for putative neurobiological mechanisms underlying antidepressant effects of DBS applied to the ventromedial prefrontal cortex, NAc, MFB, LHb and subthalamic nucleus. Preclinical studies suggest that stimulation parameters and neuroanatomical locations could influence DBS-related antidepressant effects, and also pointed that modulatory effects on monoamine neurotransmitters in target regions or interconnected brain networks following DBS could have a role in the antidepressant effects of DBS. Among several neuromodulatory targets that have been investigated, DBS in the neuroanatomical framework of the SCG, ALIC and MFB yielded more consistent antidepressant response rates in samples with TRD. Nevertheless, more well-designed randomized double-blind, controlled trials are warranted to further assess the efficacy, safety and tolerability of these more promising DBS targets for the management of TRD as therapeutic effects have been inconsistent across some controlled studies.
Collapse
Affiliation(s)
- M P Dandekar
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - A J Fenoy
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - A F Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - J C Soares
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - J Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA.,Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| |
Collapse
|
19
|
Electroencephalographic read-outs of the modulation of cortical network activity by deep brain stimulation. Bioelectron Med 2018; 4:2. [PMID: 32232078 PMCID: PMC7098231 DOI: 10.1186/s42234-018-0003-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 02/15/2018] [Indexed: 12/24/2022] Open
Abstract
Deep brain stimulation (DBS), a reversible and adjustable treatment for neurological and psychiatric refractory disorders, consists in delivering electrical currents to neuronal populations located in subcortical structures. The targets of DBS are spatially restricted, but connect to many parts of the brain, including the cortex, which might explain the observed clinical benefits in terms of symptomatology. The DBS mechanisms of action at a large scale are however poorly understood, which has motivated several groups to recently conduct many research programs to monitor cortical responses to DBS. Here we review the knowledge gathered from the use of electroencephalography (EEG) in patients treated by DBS. We first focus on the methodology to record and process EEG signals concurrently to DBS. In the second part of the review, we address the clinical and scientific benefits brought by EEG/DBS studies so far.
Collapse
|
20
|
Zhou C, Zhang H, Qin Y, Tian T, Xu B, Chen J, Zhou X, Zeng L, Fang L, Qi X, Lian B, Wang H, Hu Z, Xie P. A systematic review and meta-analysis of deep brain stimulation in treatment-resistant depression. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:224-232. [PMID: 29146474 DOI: 10.1016/j.pnpbp.2017.11.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 11/09/2017] [Accepted: 11/09/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) has been applied in treatment-resistant depression (TRD) as a putative intervention targeting different brain regions. However, the antidepressant effects of DBS for TRD in recent clinical trials remain controversial. METHODS We searched Scopus, EMBASE, the Cochrane Library, PubMed, and PsycINFO for all published studies investigating the efficacy of DBS in TRD up to Feb 2017. Hamilton depression rating scale (HDRS) scores and Montgomery-Asberg depression rating scale (MARDS) scores were compared between baseline levels and those after DBS using the standardized mean difference (SMD) with 95% confidence intervals (CIs). The pooled response and remission rates were described using Risk Difference with 95% CIs. RESULTS We identified 14 studies of DBS in TRD targeting the subcallosal cingulate gyrus (SCG), ventral capsule/ventral striatum (VC/VS), medial forebrain bundle (MFB), and nucleus accumbens (NAcc). The overall effect sizes showed a significant reduction in HDRS after DBS stimulation in these four regions, with a standardized mean difference of -3.02 (95% CI=-4.28 to -1.77, p<0.00001) for SCG, -1.64 (95% CI=-2.80 to -0.49, p=0.005) for VC/VS, -2.43 (95% CI=-3.66 to -1.19, p=0.0001) for MFB, and -1.30 (95% CI=-2.16 to -0.44, p=0.003) for NAcc. DBS was effective, with high response rates at 1, 3, 6, and 12months. Some adverse events (AEs), especially some specific AEs related to targeting regions, occurred during the DBS treatment. CONCLUSIONS DBS significantly alleviates depressive symptoms in TRD patients by targeting the SCG, VC/VS, MFB, and NAcc. Several adverse events might occur during DBS therapy, although it is uncertain whether some AEs can be linked to DBS treatment. Further confirmatory trials are required involving larger sample sizes.
Collapse
Affiliation(s)
- Chanjuan Zhou
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, China
| | - Hanping Zhang
- Institute of Neuroscience, Chongqing Medical University, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, China; Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yinhua Qin
- Institute of Neuroscience, Chongqing Medical University, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, China
| | - Tian Tian
- Institute of Neuroscience, Chongqing Medical University, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, China; Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bing Xu
- Institute of Neuroscience, Chongqing Medical University, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, China; Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianjun Chen
- Institute of Neuroscience, Chongqing Medical University, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, China
| | - Xinyu Zhou
- Institute of Neuroscience, Chongqing Medical University, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, China; Department of Neurology and Psychiatry, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Zeng
- Institute of Neuroscience, Chongqing Medical University, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, China; Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liang Fang
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Xunzhong Qi
- Institute of Neuroscience, Chongqing Medical University, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, China; Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Lian
- Institute of Neuroscience, Chongqing Medical University, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, China
| | - Haiyang Wang
- Institute of Neuroscience, Chongqing Medical University, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, China
| | - Zicheng Hu
- Institute of Neuroscience, Chongqing Medical University, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, China
| | - Peng Xie
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, China; Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, China.
| |
Collapse
|
21
|
Tracy DK, David AS. Clinical neuromodulation in psychiatry: the state of the art or an art in a state? BJPSYCH ADVANCES 2018. [DOI: 10.1192/apt.bp.115.014563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SummaryClinical neuromodulation began in psychiatry with electroconvulsive therapy (ECT), but in recent years several new techniques have been developed: repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation (tDCS), vagal nerve stimulation (VNS), trigeminal nerve stimulation (TNS) and deep brain stimulation (DBS). Each works in a different way, although the principle remains to effect therapeutic change through physically modifying brain activity. Their use in different clinical groups varies between techniques, as does their underlying evidence base. Most support currently exists for rTMS, with a more modest, but growing database for tDCS. Understandably, but problematically, most research in the other techniques has, to date, been in unmasked open trials. This article describes the mechanism of action and current evidence base for each technique, and notes the challenges facing future work in this potentially important field and new clinical avenue.
Collapse
|
22
|
Review and Classification of Emotion Recognition Based on EEG Brain-Computer Interface System Research: A Systematic Review. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7121239] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
23
|
Anguera JA, Gunning FM, Areán PA. Improving late life depression and cognitive control through the use of therapeutic video game technology: A proof-of-concept randomized trial. Depress Anxiety 2017; 34:508-517. [PMID: 28052513 PMCID: PMC6093618 DOI: 10.1002/da.22588] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 10/14/2016] [Accepted: 11/14/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Existing treatments for depression are known to have only modest effects, are insufficiently targeted, and are inconsistently utilized, particularly in older adults. Indeed, older adults with impaired cognitive control networks tend to demonstrate poor response to a majority of existing depression interventions. Cognitive control interventions delivered using entertainment software have the potential to not only target the underlying cerebral dysfunction associated with depression, but to do so in a manner that is engaging and engenders adherence to treatment protocol. METHODS In this proof-of-concept trial (Clinicaltrials.gov #: NCT02229188), individuals with late life depression (LLD) (22; 60+ years old) were randomized to either problem solving therapy (PST, n = 10) or a neurobiologically inspired digital platform designed to enhance cognitive control faculties (Project: EVO™, n = 12). Given the overlapping functional neuroanatomy of mood disturbances and executive dysfunction, we explored the impact of an intervention targeting cognitive control abilities, functional disability, and mood in older adults suffering from LLD, and how those outcomes compare to a therapeutic gold standard. RESULTS EVO participants demonstrated similar improvements in mood and self-reported function after 4 weeks of treatment to PST participants. The EVO participants also showed generalization to untrained measures of working memory and attention, as well as negativity bias, a finding not evident in the PST condition. Individuals assigned to EVO demonstrated 100% adherence. CONCLUSIONS This study provides preliminary findings that this therapeutic video game targeting cognitive control deficits may be an efficacious LLD intervention. Future research is needed to confirm these findings.
Collapse
Affiliation(s)
- Joaquin A. Anguera
- Department of Neurology, University of California, San Francisco, CA, USA,Department of Psychiatry, University of California, San Francisco, CA, USA
| | - Faith M. Gunning
- Department of Psychiatry, Weil Cornell Medicine, New York, NY, USA
| | - Patricia A. Areán
- Department of Psychiatry and Behavioral Sciences, University of Washington
| |
Collapse
|
24
|
Funayama M, Kato M, Mimura M. Disappearance of treatment-resistant depression after damage to the orbitofrontal cortex and subgenual cingulate area: a case study. BMC Neurol 2016; 16:198. [PMID: 27756252 PMCID: PMC5069923 DOI: 10.1186/s12883-016-0717-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 10/12/2016] [Indexed: 11/10/2022] Open
Abstract
Background Although post-stroke depression is a well-characterized disorder, there is less understanding of how pre-existence of depression is affected by a stroke. Case presentation We describe a patient with treatment-resistant major depression, which had been ongoing for 14 years but disappeared shortly after onset of a subarachnoid hemorrhage. Her cognitive function and functional status were mostly unaffected by the stroke. However, she no longer excessively regretted past events. Lesions were found in the orbitofrontal cortex, which is involved in feeling regret, and in the adjacent subgenual cingulate area, which is metabolically hyperactive in treatment-resistant depression and is the target for deep-brain stimulation for relief of treatment-resistant depression. The lesions from the stroke may have caused the disappearance of the patient’s treatment-resistant depression by alleviating excessive regret and decreasing the elevated activity in these areas. Conclusions This patient’s clinical course may shed light on the neuropsychological and neurophysiological mechanisms of major depression of the melancholic subtype.
Collapse
Affiliation(s)
- Michitaka Funayama
- Department of Neuropsychiatry, Ashikaga Red Cross Hospital, Ashikaga-City, 326-0843, Japan.
| | - Motoichiro Kato
- Department of Neuropsychiatry, Keio University School of Medicine, 160-8582, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, 160-8582, Tokyo, Japan
| |
Collapse
|
25
|
Kibleur A, Polosan M, Favre P, Rudrauf D, Bougerol T, Chabardès S, David O. Stimulation of subgenual cingulate area decreases limbic top-down effect on ventral visual stream: A DBS-EEG pilot study. Neuroimage 2016; 146:544-553. [PMID: 27743900 DOI: 10.1016/j.neuroimage.2016.10.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 10/07/2016] [Accepted: 10/11/2016] [Indexed: 12/22/2022] Open
Abstract
Deep brain stimulation (DBS) of the subgenual cingulate gyrus (area CG25) is beneficial in treatment resistant depression. Though the mechanisms of action of Cg25 DBS remain largely unknown, it is commonly believed that Cg25 DBS modulates limbic activity of large networks to achieve thymic regulation of patients. To investigate how emotional attention is influenced by Cg25 DBS, we assessed behavioral and electroencephalographic (EEG) responses to an emotional Stroop task in 5 patients during ON and OFF stimulation conditions. Using EEG source localization, we found that the main effect of DBS was a reduction of neuronal responses in limbic regions (temporal pole, medial prefrontal and posterior cingulate cortices) and in ventral visual areas involved in face processing. In the dynamic causal modeling (DCM) approach, the changes of the evoked response amplitudes are assumed to be due to changes of long range connectivity induced by Cg25 DBS. Here, using a simplified neural mass model that did not take explicitly into account the cytoarchitecture of the considered brain regions, we showed that the remote action of Cg25 DBS could be explained by a reduced top-down effective connectivity of the amygdalo-temporo-polar complex. Overall, our results thus indicate that Cg25 DBS during the emotional Stroop task causes a decrease of top-down limbic influence on the ventral visual stream itself, rather than a modulation of prefrontal cognitive processes only. Tuning down limbic excitability in relation to sensory processing might be one of the biological mechanisms through which Cg25 DBS produces positive clinical outcome in the treatment of resistant depression.
Collapse
Affiliation(s)
- Astrid Kibleur
- Univ. Grenoble Alpes, F-38000 Grenoble, France; Inserm, U1216, Grenoble Institut des Neurosciences, F-38000 Grenoble, France; Clinique Universitaire de Neurochirurgie, Pôle Tête et Cou, Centre Hospitalier Universitaire, Grenoble, France
| | - Mircea Polosan
- Univ. Grenoble Alpes, F-38000 Grenoble, France; Inserm, U1216, Grenoble Institut des Neurosciences, F-38000 Grenoble, France; Clinique Universitaire de Psychiatrie, Pôle Psychiatrie Neurologie, Centre Hospitalier Universitaire, Grenoble, France; Clinique Universitaire de Neurochirurgie, Pôle Tête et Cou, Centre Hospitalier Universitaire, Grenoble, France
| | - Pauline Favre
- Univ. Grenoble Alpes, F-38000 Grenoble, France; Laboratoire Psychologie et NeuroCognition, CNRS UMR 5105, F-38040, Grenoble, France; Clinique Universitaire de Neurochirurgie, Pôle Tête et Cou, Centre Hospitalier Universitaire, Grenoble, France
| | - David Rudrauf
- Univ. Grenoble Alpes, F-38000 Grenoble, France; Inserm, U1216, Grenoble Institut des Neurosciences, F-38000 Grenoble, France; Clinique Universitaire de Neurochirurgie, Pôle Tête et Cou, Centre Hospitalier Universitaire, Grenoble, France
| | - Thierry Bougerol
- Univ. Grenoble Alpes, F-38000 Grenoble, France; Inserm, U1216, Grenoble Institut des Neurosciences, F-38000 Grenoble, France; Clinique Universitaire de Psychiatrie, Pôle Psychiatrie Neurologie, Centre Hospitalier Universitaire, Grenoble, France; Clinique Universitaire de Neurochirurgie, Pôle Tête et Cou, Centre Hospitalier Universitaire, Grenoble, France
| | - Stéphan Chabardès
- Univ. Grenoble Alpes, F-38000 Grenoble, France; Inserm, U1216, Grenoble Institut des Neurosciences, F-38000 Grenoble, France; Laboratoire Psychologie et NeuroCognition, CNRS UMR 5105, F-38040, Grenoble, France; Clinique Universitaire de Neurochirurgie, Pôle Tête et Cou, Centre Hospitalier Universitaire, Grenoble, France
| | - Olivier David
- Univ. Grenoble Alpes, F-38000 Grenoble, France; Inserm, U1216, Grenoble Institut des Neurosciences, F-38000 Grenoble, France; Clinique Universitaire de Neurochirurgie, Pôle Tête et Cou, Centre Hospitalier Universitaire, Grenoble, France.
| |
Collapse
|
26
|
Severe, Symptomatic, Self-limited Unilateral DBS Lead Edema Following Bilateral Subthalamic Nucleus Implantation. Neurologist 2016; 21:58-60. [DOI: 10.1097/nrl.0000000000000082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
|
28
|
Williams LM. Precision psychiatry: a neural circuit taxonomy for depression and anxiety. Lancet Psychiatry 2016; 3:472-80. [PMID: 27150382 PMCID: PMC4922884 DOI: 10.1016/s2215-0366(15)00579-9] [Citation(s) in RCA: 418] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/13/2015] [Accepted: 12/16/2015] [Indexed: 12/24/2022]
Abstract
Although there have been tremendous advances in the understanding of human dysfunctions in the brain circuitry for self-reflection, emotion, and cognitive control, a brain-based taxonomy for mental disease is still lacking. As a result, these advances have not been translated into actionable clinical tools, and the language of brain circuits has not been incorporated into training programmes. To address this gap, I present this synthesis of published work, with a focus on functional imaging of circuit dysfunctions across the spectrum of mood and anxiety disorders. This synthesis provides the foundation for a taxonomy of putative types of dysfunction, which cuts across traditional diagnostic boundaries for depression and anxiety and includes instead distinct types of neural circuit dysfunction that together reflect the heterogeneity of depression and anxiety. This taxonomy is suited to specifying symptoms in terms of underlying neural dysfunction at the individual level and is intended as the foundation for building mechanistic research and ultimately guiding clinical practice.
Collapse
Affiliation(s)
- Leanne M Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, CA, USA.
| |
Collapse
|
29
|
Waters AC, Tucker DM. Principal components of electrocortical activity during self-evaluation indicate depressive symptom severity. Soc Cogn Affect Neurosci 2016; 11:1335-43. [PMID: 27053766 DOI: 10.1093/scan/nsw046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/30/2016] [Indexed: 12/11/2022] Open
Abstract
Negative self-evaluation is an important psychological characteristic of depression. In order to study the underlying neural mechanisms, we examined event-related potentials (ERPs) during a self-evaluation task in a community sample (N = 150) of adults reporting a range of depressive symptoms. Principal components analysis (PCA) was used to separate processes that overlap in the average ERP, and neural source analysis was applied to localize the ERP components, with a particular focus on the frontal networks that are thought to be critical to affective self-regulation in depression. Consistent with previous research, individuals reporting greater depression showed enhanced negativity over medial frontal regions as well as attenuation of the late positive potential over parietal regions. Examining loadings of frontal sources on the ERP components showed that activity in the right inferior frontal region may be particularly important for depressed individuals: activity in this region declined as symptoms became more severe. Characterizing brain mechanisms of self-evaluation on the timescale of cognitive events may provide insight into the neural mechanisms of self-regulation that are important in cognitive therapy, and that could be made more amenable to change through increasing neuroplasticity with targeted non-invasive neuromodulation.
Collapse
Affiliation(s)
- Allison C Waters
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA 30322, USA Department of Psychology, University of Oregon, Eugene, OR, 97403, USA
| | - Don M Tucker
- Department of Psychology, University of Oregon, Eugene, OR, 97403, USA Electrical Geodesics, Inc., Eugene, OR 97401, USA
| |
Collapse
|
30
|
Ineichen C, Christen M. Analyzing 7000 texts on deep brain stimulation: what do they tell us? Front Integr Neurosci 2015; 9:52. [PMID: 26578908 PMCID: PMC4620160 DOI: 10.3389/fnint.2015.00052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/27/2015] [Indexed: 01/15/2023] Open
Abstract
The enormous increase in numbers of scientific publications in the last decades requires quantitative methods for obtaining a better understanding of topics and developments in various fields. In this exploratory study, we investigate the emergence, trends, and connections of topics within the whole text corpus of the deep brain stimulation (DBS) literature based on more than 7000 papers (title and abstracts) published between 1991 to 2014 using a network approach. Taking the co-occurrence of basic terms that represent important topics within DBS as starting point, we outline the statistics of interconnections between DBS indications, anatomical targets, positive, and negative effects, as well as methodological, technological, and economic issues. This quantitative approach confirms known trends within the literature (e.g., regarding the emergence of psychiatric indications). The data also reflect an increased discussion about complex issues such as personality connected tightly to the ethical context, as well as an apparent focus on depression as important DBS indication, where the co-occurrence of terms related to negative effects is low both for the indication as well as the related anatomical targets. We also discuss consequences of the analysis from a bioethical perspective, i.e., how such a quantitative analysis could uncover hidden subject matters that have ethical relevance. For example, we find that hardware-related issues in DBS are far more robustly connected to an ethical context compared to impulsivity, concrete side-effects or death/suicide. Our contribution also outlines the methodology of quantitative text analysis that combines statistical approaches with expert knowledge. It thus serves as an example how innovative quantitative tools can be made useful for gaining a better understanding in the field of DBS.
Collapse
Affiliation(s)
- Christian Ineichen
- Institute of Biomedical Ethics and History of Medicine, University of Zurich Zurich, Switzerland ; Preclinical Laboratory for Translational Research into Affective Disorders, Clinic for Affective Disorders and General Psychiatry, Psychiatric University Hospital Zurich Zurich, Switzerland
| | - Markus Christen
- Institute of Biomedical Ethics and History of Medicine, University of Zurich Zurich, Switzerland ; University Research Priority Program Ethics, University of Zurich Zurich, Switzerland
| |
Collapse
|
31
|
Warren MB, Pringle A, Harmer CJ. A neurocognitive model for understanding treatment action in depression. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140213. [PMID: 26240428 PMCID: PMC4528825 DOI: 10.1098/rstb.2014.0213] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2015] [Indexed: 12/27/2022] Open
Abstract
The way in which emotion is represented and processed in the human brain is an expanding area of research and has key implications for how we understand and potentially treat affective disorders such as depression. Characterizing the effects of pharmacological manipulations of key neurotransmitter systems can also help reveal the neurochemical underpinnings of emotional processing and how common antidepressant drugs may work in the treatment of depression and anxiety. This approach has revealed that depression is associated with both neural and behavioural biases towards negative over positive stimuli. Evidence from pharmacological challenge studies suggests that antidepressant treatment acts to normalize these biases early on in treatment, resulting in patients experiencing the world in a more positive way, improving their mood over time. This model is supported by evidence from both pharmacological and non-pharmacological interventions. The unique perspective on antidepressant treatment offered by this approach provides some insights into individual response to treatment, as well as novel approaches to drug development.
Collapse
Affiliation(s)
- Matthew B Warren
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK
| | - Abbie Pringle
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK
| | - Catherine J Harmer
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK
| |
Collapse
|
32
|
Widge AS, Dougherty DD. Deep Brain Stimulation for Treatment-Refractory Mood and Obsessive-Compulsive Disorders. Curr Behav Neurosci Rep 2015. [DOI: 10.1007/s40473-015-0049-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
33
|
Challis C, Berton O. Top-Down Control of Serotonin Systems by the Prefrontal Cortex: A Path toward Restored Socioemotional Function in Depression. ACS Chem Neurosci 2015; 6:1040-54. [PMID: 25706226 DOI: 10.1021/acschemneuro.5b00007] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Social withdrawal, increased threat perception, and exaggerated reassurance seeking behaviors are prominent interpersonal symptoms in major depressive disorder (MDD). Altered serotonin (5-HT) systems and corticolimbic dysconnectivity have long been suspected to contribute to these symptomatic facets; however, the underlying circuits and intrinsic cellular mechanisms that control 5-HT output during socioemotional interactions remain poorly understood. We review literature that implicates a direct pathway between the ventromedial prefrontal cortex (vmPFC) and dorsal raphe nucleus (DRN) in the adaptive and pathological control of social approach-avoidance behaviors. Imaging and neuromodulation during approach-avoidance tasks in humans point to the cortical control of brainstem circuits as an essential regulator of socioemotional decisions and actions. Parallel rodent studies using viral-based connectomics and optogenetics are beginning to provide a cellular blueprint of the underlying circuitry. In these studies, manipulations of vmPFC synaptic inputs to the DRN have revealed bidirectional influences on socioaffective behaviors via direct monosynaptic excitation and indirect disynaptic inhibition of 5-HT neurons. Additionally, adverse social experiences that result in permanent avoidance biases, such as social defeat, drive long-lasting plasticity in this microcircuit, potentiating the indirect inhibition of 5-HT output. Conversely, neuromodulation of the vmPFC via deep brain stimulation (DBS) attenuates avoidance biases by restoring the direct excitatory drive of 5-HT neurons and strengthening a key subset of forebrain 5-HT projections. Better understanding the cellular organization of the vmPFC-DRN pathway and identifying molecular determinants of its neuroplasticity can open fundamentally novel avenues for the treatment of affective disorders.
Collapse
Affiliation(s)
- Collin Challis
- Department of Psychiatry, ‡Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Olivier Berton
- Department of Psychiatry, ‡Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
34
|
Smart OL, Tiruvadi VR, Mayberg HS. Multimodal approaches to define network oscillations in depression. Biol Psychiatry 2015; 77:1061-70. [PMID: 25681871 PMCID: PMC5826645 DOI: 10.1016/j.biopsych.2015.01.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/18/2014] [Accepted: 01/12/2015] [Indexed: 01/26/2023]
Abstract
The renaissance in the use of encephalography-based research methods to probe the pathophysiology of neuropsychiatric disorders is well afoot and continues to advance. Building on the platform of neuroimaging evidence on brain circuit models, magnetoencephalography, scalp electroencephalography, and even invasive electroencephalography are now being used to characterize brain network dysfunctions that underlie major depressive disorder using brain oscillation measurements and associated treatment responses. Such multiple encephalography modalities provide avenues to study pathologic network dynamics with high temporal resolution and over long time courses, opportunities to complement neuroimaging methods and findings, and new approaches to identify quantitative biomarkers that indicate critical targets for brain therapy. Such goals have been facilitated by the ongoing testing of novel invasive neuromodulation therapies, notably, deep brain stimulation, where clinically relevant treatment effects can be monitored at multiple brain sites in a time-locked causal manner. We review key brain rhythms identified in major depressive disorder as foundation for development of putative biomarkers for objectively evaluating neuromodulation success and for guiding deep brain stimulation or other target-based neuromodulation strategies for treatment-resistant depression patients.
Collapse
Affiliation(s)
- Otis Lkuwamy Smart
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia
| | - Vineet Ravi Tiruvadi
- Department of Biomedical Engineering, Georgia Institute of Technology, Emory University School of Medicine, Atlanta, Georgia
| | - Helen S Mayberg
- Departments of Psychiatry, Neurology, and Radiology, Emory University School of Medicine, Atlanta, Georgia..
| |
Collapse
|