1
|
Zhu L, Wang Y, Wu X, Wu G, Zhang G, Liu C, Zhang S. Protein design accelerates the development and application of optogenetic tools. Comput Struct Biotechnol J 2025; 27:717-732. [PMID: 40092664 PMCID: PMC11908464 DOI: 10.1016/j.csbj.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Optogenetics has substantially enhanced our understanding of biological processes by enabling high-precision tracking and manipulation of individual cells. It relies on photosensitive proteins to monitor and control cellular activities, thereby paving the way for significant advancements in complex system research. Photosensitive proteins play a vital role in the development of optogenetics, facilitating the establishment of cutting-edge methods. Recent breakthroughs in protein design have opened up opportunities to develop protein-based tools that can precisely manipulate and monitor cellular activities. These advancements will significantly accelerate the development and application of optogenetic tools. This article emphasizes the pivotal role of protein design in the development of optogenetic tools, offering insights into potential future directions. We begin by providing an introduction to the historical development and fundamental principles of optogenetics, followed by an exploration of the operational mechanisms of key photosensitive domains, which includes clarifying the conformational changes they undergo in response to light, such as allosteric modulation and dimerization processes. Building on this foundation, we reveal the development of protein design tools that will enable the creation of even more sophisticated optogenetic techniques.
Collapse
Affiliation(s)
| | | | - Xiaomin Wu
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Guohua Wu
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Guohao Zhang
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Chuanyang Liu
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Shaowei Zhang
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, Hunan 410073, China
| |
Collapse
|
2
|
Michetti C, Benfenati F. Homeostatic regulation of brain activity: from endogenous mechanisms to homeostatic nanomachines. Am J Physiol Cell Physiol 2024; 327:C1384-C1399. [PMID: 39401424 DOI: 10.1152/ajpcell.00470.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 11/12/2024]
Abstract
After the initial concepts of the constancy of the internal milieu or homeostasis, put forward by Claude Bernard and Walter Cannon, homeostasis emerged as a mechanism to control oscillations of biologically meaningful variables within narrow physiological ranges. This is a primary need in the central nervous system that is continuously subjected to a multitude of stimuli from the internal and external environments that affect its function and structure, allowing to adapt the individual to the ever-changing daily conditions. Preserving physiological levels of activity despite disturbances that could either depress neural computation or excessively stimulate neural activity is fundamental, and failure of these homeostatic mechanisms can lead to brain diseases. In this review, we cover the role and main mechanisms of homeostatic plasticity involving the regulation of excitability and synaptic strength from the single neuron to the network level. We analyze the relationships between homeostatic and Hebbian plasticity and the conditions under which the preservation of the excitatory/inhibitory balance fails, triggering epileptogenesis and eventually epilepsy. Several therapeutic strategies to cure epilepsy have been designed to strengthen homeostasis when endogenous homeostatic plasticity mechanisms have become insufficient or ineffective to contrast hyperactivity. We describe "on demand" gene therapy strategies, including optogenetics, chemogenetics, and chemo-optogenetics, and particularly focus on new closed loop sensor-actuator strategies mimicking homeostatic plasticity that can be endogenously expressed to strengthen the homeostatic defenses against brain diseases.
Collapse
Affiliation(s)
- Caterina Michetti
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
3
|
Cai AJ, Gao K, Zhang F, Jiang YW. Recent advances and current status of gene therapy for epilepsy. World J Pediatr 2024; 20:1115-1137. [PMID: 39395088 DOI: 10.1007/s12519-024-00843-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/05/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND Epilepsy is a common neurological disorder with complex pathogenic mechanisms, and refractory epilepsy often lacks effective treatments. Gene therapy is a promising therapeutic option, with various preclinical experiments achieving positive results, some of which have progressed to clinical studies. DATA SOURCES This narrative review was conducted by searching for papers published in PubMed/MEDLINE with the following single and/or combination keywords: epilepsy, children, neurodevelopmental disorders, genetics, gene therapy, vectors, transgenes, receptors, ion channels, micro RNAs (miRNAs), clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas)9 (CRISPR/Cas9), expression regulation, optogenetics, chemical genetics, mitochondrial epilepsy, challenges, ethics, and disease models. RESULTS Currently, gene therapy research in epilepsy primarily focuses on symptoms attenuation mediated by viral vectors such as adeno-associated virus and other types. Advances in gene therapy technologies, such as CRISPR/Cas9, have provided a new direction for epilepsy treatment. However, the clinical application still faces several challenges, including issues related to vectors, models, expression controllability, and ethical considerations. CONCLUSIONS Here, we summarize the relevant research and clinical advances in gene therapy for epilepsy and outline the challenges facing its clinical application. In addition to the shortcomings inherent in gene therapy components, the reconfiguration of excitatory and inhibitory properties in epilepsy treatment is a delicate process. On-demand, cell-autonomous treatments and multidisciplinary collaborations may be crucial in addressing these issues. Understanding gene therapy for epilepsy will help clinicians gain a clearer perception of the research progress and challenges, guiding the design of future clinical protocols and research decisions.
Collapse
Affiliation(s)
- Ao-Jie Cai
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Henan Province, Zhengzhou, 450052, China
| | - Kai Gao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| | - Fan Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| | - Yu-Wu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China.
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China.
- Children Epilepsy Center, Peking University First Hospital, Beijing, China.
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China.
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|
4
|
Merolla A, Michetti C, Moschetta M, Vacca F, Ciano L, Emionite L, Astigiano S, Romei A, Horenkamp S, Berglund K, Gross RE, Cesca F, Colombo E, Benfenati F. A pH-sensitive closed-loop nanomachine to control hyperexcitability at the single neuron level. Nat Commun 2024; 15:5609. [PMID: 38965228 PMCID: PMC11224301 DOI: 10.1038/s41467-024-49941-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 06/20/2024] [Indexed: 07/06/2024] Open
Abstract
Epilepsy affects 1% of the general population and 30% of patients are resistant to antiepileptic drugs. Although optogenetics is an efficient antiepileptic strategy, the difficulty of illuminating deep brain areas poses translational challenges. Thus, the search of alternative light sources is strongly needed. Here, we develop pH-sensitive inhibitory luminopsin (pHIL), a closed-loop chemo-optogenetic nanomachine composed of a luciferase-based light generator, a fluorescent sensor of intracellular pH (E2GFP), and an optogenetic actuator (halorhodopsin) for silencing neuronal activity. Stimulated by coelenterazine, pHIL experiences bioluminescence resonance energy transfer between luciferase and E2GFP which, under conditions of acidic pH, activates halorhodopsin. In primary neurons, pHIL senses the intracellular pH drop associated with hyperactivity and optogenetically aborts paroxysmal activity elicited by the administration of convulsants. The expression of pHIL in hippocampal pyramidal neurons is effective in decreasing duration and increasing latency of pilocarpine-induced tonic-clonic seizures upon in vivo coelenterazine administration, without affecting higher brain functions. The same treatment is effective in markedly decreasing seizure manifestations in a murine model of genetic epilepsy. The results indicate that pHIL represents a potentially promising closed-loop chemo-optogenetic strategy to treat drug-refractory epilepsy.
Collapse
Affiliation(s)
- Assunta Merolla
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Caterina Michetti
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Matteo Moschetta
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesca Vacca
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - Lorenzo Ciano
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | | | | | - Alessandra Romei
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - Simone Horenkamp
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - Ken Berglund
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.
- Department of Life Sciences, University of Trieste, Trieste, Italy.
| | - Elisabetta Colombo
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.
- IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
5
|
Kleis P, Paschen E, Häussler U, Haas CA. Low frequency stimulation for seizure suppression: Identification of optimal targets in the entorhinal-hippocampal circuit. Brain Stimul 2024; 17:395-404. [PMID: 38531502 DOI: 10.1016/j.brs.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Mesial temporal lobe epilepsy (MTLE) with hippocampal sclerosis (HS) is a common form of drug-resistant focal epilepsy in adults. Treatment for pharmacoresistant patients remains a challenge, with deep brain stimulation (DBS) showing promise for alleviating intractable seizures. This study explores the efficacy of low frequency stimulation (LFS) on specific neuronal targets within the entorhinal-hippocampal circuit in a mouse model of MTLE. OBJECTIVE Our previous research demonstrated that LFS of the medial perforant path (MPP) fibers in the sclerotic hippocampus reduced seizures in epileptic mice. Here, we aimed to identify the critical neuronal population responsible for this antiepileptic effect by optogenetically stimulating presynaptic and postsynaptic compartments of the MPP-dentate granule cell (DGC) synapse at 1 Hz. We hypothesize that specific targets for LFS can differentially influence seizure activity depending on the cellular identity and location within or outside the seizure focus. METHODS We utilized the intrahippocampal kainate (ihKA) mouse model of MTLE and targeted specific neural populations using optogenetic stimulation. We recorded intracranial neuronal activity from freely moving chronically epileptic mice with and without optogenetic LFS up to 3 h. RESULTS We found that LFS of MPP fibers in the sclerotic hippocampus effectively suppressed epileptiform activity while stimulating principal cells in the MEC had no impact. Targeting DGCs in the sclerotic septal or non-sclerotic temporal hippocampus with LFS did not reduce seizure numbers but shortened the epileptiform bursts. CONCLUSION Presynaptic stimulation of the MPP-DGC synapse within the sclerotic hippocampus is critical for seizure suppression via LFS.
Collapse
Affiliation(s)
- Piret Kleis
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Enya Paschen
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ute Häussler
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany
| | - Carola A Haas
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
6
|
Li J, Wu C, Zeng M, Zhang Y, Wei D, Sun J, Fan H. Functional material-mediated wireless physical stimulation for neuro-modulation and regeneration. J Mater Chem B 2023; 11:9056-9083. [PMID: 37649427 DOI: 10.1039/d3tb01354e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Nerve injuries and neurological diseases remain intractable clinical challenges. Despite the advantages of stem cell therapy in treating neurological disorders, uncontrollable cell fates and loss of cell function in vivo are still challenging. Recently, increasing attention has been given to the roles of external physical signals, such as electricity and ultrasound, in regulating stem cell fate as well as activating or inhibiting neuronal activity, which provides new insights for the treatment of neurological disorders. However, direct physical stimulations in vivo are short in accuracy and safety. Functional materials that can absorb energy from a specific physical field exerted in a wireless way and then release another localized physical signal hold great advantages in mediating noninvasive or minimally invasive accurate indirect physical stimulations to promote the therapeutic effect on neurological disorders. In this review, the mechanism by which various physical signals regulate stem cell fate and neuronal activity is summarized. Based on these concepts, the approaches of using functional materials to mediate indirect wireless physical stimulation for neuro-modulation and regeneration are systematically reviewed. We expect that this review will contribute to developing wireless platforms for neural stimulation as an assistance for the treatment of neurological diseases and injuries.
Collapse
Affiliation(s)
- Jialu Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Chengheng Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
- Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610065, Sichuan, China
| | - Mingze Zeng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Yusheng Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Dan Wei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Jing Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| |
Collapse
|
7
|
Zheng B, Liu DD, Theyel BB, Abdulrazeq H, Kimata AR, Lauro PM, Asaad WF. Thalamic neuromodulation in epilepsy: A primer for emerging circuit-based therapies. Expert Rev Neurother 2023; 23:123-140. [PMID: 36731858 DOI: 10.1080/14737175.2023.2176752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Epilepsy is a common, often debilitating disease of hyperexcitable neural networks. While medically intractable cases may benefit from surgery, there may be no single, well-localized focus for resection or ablation. In such cases, approaching the disease from a network-based perspective may be beneficial. AREAS COVERED Herein, the authors provide a narrative review of normal thalamic anatomy and physiology and propose general strategies for preventing and/or aborting seizures by modulating this structure. Additionally, they make specific recommendations for targeting the thalamus within different contexts, motivated by a more detailed discussion of its distinct nuclei and their respective connectivity. By describing important principles governing thalamic function and its involvement in seizure networks, the authors aim to provide a primer for those now entering this fast-growing field of thalamic neuromodulation for epilepsy. EXPERT OPINION The thalamus is critically involved with the function of many cortical and subcortical areas, suggesting it may serve as a compelling node for preventing or aborting seizures, and so it has increasingly been targeted for the surgical treatment of epilepsy. As various thalamic neuromodulation strategies for seizure control are developed, there is a need to ground such interventions in a mechanistic, circuit-based framework.
Collapse
Affiliation(s)
- Bryan Zheng
- The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
| | - David D Liu
- The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Brian B Theyel
- Department of Psychiatry, Rhode Island Hospital, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA
| | - Hael Abdulrazeq
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
| | - Anna R Kimata
- The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
| | - Peter M Lauro
- The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA
| | - Wael F Asaad
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA.,The Carney Institute for Brain Science, Brown University, Providence, RI, USA.,The Norman Prince Neurosciences Institute, Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
8
|
Abstract
Verifying causal effects of neural circuits is essential for proving a direct circuit-behavior relationship. However, techniques for tagging only active neurons with high spatiotemporal precision remain at the beginning stages. Here we develop the soma-targeted Cal-Light (ST-Cal-Light) which selectively converts somatic calcium rise triggered by action potentials into gene expression. Such modification simultaneously increases the signal-to-noise ratio of reporter gene expression and reduces the light requirement for successful labeling. Because of the enhanced efficacy, the ST-Cal-Light enables the tagging of functionally engaged neurons in various forms of behaviors, including context-dependent fear conditioning, lever-pressing choice behavior, and social interaction behaviors. We also target kainic acid-sensitive neuronal populations in the hippocampus which subsequently suppress seizure symptoms, suggesting ST-Cal-Light's applicability in controlling disease-related neurons. Furthermore, the generation of a conditional ST-Cal-Light knock-in mouse provides an opportunity to tag active neurons in a region- or cell-type specific manner via crossing with other Cre-driver lines. Thus, the versatile ST-Cal-Light system links somatic action potentials to behaviors with high temporal precision, and ultimately allows functional circuit dissection at a single cell resolution.
Collapse
|
9
|
Acharya AR, Larsen LE, Delbeke J, Wadman WJ, Vonck K, Meurs A, Boon P, Raedt R. In vivo inhibition of epileptiform afterdischarges in rat hippocampus by light-activated chloride channel, stGtACR2. CNS Neurosci Ther 2022; 29:907-916. [PMID: 36482869 PMCID: PMC9928558 DOI: 10.1111/cns.14029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 12/13/2022] Open
Abstract
AIMS The blue light-sensitive chloride-conducting opsin, stGtACR2, provides potent optogenetic silencing of neurons. The present study investigated whether activation of stGtACR2 in granule cells of the dentate gyrus (DG) inhibits epileptic afterdischarges in a rat model. METHODS Rats were bilaterally injected with 0.9 μl of AAV2/7-CaMKIIα-stGtACR2-fusionred in the DG. Three weeks later, afterdischarges were recorded from the DG by placing an optrode at the injection site and a stimulation electrode in the perforant path (PP). Afterdischarges were evoked every 10 min by unilateral electrical stimulation of the PP (20 Hz, 10 s). During every other afterdischarge, the DG was illuminated for 5 or 30 s, first ipsilaterally and then bilaterally to the PP stimulation. The line length metric of the afterdischarges was compared between illumination conditions. RESULTS Ipsilateral stGtACR2 activation during afterdischarges decreased the local field potential line length only during illumination and specifically at the illuminated site but did not reduce afterdischarge duration. Bilateral illumination did not terminate the afterdischarges. CONCLUSION Optogenetic inhibition of excitatory neurons using the blue-light sensitive chloride channel stGtACR2 reduced the amplitude of electrically induced afterdischarges in the DG at the site of illumination, but this local inhibitory effect was insufficient to reduce the duration of the afterdischarge.
Collapse
Affiliation(s)
- Anirudh R. Acharya
- 4BRAIN Team, Department of Head and Skin, Faculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| | - Lars Emil Larsen
- 4BRAIN Team, Department of Head and Skin, Faculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| | - Jean Delbeke
- 4BRAIN Team, Department of Head and Skin, Faculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| | - Wytse J. Wadman
- 4BRAIN Team, Department of Head and Skin, Faculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| | - Kristl Vonck
- 4BRAIN Team, Department of Head and Skin, Faculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| | - Alfred Meurs
- 4BRAIN Team, Department of Head and Skin, Faculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| | - Paul Boon
- 4BRAIN Team, Department of Head and Skin, Faculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| | - Robrecht Raedt
- 4BRAIN Team, Department of Head and Skin, Faculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| |
Collapse
|
10
|
Recruitment of interictal- and ictal-like discharges in posterior piriform cortex by delta-rate (1–4 Hz) focal bursts in anterior piriform cortex in vivo. Epilepsy Res 2022; 187:107032. [DOI: 10.1016/j.eplepsyres.2022.107032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/10/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022]
|
11
|
Bansal H, Pyari G, Roy S. Co-expressing fast channelrhodopsin with step-function opsin overcomes spike failure due to photocurrent desensitization in optogenetics: a theoretical study. J Neural Eng 2022; 19. [PMID: 35320791 DOI: 10.1088/1741-2552/ac6061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/23/2022] [Indexed: 11/11/2022]
Abstract
Objective A fundamental challenge in optogenetics is to elicit long-term high-fidelity neuronal spiking with negligible heating. Fast channelrhodopsins (ChRs) require higher irradiances and cause spike failure due to photocurrent desensitization under sustained illumination, whereas, more light-sensitive step-function opsins (SFOs) exhibit prolonged depolarization with insufficient photocurrent and fast response for high-fidelity spiking. Approach We present a novel method to overcome this fundamental limitation by co-expressing fast ChRs with SFOs. A detailed theoretical analysis of ChETA co-expressed with different SFOs, namely ChR2(C128A), ChR2(C128S), SSFO and SOUL, expressing hippocampal neurons has been carried out by formulating their accurate theoretical models. Main results ChETA-SFO-expressing hippocampal neurons show a more stable photocurrent that overcomes spike failure. Spiking fidelity in these neurons can be sustained even at lower irradiances of subsequent pulses (77 % of initial pulse intensity in ChETA-ChR2(C128A)-expressing neurons) or by using red-shifted light pulses at appropriate intervals. High-fidelity spiking up to 60 Hz can be evoked in ChR2-C128S-ChETA-expressing neurons, which cannot be attained with only SFOs. Significance The present study provides important insights about photostimulation protocols for bi-stable switching of neurons. This new approach provides a means for sustained low-power, high-frequency, and high-fidelity optogenetic switching of neurons, necessary to study various neural functions and neurodegenerative disorders and enhance the utility of optogenetics for biomedical applications.
Collapse
Affiliation(s)
- Himanshu Bansal
- Department of Physics and Computer science, Dayalbagh Educational Institute Faculty of Science, AGRA, Agra, UP, 282005, INDIA
| | - Gur Pyari
- Department of Physics & Computer Science, Dayalbagh Educational Institute Faculty of Science, Faculty of Science, Dayalbagh, Agra-282 005, Agra, Uttar Pradesh, 282005, INDIA
| | - Sukhdev Roy
- Department of Physics & Computer Science, Dayalbagh Educational Institute Faculty of Science, Faculty of Science, Dayalbagh, Agra-282 005, Agra, Uttar Pradesh, 282005, INDIA
| |
Collapse
|
12
|
Vandekerckhove B, Missinne J, Vonck K, Bauwens P, Verplancke R, Boon P, Raedt R, Vanfleteren J. Technological Challenges in the Development of Optogenetic Closed-Loop Therapy Approaches in Epilepsy and Related Network Disorders of the Brain. MICROMACHINES 2020; 12:38. [PMID: 33396287 PMCID: PMC7824489 DOI: 10.3390/mi12010038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 12/25/2022]
Abstract
Epilepsy is a chronic, neurological disorder affecting millions of people every year. The current available pharmacological and surgical treatments are lacking in overall efficacy and cause side-effects like cognitive impairment, depression, tremor, abnormal liver and kidney function. In recent years, the application of optogenetic implants have shown promise to target aberrant neuronal circuits in epilepsy with the advantage of both high spatial and temporal resolution and high cell-specificity, a feature that could tackle both the efficacy and side-effect problems in epilepsy treatment. Optrodes consist of electrodes to record local field potentials and an optical component to modulate neurons via activation of opsin expressed by these neurons. The goal of optogenetics in epilepsy is to interrupt seizure activity in its earliest state, providing a so-called closed-loop therapeutic intervention. The chronic implantation in vivo poses specific demands for the engineering of therapeutic optrodes. Enzymatic degradation and glial encapsulation of implants may compromise long-term recording and sufficient illumination of the opsin-expressing neural tissue. Engineering efforts for optimal optrode design have to be directed towards limitation of the foreign body reaction by reducing the implant's elastic modulus and overall size, while still providing stable long-term recording and large-area illumination, and guaranteeing successful intracerebral implantation. This paper presents an overview of the challenges and recent advances in the field of electrode design, neural-tissue illumination, and neural-probe implantation, with the goal of identifying a suitable candidate to be incorporated in a therapeutic approach for long-term treatment of epilepsy patients.
Collapse
Affiliation(s)
- Bram Vandekerckhove
- Center for Microsystems Technology, Imec and Ghent University, 9000 Ghent, Belgium; (B.V.); (J.M.); (P.B.); (R.V.)
| | - Jeroen Missinne
- Center for Microsystems Technology, Imec and Ghent University, 9000 Ghent, Belgium; (B.V.); (J.M.); (P.B.); (R.V.)
| | - Kristl Vonck
- 4Brain Team, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium; (K.V.); (P.B.); (R.R.)
| | - Pieter Bauwens
- Center for Microsystems Technology, Imec and Ghent University, 9000 Ghent, Belgium; (B.V.); (J.M.); (P.B.); (R.V.)
| | - Rik Verplancke
- Center for Microsystems Technology, Imec and Ghent University, 9000 Ghent, Belgium; (B.V.); (J.M.); (P.B.); (R.V.)
| | - Paul Boon
- 4Brain Team, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium; (K.V.); (P.B.); (R.R.)
| | - Robrecht Raedt
- 4Brain Team, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium; (K.V.); (P.B.); (R.R.)
| | - Jan Vanfleteren
- Center for Microsystems Technology, Imec and Ghent University, 9000 Ghent, Belgium; (B.V.); (J.M.); (P.B.); (R.V.)
| |
Collapse
|
13
|
Sridharan A, Shah A, Kumar SS, Kyeh J, Smith J, Blain-Christen J, Muthuswamy J. Optogenetic modulation of cortical neurons using organic light emitting diodes (OLEDs). Biomed Phys Eng Express 2020; 6:025003. [DOI: 10.1088/2057-1976/ab6fb7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Berglund K, Fernandez AM, Gutekunst CAN, Hochgeschwender U, Gross RE. Step-function luminopsins for bimodal prolonged neuromodulation. J Neurosci Res 2019; 98:422-436. [PMID: 30957296 DOI: 10.1002/jnr.24424] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 02/26/2019] [Accepted: 03/14/2019] [Indexed: 11/09/2022]
Abstract
Although molecular tools for controlling neuronal activity by light have vastly expanded, there are still unmet needs which require development and refinement. For example, light delivery into the brain is still a major practical challenge that hinders potential translation of optogenetics in human patients. In addition, it would be advantageous to manipulate neuronal activity acutely and precisely as well as chronically and non-invasively, using the same genetic construct in animal models. We have previously addressed these challenges by employing bioluminescence and have created a new line of opto-chemogenetic probes termed luminopsins by fusing light-sensing opsins with light-emitting luciferases. In this report, we incorporated Chlamydomonas channelrhodopsin 2 with step-function mutations as the opsin moiety in the new luminopsin fusion protein termed step-function luminopsin (SFLMO). Bioluminescence-induced photocurrent lasted longer than the bioluminescence signal due to very slow deactivation of the mutated channel. In addition, bioluminescence was able to activate most of the channels on the cell surface due to the extremely high light sensitivity of the channel. This efficient channel activation was partly mediated by radiationless bioluminescence resonance energy transfer due to the proximity of luciferase and opsin. To test the utility of SFLMOs in vivo, we transduced the substantia nigra unilaterally via a viral vector in male rats. Injection of the luciferase substrate as well as conventional photostimulation via fiber optics elicited circling behaviors. Thus, SFLMOs expand the current approaches for manipulation of neuronal activity in the brain and add more versatility and practicality to optogenetics in freely behaving animals.
Collapse
Affiliation(s)
- Ken Berglund
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia
| | | | | | - Ute Hochgeschwender
- Neuroscience Program and College of Medicine, Central Michigan University, Mt Pleasant, Michigan
| | - Robert E Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
15
|
Gupta N, Bansal H, Roy S. Theoretical optimization of high-frequency optogenetic spiking of red-shifted very fast-Chrimson-expressing neurons. NEUROPHOTONICS 2019; 6:025002. [PMID: 31001567 PMCID: PMC6458485 DOI: 10.1117/1.nph.6.2.025002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/15/2019] [Indexed: 05/03/2023]
Abstract
A detailed theoretical analysis and optimization of high-fidelity, high-frequency firing of the red-shifted very-fast-Chrimson (vf-Chrimson) expressing neurons is presented. A four-state model for vf-Chrimson photocycle has been formulated and incorporated in Hodgkin-Huxley and Wang-Buzsaki spiking neuron circuit models. The effect of various parameters that include irradiance, pulse width, frequency, expression level, and membrane capacitance has been studied in detail. Theoretical simulations are in excellent agreement with recently reported experimental results. The analysis and optimization bring out additional interesting features. A minimal pulse width of 1.7 ms at 23 mW / mm 2 induces a peak photocurrent of 1250 pA. Optimal irradiance ( 0.1 mW / mm 2 ) and pulse width ( 50 μ s ) to trigger action potential have been determined. At frequencies beyond 200 Hz, higher values of expression level and irradiance result in spike failure. Singlet and doublet spiking fidelity can be maintained up to 400 and 150 Hz, respectively. The combination of expression level and membrane capacitance is a crucial factor to achieve high-frequency firing above 500 Hz. Its optimization enables 100% spike probability of up to 1 kHz. The study is useful in designing new high-frequency optogenetic neural spiking experiments with desired spatiotemporal resolution, by providing insights into the temporal spike coding, plasticity, and curing neurodegenerative diseases.
Collapse
Affiliation(s)
- Neha Gupta
- Dayalbagh Educational Institute, Department of Physics and Computer Science, Agra, India
| | - Himanshu Bansal
- Dayalbagh Educational Institute, Department of Physics and Computer Science, Agra, India
| | - Sukhdev Roy
- Dayalbagh Educational Institute, Department of Physics and Computer Science, Agra, India
| |
Collapse
|
16
|
Fernandez E. Development of visual Neuroprostheses: trends and challenges. Bioelectron Med 2018; 4:12. [PMID: 32232088 PMCID: PMC7098238 DOI: 10.1186/s42234-018-0013-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 07/27/2018] [Indexed: 02/06/2023] Open
Abstract
Visual prostheses are implantable medical devices that are able to provide some degree of vision to individuals who are blind. This research field is a challenging subject in both ophthalmology and basic science that has progressed to a point where there are already several commercially available devices. However, at present, these devices are only able to restore a very limited vision, with relatively low spatial resolution. Furthermore, there are still many other open scientific and technical challenges that need to be solved to achieve the therapeutic benefits envisioned by these new technologies. This paper provides a brief overview of significant developments in this field and introduces some of the technical and biological challenges that still need to be overcome to optimize their therapeutic success, including long-term viability and biocompatibility of stimulating electrodes, the selection of appropriate patients for each artificial vision approach, a better understanding of brain plasticity and the development of rehabilitative strategies specifically tailored for each patient.
Collapse
Affiliation(s)
- Eduardo Fernandez
- Institute of Bioengineering, University Miguel Hernández and CIBER-BBN, Avda de la Universidad, s/n, 03202 Alicante, Elche Spain.,2John A. Moran Eye Center, University of Utah, Salt Lake City, USA
| |
Collapse
|
17
|
Christenson Wick Z, Krook-Magnuson E. Specificity, Versatility, and Continual Development: The Power of Optogenetics for Epilepsy Research. Front Cell Neurosci 2018; 12:151. [PMID: 29962936 PMCID: PMC6010559 DOI: 10.3389/fncel.2018.00151] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/15/2018] [Indexed: 12/19/2022] Open
Abstract
Optogenetics is a powerful and rapidly expanding set of techniques that use genetically encoded light sensitive proteins such as opsins. Through the selective expression of these exogenous light-sensitive proteins, researchers gain the ability to modulate neuronal activity, intracellular signaling pathways, or gene expression with spatial, directional, temporal, and cell-type specificity. Optogenetics provides a versatile toolbox and has significantly advanced a variety of neuroscience fields. In this review, using recent epilepsy research as a focal point, we highlight how the specificity, versatility, and continual development of new optogenetic related tools advances our understanding of neuronal circuits and neurological disorders. We additionally provide a brief overview of some currently available optogenetic tools including for the selective expression of opsins.
Collapse
Affiliation(s)
- Zoé Christenson Wick
- Graduate Program in Neuroscience and Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | | |
Collapse
|
18
|
Tung JK, Shiu FH, Ding K, Gross RE. Chemically activated luminopsins allow optogenetic inhibition of distributed nodes in an epileptic network for non-invasive and multi-site suppression of seizure activity. Neurobiol Dis 2018; 109:1-10. [PMID: 28923596 PMCID: PMC5696076 DOI: 10.1016/j.nbd.2017.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 09/05/2017] [Accepted: 09/14/2017] [Indexed: 01/06/2023] Open
Abstract
Although optogenetic techniques have proven to be invaluable for manipulating and understanding complex neural dynamics over the past decade, they still face practical and translational challenges in targeting networks involving multiple, large, or difficult-to-illuminate areas of the brain. We utilized inhibitory luminopsins to simultaneously inhibit the dentate gyrus and anterior nucleus of the thalamus of the rat brain in a hardware-independent and cell-type specific manner. This approach was more effective at suppressing behavioral seizures than inhibition of the individual structures in a rat model of epilepsy. In addition to elucidating mechanisms of seizure suppression never directly demonstrated before, this work also illustrates how precise multi-focal control of pathological circuits can be advantageous for the treatment and understanding of disorders involving broad neural circuits such as epilepsy.
Collapse
Affiliation(s)
- Jack K Tung
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States; Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Fu Hung Shiu
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Kevin Ding
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Robert E Gross
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States; Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
19
|
Neuromodulation Using Optogenetics and Related Technologies. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00035-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Axelsen TM, Woldbye DP. Gene Therapy for Parkinson's Disease, An Update. JOURNAL OF PARKINSON'S DISEASE 2018; 8:195-215. [PMID: 29710735 PMCID: PMC6027861 DOI: 10.3233/jpd-181331] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/25/2018] [Indexed: 12/19/2022]
Abstract
The current mainstay treatment of Parkinson's disease (PD) consists of dopamine replacement therapy which, in addition to causing several side effects, does not delay disease progression. The field of gene therapy offers a potential means to improve current therapy. The present review gives an update of the present status of gene therapy for PD. Both non-disease and disease modifying transgenes have been tested for PD gene therapy in animal and human studies. Non-disease modifying treatments targeting dopamine or GABA synthesis have been successful and promising at improving PD symptomatology in randomized clinical studies, but substantial testing remains before these can be implemented in the standard clinical treatment repertoire. As for disease modifying targets that theoretically offer the possibility of slowing the progression of disease, several neurotrophic factors show encouraging results in preclinical models (e.g., neurturin, GDNF, BDNF, CDNF, VEGF-A). However, so far, clinical trials have only tested neurturin, and, unfortunately, no trial has been able to meet its primary endpoint. Future clinical trials with neurotrophic factors clearly deserve to be conducted, considering the still enticing goal of actually slowing the disease process of PD. As alternative types of gene therapy, opto- and chemogenetics might also find future use in PD treatment and novel genome-editing technology could also potentially be applied as individualized gene therapy for genetic types of PD.
Collapse
Affiliation(s)
- Tobias M. Axelsen
- Department of Neurology, Herlev University Hospital, Herlev, Denmark
| | - David P.D. Woldbye
- Department of Neuroscience, Panum Institute, Mærsk Tower, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
21
|
Forcelli PA. Applications of optogenetic and chemogenetic methods to seizure circuits: Where to go next? J Neurosci Res 2017; 95:2345-2356. [PMID: 28791729 DOI: 10.1002/jnr.24135] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/05/2017] [Accepted: 07/14/2017] [Indexed: 01/02/2023]
Abstract
Epilepsy is the quintessential circuit disorder, with seizure activity propagating through anatomically constrained pathways. These pathways, necessary for normal sensory, motor, and cognitive function, are hijacked during seizures. Understanding the network architecture at the level of both local microcircuits and distributed macrocircuits may provide new therapeutic avenues for the treatment of epilepsy. Over the past decade, optogenetic and chemogenetic tools have enabled previously impossible levels of functional circuit mapping in neuroscience. In this review, examples of the application of optogenetics and chemogenetics to epilepsy are raised, the comparative strengths and weaknesses of these approaches are discussed for both preclinical and translational applications, and recent applications of these approaches in other areas of neuroscience are highlighted. These points are raised in an effort to highlight the potential of these methods to address additional unanswered questions in epilepsy.
Collapse
Affiliation(s)
- Patrick A Forcelli
- Department of Pharmacology & Physiology, Department of Neuroscience, and Interdisciplinary Program in Neuroscience, Georgetown University School of Medicine, Washington, DC
| |
Collapse
|
22
|
Wang D, Yu Z, Yan J, Xue F, Ren G, Jiang C, Wang W, Piao Y, Yang X. Photolysis of Caged-GABA Rapidly Terminates Seizures In Vivo: Concentration and Light Intensity Dependence. Front Neurol 2017; 8:215. [PMID: 28572790 PMCID: PMC5435768 DOI: 10.3389/fneur.2017.00215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/02/2017] [Indexed: 02/05/2023] Open
Abstract
The therapy of focal epilepsy remains unsatisfactory for as many as 25% of patients. The photolysis of caged-γ-aminobutyric acid (caged-GABA) represents a novel and alternative option for the treatment of intractable epilepsy. Our previous experimental results have demonstrated that the use of blue light produced by light-emitting diode to uncage ruthenium-bipyridine-triphenylphosphine-c-GABA (RuBi-GABA) can rapidly terminate paroxysmal seizure activity both in vitro and in vivo. However, the optimal concentration of RuBi-GABA, and the intensity of illumination to abort seizures, remains unknown. The aim of this study was to explore the optimal anti-seizure effects of RuBi-GABA by using implantable fibers to introduce blue light into the neocortex of a 4-aminopyridine-induced acute seizure model in rats. We then investigated the effects of different combinations of RuBi-GABA concentrations and light intensity upon seizure. Our results show that the anti-seizure effect of RuBi-GABA has obvious concentration and light intensity dependence. This is the first example of using an implantable device for the photolysis of RuBi-GABA in the therapy of neocortical seizure, and an optimal combination of RuBi-GABA concentration and light intensity was explored. These results provide important experimental data for future clinical translational studies.
Collapse
Affiliation(s)
- Dan Wang
- Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China.,Center of Epilepsy, Center for Brain Disorders Research, Capital Medical University, Beijing, China
| | - Zhixin Yu
- Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China.,Center of Epilepsy, Center for Brain Disorders Research, Capital Medical University, Beijing, China
| | - Jiaqing Yan
- College of Electrical and Control Engineering, North China University of Technology, Beijing, China
| | - Fenqin Xue
- Core Facilities Center, Capital Medical University, Beijing, China
| | - Guoping Ren
- Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China.,Center of Epilepsy, Center for Brain Disorders Research, Capital Medical University, Beijing, China
| | - Chenxi Jiang
- Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China.,Center of Epilepsy, Center for Brain Disorders Research, Capital Medical University, Beijing, China
| | - Weimin Wang
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yueshan Piao
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaofeng Yang
- Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China.,Center of Epilepsy, Center for Brain Disorders Research, Capital Medical University, Beijing, China
| |
Collapse
|