1
|
Ding Z, Ma W, Feng L, Zhang M, Li X. Quantifying Task-locked Information Transmission between Cortical Areas with TMS-EEG. Neuroimage 2025:121323. [PMID: 40513691 DOI: 10.1016/j.neuroimage.2025.121323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 05/25/2025] [Accepted: 06/10/2025] [Indexed: 06/16/2025] Open
Abstract
OBJECTIVE This study aims to develop TMS-EEG (Transcranial magnetic stimulation combined with EEG) technology to detect task-locked neural network activation and dynamically quantify information transmission. APPROACH 30 participants performed visually guided gap saccade tasks while TMS-EEG data were recorded, with the TMS pulses delivered to prefrontal cortex (PFC) and posterior parietal cortex (PPC) at different task stages. The directed transfer function (DTF) method was applied to TMS-EEG data to indicate the information flow. By analyzing the channel combinations associated with the PFC and PPC, we calculated differences in information flow within the alpha, beta, and gamma frequency bands to determine whether TMS-EEG could quantitatively characterize the direction of information flow between cortical areas. MAIN RESULTS Analysis of eye tracker data revealed that all participants successfully performed the saccade task, with a correct rate exceeding 90%. The mean saccade latency was 132.25 ±22.59 ms after target appearance. Stimulation of the PFC and PPC revealed significant differences in information flow in the gamma bands at different time points. Specifically, during the preparatory period, the C3 electrode acts as a hub for incoming information from O1, later transitioning to send information towards F4 and O1 post-target. Then, P3 emerges as a hub, sending data towards P4, with connectivity between them intensifying post 100ms from the target's appearance. SIGNIFICANCE This study utilized DTF values derived from TMS-EEG to characterize information flow between cortical areas during the gap saccade task. This approach provides a novel method for quantifying dynamic changes in connectivity and causality between cortical areas during task processing.
Collapse
Affiliation(s)
- Zhaohuan Ding
- Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Wenbo Ma
- School of psychiatry, North Sichuan medical college, Nanchong, 637000, Sichuan, China; State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Leixiao Feng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Mingsha Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Xiaoli Li
- Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou), Guangzhou, 510335, China; School of Automation Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
| |
Collapse
|
2
|
Bernardi D, Casula EP, Rocchi L, Fadiga L, Koch G, Papo D. Multivariate empirical mode decomposition reveals markers of Alzheimer's Disease in the oscillatory response to transcranial magnetic stimulation. Clin Neurophysiol 2025; 176:2110756. [PMID: 40516387 DOI: 10.1016/j.clinph.2025.2110756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/06/2024] [Accepted: 04/07/2025] [Indexed: 06/16/2025]
Abstract
OBJECTIVE To investigate EEG activity following transcranial magnetic stimulation (TMS) of the dorsolateral prefrontal cortex of Alzheimer's Disease (AD) patients and control subjects using a data-driven characterization of brain oscillatory activity without prescribed frequency bands. METHODS We employed multivariate empirical mode decomposition (MEMD) to analyze the TMS-EEG response of 38 AD patients and 21 control subjects. We used the distinct features of EEG oscillatory modes to train a classification algorithm, a support vector machine. RESULTS AD patients exhibited a weakened slow-frequency response. Faster oscillatory modes displayed a biphasic response pattern in controls, characterized by an early increase followed by a widespread suppression, which was reduced in AD patients. Classification achieved robust discrimination performance (85%/23% true/false positive rate). CONCLUSIONS AD causes an impairment in the oscillatory response to TMS that has distinct features in different frequency ranges. These features uncovered by MEMD could serve as an effective EEG diagnostic marker. SIGNIFICANCE Early detection of AD requires diagnostic tools that are both effective and accessible. Combining EEG with TMS shows great promise. Our results and method enhance TMS-EEG both as a practical diagnostic tool, and as a way to further our understanding of AD pathophysiology.
Collapse
Affiliation(s)
- Davide Bernardi
- Center for Translational Neurophysiology of Speech and Communication, Fondazione Istituto Italiano di Tecnologia, Ferrara, Italy; Department of Physics and Astronomy, University of Padova, Padova, Italy.
| | - Elias P Casula
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy; Department of Clinical and Behavioral Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Lorenzo Rocchi
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Luciano Fadiga
- Center for Translational Neurophysiology of Speech and Communication, Fondazione Istituto Italiano di Tecnologia, Ferrara, Italy; Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy.
| | - Giacomo Koch
- Center for Translational Neurophysiology of Speech and Communication, Fondazione Istituto Italiano di Tecnologia, Ferrara, Italy; Department of Clinical and Behavioral Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - David Papo
- Center for Translational Neurophysiology of Speech and Communication, Fondazione Istituto Italiano di Tecnologia, Ferrara, Italy; Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| |
Collapse
|
3
|
Bonfanti D, Bertacco E, Parra LC, Mazzi C, Savazzi S. Electrophysiological hemispheric asymmetries induced by parietal stimulation eliciting visual percepts. Clin Neurophysiol 2025; 174:131-147. [PMID: 40273616 DOI: 10.1016/j.clinph.2025.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/24/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025]
Abstract
OBJECTIVE We aimed to establish if the electrophysiological activity resulting from the direct stimulation of the intraparietal sulcus and eliciting visual percepts is hemispheric-specific. METHODS We tested nineteen participants. Each received 360 TMS pulses at phosphene threshold intensity over right and left IPS while recording EEG. After each pulse, participants had to report if they had seen a phosphene. RESULTS Parietal phosphene perception is associated with hemispheric-specific activations: phosphenes elicited by left TMS involve central and frontal electrodes at about 30 ms, and frontal, central and parieto-occipital electrodes from 120 to 250 ms; phosphenes elicited by right parietal TMS involve parietal and centro-parietal electrodes at about 60 ms, and frontal, central and parietal electrodes from 150 to 250 ms. Correlated Component Analysis shows that primary visual areas are not activated when phosphenes are produced by TMS over IPS. CONCLUSIONS Our results show that direct stimulation of IPS gives rise to sustained patterns of activity specific to the stimulated hemisphere. Moreover, elicited parietal phosphenes are associated with evoked activity specific to the stimulated hemisphere and located outside early visual processing areas. SIGNIFICANCE This study highlights hemispheric differences in the electrophysiological dynamics related to parietal phosphenes, and shows that the dorsal pathway can give rise to visual conscious percepts.
Collapse
Affiliation(s)
- D Bonfanti
- Perception and Awareness Lab, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - E Bertacco
- Perception and Awareness Lab, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - L C Parra
- Department of Biomedical Engineering, City College of New York, New York, USA
| | - C Mazzi
- Perception and Awareness Lab, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - S Savazzi
- Perception and Awareness Lab, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
4
|
Shikauchi Y, Uehara K, Okazaki YO, Kitajo K. Electroencephalographic responses before, during, and after upper limb paired associative stimulation. Data Brief 2025; 60:111467. [PMID: 40226202 PMCID: PMC11986603 DOI: 10.1016/j.dib.2025.111467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 04/15/2025] Open
Abstract
Paired associative stimulation (PAS) is a non-invasive protocol involving repeated stimulus pairs to activate two cortical areas alternately, inducing Hebbian-like plasticity. However, its neurophysiological impacts remain unclear. To determine the changes that occur in the brain during PAS, brain activity during PAS must be measured and distinguished from the electromagnetic artifacts produced by the stimulation. Here, we present a novel dataset of electroencephalography (EEG) measurements during PAS with an inter-stimulus-interval of 25 ms (PAS25, expected to induce long-term potentiation-like changes) or 35 ms (PAS35, no expected change). This dataset includes raw data and pre-processed data with electromagnetic artefacts removed. The right ulnar nerve's electrical stimulation preceded transcranial magnetic stimulation to the left primary motor cortex in both cases. EEG was measured before and after the PAS sessions, with only electrical or magnetic stimulation. To demonstrate the quality of the data, we summarize the stability of the stimulation site and the event-related potentials before, during, and after PAS. This dataset will enable observing brain dynamics due to the accumulation of stimulations during PAS and differences in responsiveness to stimulations before and after PAS.
Collapse
Affiliation(s)
- Yumi Shikauchi
- Rhythm-based Brain Information Processing Unit, CBS-TOYOTA Collaboration Center, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
- Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Tokyo 102-0083, Japan
- Graduate School of Arts and Science, Department of General Systems Studies, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Kazumasa Uehara
- Rhythm-based Brain Information Processing Unit, CBS-TOYOTA Collaboration Center, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
- Division of Neural Dynamics, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
- Neural Information Dynamics Laboratory, Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
| | - Yuka O. Okazaki
- Rhythm-based Brain Information Processing Unit, CBS-TOYOTA Collaboration Center, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
- Division of Neural Dynamics, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
- Physiological Sciences Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan
| | - Keiichi Kitajo
- Rhythm-based Brain Information Processing Unit, CBS-TOYOTA Collaboration Center, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
- Division of Neural Dynamics, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
- Physiological Sciences Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
5
|
Russo S, Rosanova M. Stimulate to probe, stimulate to modulate: Single-pulse brain stimulation to titrate neuromodulation. Clin Neurophysiol 2025:2110737. [PMID: 40413091 DOI: 10.1016/j.clinph.2025.2110737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2025] [Accepted: 05/04/2025] [Indexed: 05/27/2025]
Affiliation(s)
- Simone Russo
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 30332 Atlanta, GA, USA.
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan 20157, Italy
| |
Collapse
|
6
|
Zhen Z, Guo R, Tan B, Wang Y, Shi S, Ye Y, Che X. Prefrontal transcranial magnetic stimulation changes cortical excitability across local and distributed brain regions. Clin Neurophysiol 2025; 173:173-180. [PMID: 40147180 DOI: 10.1016/j.clinph.2025.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/15/2025] [Accepted: 03/16/2025] [Indexed: 03/29/2025]
Abstract
OBJECTIVE This study sort to identify the continuous effects of repetitive transcranial magnetic stimulation (rTMS) over the dorsolateral prefrontal cortex (DLPFC-rTMS) on local and distributed brain activities. METHODS In a double-blinded and sham-controlled design, 24 participants received either a real or sham DLPFC-rTMS session, with concurrent TMS-EEG being recorded at baseline, 5 and 60 min after stimulation. RESULTS DLPFC stimulation induced immediate cortical excitability in the frontal regions, while a continuous effect was identified in the parietal cortex for up to 60 min. Moreover, this pattern of cortical excitability effects was reliably identified across TMS-induced field potentials and oscillations. CONCLUSIONS Single-session DLPFC stimulation induced both immediate and continuous cortical excitability effects for at least 60 min. The continuous cortical excitability change. was most prominent over the parietal cortices. SIGNIFICANCE These novel findings may inform the design of TMS treatment paradigms to optimise cortical excitability and potentially clinical efficacy.
Collapse
Affiliation(s)
- Zhen Zhen
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Rui Guo
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Bolin Tan
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Ying Wang
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Shuyan Shi
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yang Ye
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| | - Xianwei Che
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.
| |
Collapse
|
7
|
Wang M, Liu Q, Gao H, Peng D, Wang W, Ma J, Chen Z, Zhang W, Jannini TB, Jannini EA, Jiang H, Zhang X. Efficacy and safety of repetitive transcranial magnetic stimulation (rTMS) in anejaculation: A randomized controlled trial. Andrology 2025; 13:860-868. [PMID: 39230245 DOI: 10.1111/andr.13752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/14/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Anejaculation represents significant psychological distress and sexual and reproductive challenges among male individuals and couples. Effective fertility management options are available to address the reproductive challenges associated with anejaculation. However, there is a lack of methods to reverse the condition itself. OBJECTIVES This study aims to assess the effectiveness and safety of repetitive transcranial magnetic stimulation (rTMS) in patients suffering from anejaculation. METHODS A total of 94 patients with anejaculation individuals were randomly assigned to receive high-frequency (HF) stimulation on the left dorsolateral prefrontal cortex (DLPFC), low-frequency (LF) stimulation on the right DLPFC, and sham stimulation for 4 weeks, with daily sessions of stimulation occurring on five consecutive weekdays each week. RESULTS After 4 weeks of rTMS treatment, the patients in both the HF and LF groups exhibited a similar reduction in their male sexual health questionnaire for ejaculatory dysfunction bother/satisfaction score, Hamilton Anxiety Scale score, Hamilton Depression Scale score, and Pittsburgh Sleep Quality Inventory score, which were statistically significant compared with sham treatment. Additionally, there were no significant differences observed in erectile function and cognitive function across the three groups. However, there were notable disparities in the cure rates between HF- and LF-group patients (16.1% vs. 54.8%, p = 0.001). Additionally, it is worth noting that only two HF group patients and one LF group patient experienced spontaneously resolving minor adverse effects during the treatment process. At the 8-week follow-up, among patients who initially responded to the treatment, only one from the HF group experienced a relapse. DISCUSSION AND CONCLUSION The findings of this study demonstrate that rTMS represents a secure and efficacious remedy for anejaculation patients.
Collapse
Affiliation(s)
- Ming Wang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiushi Liu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hui Gao
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dangwei Peng
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Weinan Wang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Juncheng Ma
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zihang Chen
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wangheng Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tommaso B Jannini
- Department of Experimental Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Emmanuele A Jannini
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Hui Jiang
- Department of Urology, Peking University First Hospital Institute of Urology, Peking University Andrology Center, Beijing, China
| | - Xiansheng Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
8
|
Bracco M, Mutanen TP, Veniero D, Thut G, Robertson EM. Protocol to assess changes in brain network resistance to perturbation during offline processing using TMS-EEG. STAR Protoc 2025; 6:103622. [PMID: 39918962 PMCID: PMC11851284 DOI: 10.1016/j.xpro.2025.103622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/21/2024] [Accepted: 01/14/2025] [Indexed: 02/09/2025] Open
Abstract
Transcranial magnetic stimulation (TMS) perturbs specific brain regions and, combined with electroencephalography (EEG), enables the assessment of activity within their connected networks. We present a resting-state TMS-EEG protocol, combined with a controlled experimental design, to assess changes in brain network activity during offline processing, following a behavioral task. We describe steps for experimental design planning, setup preparation, data collection, and analysis. This approach minimizes biases inherent to TMS-EEG, ensuring an accurate assessment of changes within the network. For complete details of the use and execution of this protocol, please refer to Bracco et al.1.
Collapse
Affiliation(s)
- Martina Bracco
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute, ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 47 Bd de l'Hôpital, 75013 Paris, France.
| | - Tuomas P Mutanen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, P.O. Box 12200, FI-00076 Aalto, Finland.
| | - Domenica Veniero
- School of Psychology, University of Nottingham, Nottingham NG7 2RD, UK
| | - Gregor Thut
- Institute of Neuroscience and Psychology, Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow G12 8QB, UK; The Brain and Cognition Research Centre (Cerveau et Cognition, CerCo), CNRS UMR5549 and University of Toulouse, Toulouse, France
| | - Edwin M Robertson
- Institute of Neuroscience and Psychology, Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow G12 8QB, UK.
| |
Collapse
|
9
|
Martino Cinnera A, Casula EP, Pezzopane V, D'Acunto A, Maiella M, Bonnì S, Ferraresi M, Guacci M, Tramontano M, Iosa M, Paolucci S, Morone G, Vannozzi G, Koch G. Association of TMS-EEG interhemispheric imbalance with upper limb motor impairment in chronic stroke patients: An exploratory study. Clin Neurophysiol 2025; 171:95-106. [PMID: 39889485 DOI: 10.1016/j.clinph.2024.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 11/20/2024] [Accepted: 12/31/2024] [Indexed: 02/03/2025]
Abstract
OBJECTIVE We aimed to investigate the involvement of interhemispheric cortical dynamics as measured by combined transcranial magnetic stimulation and electroencephalography (TMS-EEG) in recovery of upper limb (UL) motor functions in chronic stroke patients. METHODS Ten patients with a history of single ischemic chronic stroke were enrolled (4F, 63.8 ± 9.9 years). Each patient underwent TMS-EEG recordings to evaluate interhemispheric cortical dynamics as well as a reaching task recorded with inertial measurement units, and a series of clinical assessments. TMS-EEG neurophysiological data were analysed considering spatiotemporal, power response, and interhemispheric balance (IHB) dynamics. RESULTS We found that IHB index (IHBi) and low-frequency power (LFP) (4-13 Hz) in the affected hemisphere were associated with the degree of UL impairment. CONCLUSION Increased IHBi due to stroke is an unfavourable factor of UL' functions. Similarly, LFP of both hemispheres is strongly correlated with clinical and kinematic outcomes. SIGNIFICANCE TMS-EEG biomarkers of interhemispheric unbalance could be used to estimate functional recovery and drive tailored neuromodulation and neurorehabilitation approaches.
Collapse
Affiliation(s)
- Alex Martino Cinnera
- Scientific Institute for Research, Hospitalization and Health Care IRCCS Santa Lucia Foundation, Rome, Italy; Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Elias Paolo Casula
- Scientific Institute for Research, Hospitalization and Health Care IRCCS Santa Lucia Foundation, Rome, Italy; Department of System Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Valentina Pezzopane
- Scientific Institute for Research, Hospitalization and Health Care IRCCS Santa Lucia Foundation, Rome, Italy; Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Alessia D'Acunto
- Department of Neurosciences, Paediatric Neurology, University of Rome Tor Vergata, Rome, Italy
| | - Michele Maiella
- Scientific Institute for Research, Hospitalization and Health Care IRCCS Santa Lucia Foundation, Rome, Italy; Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Sonia Bonnì
- Scientific Institute for Research, Hospitalization and Health Care IRCCS Santa Lucia Foundation, Rome, Italy
| | - Matteo Ferraresi
- Scientific Institute for Research, Hospitalization and Health Care IRCCS Santa Lucia Foundation, Rome, Italy
| | - Marcella Guacci
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Marco Tramontano
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater University of Bologna, Bologna, Italy; Unit of Occupational Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Marco Iosa
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Stefano Paolucci
- Scientific Institute for Research, Hospitalization and Health Care IRCCS Santa Lucia Foundation, Rome, Italy
| | - Giovanni Morone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giuseppe Vannozzi
- Scientific Institute for Research, Hospitalization and Health Care IRCCS Santa Lucia Foundation, Rome, Italy; Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Giacomo Koch
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
10
|
Huang Z, Wang Y, Yan Y, Liu Y, Chen J, Liu H, Li J, Gao Z, Che X. Identifying neural circuitry abnormalities in neuropathic pain with transcranial magnetic stimulation and electroencephalogram co-registration. Neurotherapeutics 2025; 22:e00496. [PMID: 39613525 PMCID: PMC12014317 DOI: 10.1016/j.neurot.2024.e00496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/02/2024] [Accepted: 11/14/2024] [Indexed: 12/01/2024] Open
Abstract
Non-invasive brain stimulation (NIBS) technology such as transcranial magnetic stimulation (TMS) represents a promising treatment for neuropathic pain. However, neural circuitries underlying analgesia remain to be established, which is largely limiting treatment responses. Using TMS and electroencephalogram co-registration (TMS-EEG), this study quantified the circuitry abnormalities in neuropathic pain and their associations with pain symptoms. A group of 21 neuropathic pain individuals and 21 healthy controls were assessed with TMS-EEG delivering to the primary motor cortex (M1). With source modelling, local current density and current propagation were analysed with significant current density (SCD) and scattering (SCS) respectively. The SCS and SCD data converged on higher activities in neuropathic pain individuals than healthy controls, within the emotional affective (perigenual anterior cingulate cortex, pgACC), sensory nociceptive (primary somatosensory cortex, S1), and the attentional cognitive (anterior insula, aINS; supracallosal anterior cingulate cortex, scACC) structures of pain. Moreover, current propagation to the pgACC was associated with lower pain-related negative emotions, while current propagation to the aINS with higher pain-related negative emotions. Using concurrent TMS-EEG, our data identified abnormal pain circuitries that could be utilised to improve treatment efficacy with brain stimulation technologies.
Collapse
Affiliation(s)
- Zhimin Huang
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Ying Wang
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yongxing Yan
- Department of Neurology, Hangzhou Third People's Hospital, Hangzhou, China
| | - Ying Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jielin Chen
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Huili Liu
- Department of Neurology, Hangzhou Third People's Hospital, Hangzhou, China
| | - Jie Li
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Zhongming Gao
- Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Xianwei Che
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.
| |
Collapse
|
11
|
Ginatempo F, Casula EP, Soggia G, Loi N, Zeroual M, Deriu F. Transcallosal connections of face and hand representation areas in the primary motor cortex: a transcranial magnetic stimulation and transcranial magnetic stimulation-electroencephalography study. J Physiol 2025; 603:1225-1240. [PMID: 39924443 DOI: 10.1113/jp286473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 01/17/2025] [Indexed: 02/11/2025] Open
Abstract
Conflictual anatomical and neurophysiological findings obtained in both primates and humans raised the question whether the transcallosal pathway connecting the two representation areas of the face in the primary motor cortex (fM1) is absent or present but weak and poorly active. To answer this question in the present study transcranial magnetic stimulation (TMS) and electroencephalography (EEG) were combined as the TMS-EEG approach to investigate the transcallosal pathway connecting fM1s from both a spatial and a functional point of view. For comparison the same approach was used in hand M1 (hM1). Eighteen healthy subjects underwent two experimental sessions where both hemispheres were investigated: (1) a TMS session, to evaluate interhemispheric inhibition (IHI) for the depressor anguli oris (DAO) and the first dorsal interosseus (FDI) M1 representations, and (2) a TMS-EEG session, to calculate the interhemispheric signal propagation (ISP) for the DAO area in fM1 and the FDI area in hM1. Results found the presence of IHI for hM1 and its absence for fM1. On the contrary ISP analysis demonstrated a significant suppression of activity in the non-stimulated hemisphere compared to the stimulated one, with no difference between the stimulated hemisphere and the representation area. Finally a significant correlation was detected between IHI and ISP only when stimulating the left hM1. Overall the present study suggests the presence of a transcallosal connection between the two fM1s in humans, as demonstrated by the ISP analysis. This interhemispheric connection is however functionally poorly active, as demonstrated by the lack of IHI. KEY POINTS: Although the transcallosal connection between hand primary motor cortices (M1) is functionally powerful, to allow hand asymmetrical movements, its role in face motor control is controversial. Indeed to produce face expressions, face muscles are rarely involved symmetrically, and their face M1 control is bilateral and lacks interhemispheric inhibition (IHI). We investigated the transcallosal connection between face M1s, and for comparison in hand M1 (hM1), both spatially and functionally using transcranial magnetic stimulation (TMS) to study IHI, and electroencephalography (EEG) combined with TMS, to study interhemispheric signal propagation. Functional IHI data confirmed its absence in face M1 and its presence in hM1. In contrast TMS-EEG spatial analysis demonstrated a significant inhibition of activity in the non-stimulated hemisphere, regardless of the cortical area. Face M1s are connected by a transcallosal pathway, which is poorly active in physiological conditions. In addition no clear hemispheric dominance exists in face cortical control.
Collapse
Affiliation(s)
| | - Elias P Casula
- Non-Invasive Brain Stimulation Unit, Department of Behavioral and Clinical Neurology, Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giulia Soggia
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Nicola Loi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Mohammed Zeroual
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Franca Deriu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Unit of Endocrinology, Nutritional and Metabolic Disorders, AOU Sassari, Sassari, Italy
| |
Collapse
|
12
|
Bertazzoli G, Dognini E, Fried PJ, Miniussi C, Julkunen P, Bortoletto M. Bridging the gap to clinical use: A systematic review on TMS-EEG test-retest reliability. Clin Neurophysiol 2025; 171:133-145. [PMID: 39914155 DOI: 10.1016/j.clinph.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/06/2024] [Accepted: 01/03/2025] [Indexed: 03/11/2025]
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) combined with electroencephalography (EEG) can provide insight on cortical excitability and brain circuits. TMS-evoked potentials (TEPs) are phase-locked waveforms reflecting neural activity, with potential applications in psychiatry and neurology. However, the reliability of TEPs remains underexplored, hindering clinical standardization. This systematic review evaluates TEP reliability, focusing on commonly used measures and assessments. METHODS A systematic review was conducted on PubMed for studies from 2002 to October 10, 2024, using keywords combining TMS, EEG, and reliability terms. Systematic reviews and non-English articles were excluded. RESULTS Eighteen studies met inclusion criteria, mostly assessing young, healthy populations. Late TEP components demonstrated high relative reliability, while early components exhibited lower reliability and variability across sessions. Analytical methods like the intraclass and concordance correlation coefficients, and Pearson's correlations consistently favored late TEPs. DISCUSSION Late TEPs exhibit higher reliability, while early components require further research. TMS artifacts complicate interpretation, in both late and early responses. Formal reliability assessments, standardized protocols, and diverse populations are essential for advancing TEP reliability for clinical application. CONCLUSIONS A more comprehensive reliability assessments is needed before the implementation of clinical applications.
Collapse
Affiliation(s)
- Giacomo Bertazzoli
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA.
| | - Elisa Dognini
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Peter J Fried
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Carlo Miniussi
- Centre for Mind/Brain Sciences CIMeC, University of Trento, Rovereto, Italy
| | - Petro Julkunen
- Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland; Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Marta Bortoletto
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
13
|
Guidotti R, Basti A, Pieramico G, D'Andrea A, Makkinayeri S, Pettorruso M, Roine T, Ziemann U, Ilmoniemi RJ, Luca Romani G, Pizzella V, Marzetti L. When neuromodulation met control theory. J Neural Eng 2025; 22:011001. [PMID: 39622179 DOI: 10.1088/1741-2552/ad9958] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/02/2024] [Indexed: 02/25/2025]
Abstract
The brain is a highly complex physical system made of assemblies of neurons that work together to accomplish elaborate tasks such as motor control, memory and perception. How these parts work together has been studied for decades by neuroscientists using neuroimaging, psychological manipulations, and neurostimulation. Neurostimulation has gained particular interest, given the possibility to perturb the brain and elicit a specific response. This response depends on different parameters such as the intensity, the location and the timing of the stimulation. However, most of the studies performed so far used previously established protocols without considering the ongoing brain activity and, thus, without adaptively targeting the stimulation. In control theory, this approach is called open-loop control, and it is always paired with a different form of control called closed-loop, in which the current activity of the brain is used to establish the next stimulation. Recently, neuroscientists are beginning to shift from classical fixed neuromodulation studies to closed-loop experiments. This new approach allows the control of brain activity based on responses to stimulation and thus to personalize individual treatment in clinical conditions. Here, we review this new approach by introducing control theory and focusing on how these aspects are applied in brain studies. We also present the different stimulation techniques and the control approaches used to steer the brain. Finally, we explore how the closed-loop framework will revolutionize the way the human brain can be studied, including a discussion on open questions and an outlook on future advances.
Collapse
Affiliation(s)
- Roberto Guidotti
- Department of Neuroscience Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Alessio Basti
- Department of Neuroscience Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Giulia Pieramico
- Department of Engineering and Geology, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Antea D'Andrea
- Department of Neuroscience Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Saeed Makkinayeri
- Department of Neuroscience Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Mauro Pettorruso
- Department of Neuroscience Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Mental Health, Lanciano-Vasto-Chieti, ASL02 Chieti, Italy
| | - Timo Roine
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Ulf Ziemann
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany
- Hertie-Institute for Clinical Brain Research, Tübingen, Germany
| | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Gian Luca Romani
- Institute for Advanced Biomedical Technologies (ITAB), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Vittorio Pizzella
- Department of Neuroscience Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Laura Marzetti
- Institute for Advanced Biomedical Technologies (ITAB), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Engineering and Geology, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
14
|
Bradley C, McCann E, Nydam AS, Dux PE, Mattingley JB. Causal evidence for increased theta and gamma phase consistency in a parieto-frontal network during the maintenance of visual attention. Neuropsychologia 2025; 208:109079. [PMID: 39826797 DOI: 10.1016/j.neuropsychologia.2025.109079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/09/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Endogenous visuo-spatial attention is under the control of a fronto-parietal network of brain regions. One key node in this network, the intra-parietal sulcus (IPS), plays a crucial role in maintaining endogenous attention, but little is known about its ongoing physiology and network dynamics during different attentional states. Here, we investigated the reactivity of the left IPS in response to brain stimulation under different states of selective attention. We recorded electroencephalography (EEG) in response to single pulses of transcranial magnetic stimulation (TMS) of the IPS, while participants (N = 44) viewed bilateral random-dot motion displays. Individual MRI-guided TMS pulses targeted the left IPS, while the left primary somatosensory cortex (S1) served as an active control site. In separate blocks of trials, participants were cued to attend covertly to the motion display in one hemifield (left or right) and to report brief coherent motion targets. The perceptual load of the task was manipulated by varying the degree of motion coherence of the targets. Excitability, variability and information content of the neural responses to TMS were assessed by analysing TMS-evoked potential (TEP) amplitude and inter-trial phase clustering (ITPC), and by performing multivariate decoding of attentional state. Results revealed that a left posterior region displayed reduced variability in the phase of theta and gamma oscillations following TMS of the IPS, but not of S1, when attention was directed contralaterally, rather than ipsilaterally to the stimulation site. A right frontal cluster also displayed reduced theta variability and increased amplitude of TEPs when attention was directed contralaterally rather than ipsilaterally, after TMS of the IPS but not S1. Reliable decoding of attentional state was achieved after TMS pulses of both S1 and IPS. Taken together, our findings suggest that endogenous control of visuo-spatial attention leads to changes in the intrinsic oscillatory properties of the IPS and its associated fronto-parietal network.
Collapse
Affiliation(s)
- Claire Bradley
- Queensland Brain Institute, The University of Queensland, Australia.
| | - Emily McCann
- Queensland Brain Institute, The University of Queensland, Australia
| | - Abbey S Nydam
- Centre for Vision Research VISTA, York University, Canada
| | - Paul E Dux
- School of Psychology, The University of Queensland, Australia
| | - Jason B Mattingley
- Queensland Brain Institute, The University of Queensland, Australia; School of Psychology, The University of Queensland, Australia; CIFAR, Canada
| |
Collapse
|
15
|
Donati FL, Mayeli A, Nascimento Couto BA, Sharma K, Janssen S, Krafty RJ, Casali AG, Ferrarelli F. Prefrontal Oscillatory Slowing in Early-Course Schizophrenia Is Associated With Worse Cognitive Performance and Negative Symptoms: A Transcranial Magnetic Stimulation-Electroencephalography Study. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025; 10:158-166. [PMID: 39059465 PMCID: PMC11759720 DOI: 10.1016/j.bpsc.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Abnormalities in dorsolateral prefrontal cortex (DLPFC) oscillations are neurophysiological signatures of schizophrenia thought to underlie its cognitive deficits. Transcranial magnetic stimulation with electroencephalography (TMS-EEG) provides a measure of cortical oscillations unaffected by sensory relay functionality and/or patients' level of engagement, which are important confounding factors in schizophrenia. Previous TMS-EEG work showed reduced fast, gamma-range oscillations and a slowing of the main DLPFC oscillatory frequency, or natural frequency, in chronic schizophrenia. However, it is unclear whether this DLPFC natural frequency slowing is present in early-course schizophrenia (EC-SCZ) and is associated with symptom severity and cognitive dysfunction. METHODS We applied TMS-EEG to the left DLPFC in 30 individuals with EC-SCZ and 28 healthy control participants. Goal-directed working memory performance was assessed using the AX-Continuous Performance Task. The EEG frequency with the highest cumulative power at the stimulation site, or natural frequency, was extracted. We also calculated the local relative spectral power as the average power in each frequency band divided by the broadband power. RESULTS Compared with the healthy control group, the EC-SCZ group had reduced DLPFC natural frequency (p = .0000002, Cohen's d = -2.32) and higher DLPFC beta-range relative spectral power (p = .0003, Cohen's d = 0.77). In the EC-SCZ group, the DLPFC natural frequency was inversely associated with negative symptoms. Across all participants, the beta band relative spectral power negatively correlated with AX-Continuous Performance Task performance. CONCLUSIONS DLPFC oscillatory slowing is an early pathophysiological biomarker of schizophrenia that is associated with its symptom severity and cognitive impairments. Future work should assess whether noninvasive neurostimulation, including repetitive TMS, can ameliorate prefrontal oscillatory deficits and related clinical functions in patients with EC-SCZ.
Collapse
Affiliation(s)
- Francesco L Donati
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Health Science, University of Milan, Milan, Italy
| | - Ahmad Mayeli
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Kamakashi Sharma
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sabine Janssen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Robert J Krafty
- Department of Biostatistics & Bioinformatics, Emory University, Atlanta, Georgia
| | - Adenauer G Casali
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
16
|
Song Y, Gordon PC, Roy O, Metsomaa J, Belardinelli P, Rostami M, Ziemann U. Involvement of muscarinic acetylcholine receptor-mediated cholinergic neurotransmission in TMS-EEG responses. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111167. [PMID: 39383933 DOI: 10.1016/j.pnpbp.2024.111167] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
The combination of transcranial magnetic stimulation and electroencephalography (TMS-EEG) is emerging as a valuable tool for investigating brain functions in health and disease. However, the detailed neural mechanisms underlying TMS-EEG responses, including TMS-evoked EEG potentials (TEPs) and TMS-induced EEG oscillations (TIOs), remain largely unknown. Combining TMS-EEG with pharmacological interventions provides a unique opportunity to elucidate the roles of specific receptor-mediated neurotransmissions in these responses. Here, we investigated the involvement of muscarinic acetylcholine receptor (mAChR)-mediated cholinergic neurotransmission in TMS-EEG responses by evaluating the effects of mAChR antagonists on TEPs and TIOs in twenty-four healthy participants using a randomized, placebo-controlled crossover design. TEPs and TIOs were measured before and after administering a single oral dose of scopolamine (a non-selective mAChR antagonist), biperiden (an M1 mAChR antagonist), or placebo, with TMS targeting the left medial prefrontal cortex (mPFC), angular gyrus (AG), and supplementary motor area (SMA). The results indicated that mAChR-mediated cholinergic neurotransmission played a role in TEPs, but not TIOs, in a target-specific manner. Specifically, scopolamine significantly increased the amplitude of a local TEP component between approximately 40 and 63 ms post-stimulus when TMS was applied to the SMA, but not the mPFC or AG. Biperiden produced a similar but less pronounced effect. Importantly, the effects of these mAChR antagonists on TEPs were independent of those on sensory-evoked EEG potentials caused by TMS-associated sensory stimulation. These findings expand our understanding of TMS-EEG physiology, providing insights for its application in physiological and clinical research.
Collapse
Affiliation(s)
- Yufei Song
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Pedro C Gordon
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Olivier Roy
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany; CERVO Brain Research Centre, Quebec, Canada; Department of Psychiatry and Neurosciences, Université Laval, Quebec, Canada
| | - Johanna Metsomaa
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Finland
| | - Paolo Belardinelli
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany; CIMeC, Center for Mind/Brain Sciences, University of Trento, Italy
| | - Maryam Rostami
- Faculty of Electrical and Computer Engineering, University of Tehran, Iran
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany.
| |
Collapse
|
17
|
Zimmermann N, Koenig T, Riesen AS, Morishima Y. Enhancing prefrontal modulation by phase-locking intermittent theta burst stimulation to a concurrent transcranial alternating current stimulation. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2025; 3:imag_a_00415. [PMID: 40433300 PMCID: PMC7617709 DOI: 10.1162/imag_a_00415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Theta burst stimulation (TBS) modulates cortical excitability by applying bursts of transcranial magnetic stimulation (TMS) in theta rhythms. Individual responses to TBS vary however greatly due to various factors, such as anatomical differences or the phase of the ongoing oscillatory activity in which TBS pulses are applied. To combat this variability, we exploit the ability of transcranial alternating current stimulation (tACS) to shape the state of cortical excitability in a phase-dependent manner. While cortical excitability is increased at crests of the tACS-induced current, applying the TBS triplet pulses at these crests has the potential to produce larger neuronal responses and thus increase the likelihood of LTP. In our randomized sham-controlled study, we focused on enhancing prefrontal cortex excitability by phase-locking intermittent TBS (iTBS) to the crests of an induced 5Hz tACS current. Twenty-seven healthy participants received two iTBS sessions, once paired with sham-tACS and once with active tACS in a cross-over design. We evaluated effects of our stimulation protocol on cortical excitability by comparing TMS-induced activity and resting-state Microstates in the EEG before and after the stimulation as well as between the two sessions. We found significant effect of iTBS on channel-wise, global and oscillatory TMS-induced activity, as well as changes in Microstates. The concurrent, phase-locked tACS-iTBS protocol notably decreased the N100 amplitude of the Global Mean Field Power. We also found that baseline TMS-induced oscillatory activity was a key predictor of changes in TMS-related oscillatory activity. In the case of TMS-related gamma oscillations, a significant interaction between our stimulation protocols and baseline activity was observed, indicating that the relationship between baseline and post-iTBS oscillations was strengthened by the concurrent phase-locked tACS-iTBS stimulation protocol. These findings highlight the potential of phase-locked tACS to enhance the effects of iTBS on prefrontal cortical excitability.
Collapse
Affiliation(s)
- Nadja Zimmermann
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Graduate School of Health Sciences, University of Bern, Bern
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Andrea S. Riesen
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Yosuke Morishima
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| |
Collapse
|
18
|
Carrette S, Vonck K, Klooster D, Raedt R, Carrette E, Delbeke J, Wadman W, Casarotto S, Massimini M, Boon P. Exploration of Theta Burst-Induced Modulation of Transcranial Magnetic Stimulation-Evoked Potentials Over the Motor Cortex. Neuromodulation 2025; 28:123-135. [PMID: 38842956 DOI: 10.1016/j.neurom.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/17/2024] [Accepted: 04/22/2024] [Indexed: 01/06/2025]
Abstract
OBJECTIVES This study investigates the way theta burst stimulation (TBS) applied to the motor cortex (M1) affects TMS-evoked potentials (TEPs). There have been few direct comparisons of continuous TBS (cTBS) and intermittent TBS (iTBS), and there is a lack of consensus from existing literature on the induced effects. We performed an exploratory trial to assess the effect of M1-cTBS and M1-iTBS on TEP components. MATERIALS AND METHODS In a cross-over design, 15 participants each completed three experimental sessions with ≥one week in between sessions. The effect of a single TBS train administered over M1 was investigated using TEPs recorded at the same location, 20 to 30 minutes before and in the first 10 minutes after the intervention. In each session, a different type of TBS (cTBS, iTBS, or active control cTBS) was administered in a single-blinded randomized order. For six different TEP components (N15, P30, N45, P60, N100, and P180), amplitude was compared before and after the intervention using cluster-based permutation (CBP) analysis. RESULTS We were unable to identify a significant modulation of any of the six predefined M1 TEP components after a single train of TBS. When waiving statistical correction for multiple testing in view of the exploratory nature of the study, the CBP analysis supports a reduction of the P180 amplitude after iTBS (p = 0.015), whereas no effect was observed after cTBS or in the active control condition. The reduction occurred in ten of 15 subjects, showing intersubject variability. CONCLUSIONS The observed decrease in the P180 amplitude after iTBS may suggest a neuromodulatory effect of iTBS. Despite methodologic issues related to our study and the potential sensory contamination within this latency range of the TEP, we believe that our finding deserves further investigation in hypothesis-driven trials of adequate power and proper design, focusing on disentanglement between TEPs and peripherally evoked potentials, in addition to indicating reproducibility across sessions and subjects. CLINICAL TRIAL REGISTRATION The Clinicaltrials.gov registration number for the study is NCT05206162.
Collapse
Affiliation(s)
- Sofie Carrette
- 4Brain, Department of Neurology, Ghent University Hospital, Ghent, Belgium.
| | - Kristl Vonck
- 4Brain, Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Debby Klooster
- 4Brain, Department of Neurology, Ghent University Hospital, Ghent, Belgium; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Robrecht Raedt
- 4Brain, Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Evelien Carrette
- 4Brain, Department of Neurology, Ghent University Hospital, Ghent, Belgium; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jean Delbeke
- 4Brain, Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Wytse Wadman
- 4Brain, Department of Neurology, Ghent University Hospital, Ghent, Belgium; Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Silvia Casarotto
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Don Carlo Gnocchi, Organizzazione Non Lucrativa di Utilità Sociale (ONLUS), Milan, Italy
| | - Marcello Massimini
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Don Carlo Gnocchi, Organizzazione Non Lucrativa di Utilità Sociale (ONLUS), Milan, Italy
| | - Paul Boon
- 4Brain, Department of Neurology, Ghent University Hospital, Ghent, Belgium; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
19
|
Takano M, Wada M, Nakajima S, Taniguchi K, Honda S, Mimura Y, Kitahata R, Zomorrodi R, Blumberger DM, Daskalakis ZJ, Uchida H, Mimura M, Noda Y. Optimizing the identification of long-interval intracortical inhibition from the dorsolateral prefrontal cortex. Clin Neurophysiol 2025; 169:102-113. [PMID: 39578189 DOI: 10.1016/j.clinph.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/04/2024] [Accepted: 10/27/2024] [Indexed: 11/24/2024]
Abstract
OBJECTIVE This study aimed to optimally evaluate the effect of the long-interval intracortical inhibition (LICI) in the dorsolateral prefrontal cortex (DLPFC) through transcranial magnetic stimulation combined with electroencephalography (TMS-EEG) by eliminating the volume conductance with signal source estimation and using a realistic sham coil as a control. METHODS We compared the LICI effects from the DLPFC between the active and sham stimulation conditions in 27 healthy participants. Evoked responses between the two conditions were evaluated at the sensor and source levels. RESULTS At the sensor level, a significant LICI effect was confirmed in the active condition in the global mean field power analysis; however, in the local mean field power analysis focused on the DLPFC, no LICI effect was observed in the active condition. However, in the signal source estimation analysis for the DLPFC, we could reconfirm a significant LICI effect (p = 0.023) in the interval 30-250 ms post-stimulus, compared to the sham condition. CONCLUSIONS Our results demonstrate that application of realistic sham stimulation condition and source estimation method allows for a robust and optimal identification of the LICI effect in the DLPFC. SIGNIFICANCE The optimal DLPFC-LICI effect was identified by the use of the sophisticated sham coil.
Collapse
Affiliation(s)
- Mayuko Takano
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; TEIJIN PHARMA LIMITED, Tokyo, Japan
| | - Masataka Wada
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Keita Taniguchi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shiori Honda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; Faculty of Environmental and Information Studies, Media and Governance, Graduate school of Keio University
| | - Yu Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | | | - Reza Zomorrodi
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zafiris J Daskalakis
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; Department of Psychiatry, International University of Health and Welfare, Mita Hospital, Tokyo, Japan.
| |
Collapse
|
20
|
De Martino E, Casali AG, Nascimento Couto BA, Graven-Nielsen T, Ciampi de Andrade D. Increase in beta frequency phase synchronization and power after a session of high frequency repetitive transcranial magnetic stimulation to the primary motor cortex. Neurotherapeutics 2025; 22:e00497. [PMID: 39581793 PMCID: PMC11742839 DOI: 10.1016/j.neurot.2024.e00497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/06/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024] Open
Abstract
High-frequency repetitive transcranial magnetic stimulation (rTMS) to the primary motor cortex (M1) is used to treat several neuropsychiatric disorders, but the detailed temporal dynamics of its effects on cortical connectivity remain unclear. Here, we stimulated four cortical targets used for rTMS (M1; dorsolateral-prefrontal cortex, DLPFC; anterior cingulate cortex, ACC; posterosuperior insula, PSI) with TMS coupled with high-density electroencephalography (TMS-EEG) to measure cortical excitability and oscillatory dynamics before and after active- and sham-M1-rTMS. Before and immediately after active or sham M1-rTMS (15 min, 3000 pulses at 10 Hz), single-pulse TMS-evoked EEG was recorded at the four targets in 20 healthy individuals. Cortical excitability and oscillatory measures were extracted at the main frequency bands (α [8-13 Hz], low-β [14-24 Hz], high-β [25-35 Hz]). Active-M1-rTMS increased high-β synchronization in electrodes near the stimulation area and remotely, in the contralateral hemisphere (p = 0.026). Increased high-β synchronization (48-83 ms after TMS-EEG stimulation) was succeeded by enhancement in low-β power (86-144 ms after TMS-EEG stimulation) both locally and in the contralateral hemisphere (p = 0.006). No significant differences were observed in stimulating the DLPFC, ACC, or PSI by TMS-EEG. M1-rTMS engaged a sequence of enhanced phase synchronization, followed by an increase in power occurring within M1, which spread to remote areas and persisted after the end of the stimulation session. These results are relevant to understanding the M1 neuroplastic effects of rTMS in health and may help in the development of informed rTMS therapies in disease.
Collapse
Affiliation(s)
- Enrico De Martino
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | | | - Bruno Andry Nascimento Couto
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Thomas Graven-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Daniel Ciampi de Andrade
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
21
|
Daly I, Williams N, Nasuto SJ. TMS-evoked potential propagation reflects effective brain connectivity. J Neural Eng 2024; 21:066038. [PMID: 39671798 DOI: 10.1088/1741-2552/ad9ee0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 12/13/2024] [Indexed: 12/15/2024]
Abstract
Objective.Cognition is achieved through communication between brain regions. Consequently, there is considerable interest in measuring effective connectivity. A promising effective connectivity metric is transcranial magnetic stimulation (TMS) evoked potentials (TEPs), an inflection in amplitude of the electroencephalogram recorded from one brain region as a result of TMS applied to another region. However, the TEP is confounded by multiple factors and there is a need for further investigation of the TEP as a measure of effective connectivity and to compare it to existing statistical measures of effective connectivity.Approach.To this end, we used a pre-existing experimental dataset to compare TEPs between a motor control task with and without visual feedback. We then used the results to compare our TEP-based measures of effective connectivity to established statistical measures of effective connectivity provided by multivariate auto-regressive modelling.Main results.Our results reveal significantly more negative TEPs when feedback is not presented from 40 ms to 100 ms post-TMS over frontal and central channels. We also see significantly more positive later TEPs from 280-400 ms on the contra-lateral hemisphere motor and parietal channels when no feedback is presented. These results suggest differences in effective connectivity are induced by visual feedback of movement. We further find that the variation in one of these early TEPs (the N40) is reliably related to directed coherence.Significance.Taken together, these results indicate components of the TEPs serve as a measure of effective connectivity. Furthermore, our results also support the idea that effective connectivity is a dynamic process and, importantly, support the further use of TEPs in delineating region-to-region maps of changes in effective connectivity as a result of motor control feedback.
Collapse
Affiliation(s)
- Ian Daly
- Brain-Computer Interfacing and Neural Engineering Laboratory, School of Computer Science and Electronic Engineering, University of Essex, Colchester, United Kingdom
| | - Nitin Williams
- Department of Neuroscience & Biomedical Engineering, Aalto University, Espoo, Finland
- Department of Computer Science, University of Helsinki, Helsinki, Finland
| | - Slawomir J Nasuto
- Biomedical Sciences and Biomedical Engineering Division, School of Biological Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
22
|
Spampinato DA, Casula EP, Koch G. The Cerebellum and the Motor Cortex: Multiple Networks Controlling Multiple Aspects of Behavior. Neuroscientist 2024; 30:723-743. [PMID: 37649430 DOI: 10.1177/10738584231189435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The cerebellum and its thalamic projections to the primary motor cortex (M1) are well known to play an essential role in executing daily actions. Anatomic investigations in animals and postmortem humans have established the reciprocal connections between these regions; however, how these pathways can shape cortical activity in behavioral contexts and help promote recovery in neuropathological conditions remains not well understood. The present review aims to provide a comprehensive description of these pathways in animals and humans and discuss how novel noninvasive brain stimulation (NIBS) methods can be used to gain a deeper understanding of the cerebellar-M1 connections. In the first section, we focus on recent animal literature that details how information sent from the cerebellum and thalamus is integrated into an broad network of cortical motor neurons. We then discuss how NIBS approaches in humans can be used to reliably assess the connectivity between the cerebellum and M1. Moreover, we provide the latest perspectives on using advanced NIBS approaches to investigate and modulate multiple cerebellar-cortical networks involved in movement behavior and plasticity. Finally, we discuss how these emerging methods have been used in translation research to produce long-lasting modifications of cerebellar-thalamic-M1 to restore cortical activity and motor function in neurologic patients.
Collapse
|
23
|
Chowdhury NS, Chang WJ, Cheng D, Manivasagan N, Seminowicz DA, Schabrun SM. The effect of prolonged elbow pain and rTMS on cortical inhibition: A TMS-EEG study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625334. [PMID: 39651216 PMCID: PMC11623566 DOI: 10.1101/2024.11.26.625334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Introduction Recent studies using combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) have shown that pain leads to an increase in the N45 peak of the TMS-evoked potential (TEP), which is mediated by GABAergic inhibition. Conversely, 10Hz repetitive TMS (10Hz-rTMS), which provides pain relief, reduces the N45 peak. However, these studies used brief pain stimuli (lasting minutes), limiting their clinical relevance. The present study determined the effect of pain and 10Hz-rTMS on the N45 peak in a prolonged pain model (lasting several days) induced by nerve growth factor (NGF) injection to the elbow muscle. Materials and Methods Experiment 1 : TEPs were measured in 22 healthy participants on Day 0 (pre-NGF), Day 2 (peak pain), and Day 7 (pain resolution). Experiment 2 : We examined the effect of 5 days of active (n=16) or sham (n=16) rTMS to the left primary motor cortex (M1) on the N45 peak during prolonged NGF-induced pain, with TEPs measured on Day 0 and Day 4 (post-rTMS). Results Experiment 1: While no overall change in the N45 peak was seen, a correlation emerged between higher pain severity on Day 2 and a larger increase in the N45 peak. Experiment 2 : Active rTMS reduced the N45 peak on Day 4 vs. Day 0, with no effect in the sham group. Conclusion Our findings suggest that (i) higher pain severity correlates with an increase in the N45 peak, and (ii) rTMS decreases cortical inhibition in a model of prolonged experimental pain. This study extends previous research by demonstrating a link between pain perception and cortical inhibition within a prolonged pain context.
Collapse
|
24
|
Sasaki R, Hand BJ, Liao WY, Semmler JG, Opie GM. Investigating the Effects of Repetitive Paired-Pulse Transcranial Magnetic Stimulation on Visuomotor Training Using TMS-EEG. Brain Topogr 2024; 37:1158-1170. [PMID: 39066878 PMCID: PMC11408544 DOI: 10.1007/s10548-024-01071-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
I-wave periodicity repetitive paired-pulse transcranial magnetic stimulation (iTMS) can modify acquisition of a novel motor skill, but the associated neurophysiological effects remain unclear. The current study therefore used combined TMS-electroencephalography (TMS-EEG) to investigate the neurophysiological effects of iTMS on subsequent visuomotor training (VT). Sixteen young adults (26.1 ± 5.1 years) participated in three sessions including real iTMS and VT (iTMS + VT), control iTMS and VT (iTMSControl + VT), or iTMS alone. Motor-evoked potentials (MEPs) and TMS-evoked potentials (TEPs) were measured before and after iTMS, and again after VT, to assess neuroplastic changes. Irrespective of the intervention, MEP amplitude was not changed after iTMS or VT. Motor skill was improved compared with baseline, but no differences were found between stimulus conditions. In contrast, the P30 peak was altered by VT when preceded by control iTMS (P < 0.05), but this effect was not apparent when VT was preceded by iTMS or following iTMS alone (all P > 0.15). In contrast to expectations, iTMS was unable to modulate MEP amplitude or influence motor learning. Despite this, changes in P30 amplitude suggested that motor learning was associated with altered cortical reactivity. Furthermore, this effect was abolished by priming with iTMS, suggesting an influence of priming that failed to impact learning.
Collapse
Affiliation(s)
- Ryoki Sasaki
- Discipline of Physiology, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Brodie J Hand
- Discipline of Physiology, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Wei-Yeh Liao
- Discipline of Physiology, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - John G Semmler
- Discipline of Physiology, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - George M Opie
- Discipline of Physiology, The University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
25
|
Maiella M, Mencarelli L, Casula EP, Borghi I, Assogna M, di Lorenzo F, Bonnì S, Pezzopane V, Martorana A, Koch G. Breakdown of TMS evoked EEG signal propagation within the default mode network in Alzheimer's disease. Clin Neurophysiol 2024; 167:177-188. [PMID: 39332078 DOI: 10.1016/j.clinph.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND The neural activity of the Default Mode Network (DMN) is disrupted in patients with In Alzheimer's disease (AD). OBJECTIVES We used a novel multimodal approach to track neural signal propagation within the DMN in AD patients. METHODS Twenty mild to moderate AD patients were recruited. We used transcranial magnetic stimulation (TMS) pulses to probe with a millisecond time resolution the propagation of evoked electroencephalography (EEG) signal following the neural activation of the Precuneus (PC), which is a key hub area of the DMN. Moreover, functional and structural magnetic resonance imaging (MRI) data were collected to reconstruct individual features of the DMN. RESULTS In AD patients a probe TMS pulse applied over the PC evokes an increased local activity unmasking underlying hyperexcitability. In contrast, the EEG evoked neural signal did not propagate efficiently within the DMN showing a remarkable breakdown of signal propagation. fMRI and structural tractography showed that impaired signal propagation was related to the same connectivity matrices derived from DMN BOLD signal and transferred by specific white matter bundles forming the cingulum. These features were not detectable stimulating other areas (left dorsolateral prefrontal cortex) or for different networks (fronto-parietal network). Finally, connectivity breakdown was associated with cognitive impairment, as measured with the Clinical Dementia Rating Scale sum of boxes (CDR-SB). CONCLUSIONS TMS-EEG in AD shows both local hyperexcitability and a lack of signal propagation within the DMN. These neurophysiological features also correlate with structural and cognitive attributes of the patients. SIGNIFICANCE Neuronavigated TMS-EEG may be used as a novel neurophysiological biomarker of DMN connectivity in AD patients.
Collapse
Affiliation(s)
- Michele Maiella
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Lucia Mencarelli
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Elias P Casula
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Ilaria Borghi
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Neuroscience and Rehabilitation, University of Ferrara, and Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara, Italy
| | - Martina Assogna
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesco di Lorenzo
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Sonia Bonnì
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Valentina Pezzopane
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Neuroscience and Rehabilitation, University of Ferrara, and Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara, Italy
| | | | - Giacomo Koch
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Neuroscience and Rehabilitation, University of Ferrara, and Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara, Italy.
| |
Collapse
|
26
|
Speranza BE, Hill AT, Do M, Cerins A, Donaldson PH, Desarker P, Oberman LM, Das S, Enticott PG, Kirkovski M. The Neurophysiological Effects of Theta Burst Stimulation as Measured by Electroencephalography: A Systematic Review. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:1083-1120. [PMID: 39084526 DOI: 10.1016/j.bpsc.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/10/2024] [Accepted: 07/21/2024] [Indexed: 08/02/2024]
Abstract
Theta burst stimulation (TBS) is a noninvasive brain stimulation technique that can modulate neural activity. The effect of TBS on regions beyond the motor cortex remains unclear. With increased interest in applying TBS to nonmotor regions for research and clinical purposes, these effects must be understood and characterized. We synthesized the electrophysiological effects of a single session of TBS, as indexed by electroencephalography (EEG) and concurrent transcranial magnetic stimulation and EEG, in nonclinical participants. We reviewed 79 studies that administered either continuous TBS or intermittent TBS protocols. Broadly, continuous TBS suppressed and intermittent TBS facilitated evoked response component amplitudes. Response to TBS as measured by spectral power and connectivity was much more variable. Variability increased in the presence of task stimuli. There was a large degree of heterogeneity in the research methodology across studies. Additionally, the effect of individual differences on TBS response has been insufficiently investigated. Future research investigating the effects of TBS as measured by EEG must consider methodological and individual factors that may affect TBS outcomes.
Collapse
Affiliation(s)
- Bridgette E Speranza
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Victoria, Australia.
| | - Aron T Hill
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Victoria, Australia
| | - Michael Do
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Victoria, Australia
| | - Andris Cerins
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Victoria, Australia; Brain Stimulation Laboratory, Alfred Psychiatry Research Centre, Department of Psychiatry, School of Translational Medicine, Monash University, Melbourne, Australia
| | - Peter H Donaldson
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Victoria, Australia
| | - Pushpal Desarker
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Lindsay M Oberman
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Sushmit Das
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Victoria, Australia
| | - Melissa Kirkovski
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Victoria, Australia; Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
27
|
Erickson B, Kim B, Sabes P, Rich R, Hatcher A, Fernandez-Nuñez G, Mentzelopoulos G, Vitale F, Medaglia J. TMS-induced phase resets depend on TMS intensity and EEG phase. J Neural Eng 2024; 21:056035. [PMID: 39321851 PMCID: PMC11500019 DOI: 10.1088/1741-2552/ad7f87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/26/2024] [Accepted: 09/23/2024] [Indexed: 09/27/2024]
Abstract
Objective. The phase of the electroencephalographic (EEG) signal predicts performance in motor, somatosensory, and cognitive functions. Studies suggest that brain phase resets align neural oscillations with external stimuli, or couple oscillations across frequency bands and brain regions. Transcranial Magnetic Stimulation (TMS) can cause phase resets noninvasively in the cortex, thus providing the potential to control phase-sensitive cognitive functions. However, the relationship between TMS parameters and phase resetting is not fully understood. This is especially true of TMS intensity, which may be crucial to enabling precise control over the amount of phase resetting that is induced. Additionally, TMS phase resetting may interact with the instantaneous phase of the brain. Understanding these relationships is crucial to the development of more powerful and controllable stimulation protocols.Approach.To test these relationships, we conducted a TMS-EEG study. We applied single-pulse TMS at varying degrees of stimulation intensity to the motor area in an open loop. Offline, we used an autoregressive algorithm to estimate the phase of the intrinsicµ-Alpha rhythm of the motor cortex at the moment each TMS pulse was delivered.Main results. We identified post-stimulation epochs whereµ-Alpha phase resetting and N100 amplitude depend parametrically on TMS intensity and are significantversusperipheral auditory sham stimulation. We observedµ-Alpha phase inversion after stimulations near peaks but not troughs in the endogenousµ-Alpha rhythm.Significance. These data suggest that low-intensity TMS primarily resets existing oscillations, while at higher intensities TMS may activate previously silent neurons, but only when endogenous oscillations are near the peak phase. These data can guide future studies that seek to induce phase resetting, and point to a way to manipulate the phase resetting effect of TMS by varying only the timing of the pulse with respect to ongoing brain activity.
Collapse
Affiliation(s)
- Brian Erickson
- Applied Cognitive and Brain Sciences, Department of Psychology, Drexel University, Philadelphia, PA 19104, United States of America
| | - Brian Kim
- Applied Cognitive and Brain Sciences, Department of Psychology, Drexel University, Philadelphia, PA 19104, United States of America
| | - Philip Sabes
- Starfish Neuroscience, Bellevue, WA 98004, United States of America
- Department of Physiology, University of California, San Francisco, CA 94143, United States of America
| | - Ryan Rich
- Applied Cognitive and Brain Sciences, Department of Psychology, Drexel University, Philadelphia, PA 19104, United States of America
| | - Abigail Hatcher
- Applied Cognitive and Brain Sciences, Department of Psychology, Drexel University, Philadelphia, PA 19104, United States of America
| | - Guadalupe Fernandez-Nuñez
- Applied Cognitive and Brain Sciences, Department of Psychology, Drexel University, Philadelphia, PA 19104, United States of America
| | - Georgios Mentzelopoulos
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States of America
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, United States of America
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, United States of America
| | - Flavia Vitale
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States of America
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, United States of America
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, United States of America
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, United States of America
- Department of Physical Medicine and Rehabilitation, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - John Medaglia
- Applied Cognitive and Brain Sciences, Department of Psychology, Drexel University, Philadelphia, PA 19104, United States of America
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, United States of America
- Department of Neurology, Drexel University, Philadelphia, PA 19104, United States of America
| |
Collapse
|
28
|
Beck M, Heyl M, Mejer L, Vinding M, Christiansen L, Tomasevic L, Siebner H. Methodological Choices Matter: A Systematic Comparison of TMS-EEG Studies Targeting the Primary Motor Cortex. Hum Brain Mapp 2024; 45:e70048. [PMID: 39460649 PMCID: PMC11512442 DOI: 10.1002/hbm.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Transcranial magnetic stimulation (TMS) triggers time-locked cortical activity that can be recorded with electroencephalography (EEG). Transcranial evoked potentials (TEPs) are widely used to probe brain responses to TMS. Here, we systematically reviewed 137 published experiments that studied TEPs elicited from TMS to the human primary motor cortex (M1) in healthy individuals to investigate the impact of methodological choices. We scrutinized prevalent methodological choices and assessed how consistently they were reported in published papers. We extracted amplitudes and latencies from reported TEPs and compared specific TEP peaks and components between studies using distinct methods. Reporting of methodological details was overall sufficient, but some relevant information regarding the TMS settings and the recording and preprocessing of EEG data were missing in more than 25% of the included experiments. The published TEP latencies and amplitudes confirm the "prototypical" TEP waveform following stimulation of M1, comprising distinct N15, P30, N45, P60, N100, and P180 peaks. However, variations in amplitude were evident across studies. Higher stimulation intensities were associated with overall larger TEP amplitudes. Active noise masking during TMS generally resulted in lower TEP amplitudes compared to no or passive masking but did not specifically impact those TEP peaks linked to long-latency sensory processing. Studies implementing independent component analysis (ICA) for artifact removal generally reported lower TEP magnitudes. In summary, some aspects of reporting practices could be improved in future TEP studies to enable replication. Methodological choices, including TMS intensity and the use of noise masking or ICA, introduce systematic differences in reported TEP amplitudes. Further investigation into the significance of these and other methodological factors and their interactions is warranted.
Collapse
Affiliation(s)
- Mikkel Malling Beck
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
| | - Marieke Heyl
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
| | - Louise Mejer
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
| | - Mikkel C. Vinding
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
| | - Lasse Christiansen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
- Department of Neuroscience, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Leo Tomasevic
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
- Department of NeurologyCopenhagen University Hospital Bispebjerg and FrederiksbergKøbenhavnDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
29
|
Kabir A, Dhami P, Dussault Gomez MA, Blumberger DM, Daskalakis ZJ, Moreno S, Farzan F. Influence of Large-Scale Brain State Dynamics on the Evoked Response to Brain Stimulation. J Neurosci 2024; 44:e0782242024. [PMID: 39164105 PMCID: PMC11426374 DOI: 10.1523/jneurosci.0782-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/22/2024] Open
Abstract
Understanding how spontaneous brain activity influences the response to neurostimulation is crucial for the development of neurotherapeutics and brain-computer interfaces. Localized brain activity is suggested to influence the response to neurostimulation, but whether fast-fluctuating (i.e., tens of milliseconds) large-scale brain dynamics also have any such influence is unknown. By stimulating the prefrontal cortex using combined transcranial magnetic stimulation (TMS) and electroencephalography, we examined how dynamic global brain state patterns, as defined by microstates, influence the magnitude of the evoked brain response. TMS applied during what resembled the canonical Microstate C was found to induce a greater evoked response for up to 80 ms compared with other microstates. This effect was found in a repeated experimental session, was absent during sham stimulation, and was replicated in an independent dataset. Ultimately, ongoing and fast-fluctuating global brain states, as probed by microstates, may be associated with intrinsic fluctuations in connectivity and excitation-inhibition balance and influence the neurostimulation outcome. We suggest that the fast-fluctuating global brain states be considered when developing any related paradigms.
Collapse
Affiliation(s)
- Amin Kabir
- Centre for Engineering-Led Brain Research, School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia V3T 0A3, Canada
| | - Prabhjot Dhami
- Centre for Engineering-Led Brain Research, School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia V3T 0A3, Canada
| | - Marie-Anne Dussault Gomez
- Centre for Engineering-Led Brain Research, School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia V3T 0A3, Canada
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario M6J 1A8, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario M5T 1R8, Canada
| | - Zafiris J Daskalakis
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093
| | - Sylvain Moreno
- School of Interactive Arts and Technology, Simon Fraser University, Surrey, British Columbia V3T 0A3, Canada
- Circle Innovation, Vancouver, British Columbia V6B 4N6, Canada
| | - Faranak Farzan
- Centre for Engineering-Led Brain Research, School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia V3T 0A3, Canada
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario M6J 1A8, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario M5T 1R8, Canada
| |
Collapse
|
30
|
Comstock L, Carvalho VR, Lainscsek C, Fallah A, Sejnowski TJ. Transcranial Magnetic Stimulation Facilitates Neural Speech Decoding. Brain Sci 2024; 14:895. [PMID: 39335391 PMCID: PMC11430724 DOI: 10.3390/brainsci14090895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Transcranial magnetic stimulation (TMS) has been widely used to study the mechanisms that underlie motor output. Yet, the extent to which TMS acts upon the cortical neurons implicated in volitional motor commands and the focal limitations of TMS remain subject to debate. Previous research links TMS to improved subject performance in behavioral tasks, including a bias in phoneme discrimination. Our study replicates this result, which implies a causal relationship between electro-magnetic stimulation and psychomotor activity, and tests whether TMS-facilitated psychomotor activity recorded via electroencephalography (EEG) may thus serve as a superior input for neural decoding. First, we illustrate that site-specific TMS elicits a double dissociation in discrimination ability for two phoneme categories. Next, we perform a classification analysis on the EEG signals recorded during TMS and find a dissociation between the stimulation site and decoding accuracy that parallels the behavioral results. We observe weak to moderate evidence for the alternative hypothesis in a Bayesian analysis of group means, with more robust results upon stimulation to a brain region governing multiple phoneme features. Overall, task accuracy was a significant predictor of decoding accuracy for phoneme categories (F(1,135) = 11.51, p < 0.0009) and individual phonemes (F(1,119) = 13.56, p < 0.0003), providing new evidence for a causal link between TMS, neural function, and behavior.
Collapse
Affiliation(s)
- Lindy Comstock
- Department of Psychiatry & Biobehavioral Sciences, UCLA, Los Angeles, CA 90095, USA
- Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA 90095, USA
| | - Vinícius Rezende Carvalho
- Postgraduate Program in Electrical Engineering, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Claudia Lainscsek
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Institute for Neural Computation, UCSD, San Diego, CA 92093, USA
| | - Aria Fallah
- Department of Neurosurgery, UCLA, Los Angeles, CA 90095, USA
| | - Terrence J. Sejnowski
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Institute for Neural Computation, UCSD, San Diego, CA 92093, USA
- Division of Biological Sciences, UCSD, San Diego, CA 92093, USA
| |
Collapse
|
31
|
Casula EP, Esposito R, Dezi S, Ortelli P, Sebastianelli L, Ferrazzoli D, Saltuari L, Pezzopane V, Borghi I, Rocchi L, Ajello V, Trinka E, Oliviero A, Koch G, Versace V. Reduced TMS-evoked EEG oscillatory activity in cortical motor regions in patients with post-COVID fatigue. Clin Neurophysiol 2024; 165:26-35. [PMID: 38943790 DOI: 10.1016/j.clinph.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/13/2024] [Accepted: 06/10/2024] [Indexed: 07/01/2024]
Abstract
OBJECTIVE Persistent fatigue is a major symptom of the so-called 'long-COVID syndrome', but the pathophysiological processes that cause it remain unclear. We hypothesized that fatigue after COVID-19 would be associated with altered cortical activity in premotor and motor regions. METHODS We used transcranial magnetic stimulation combined with EEG (TMS-EEG) to explore the neural oscillatory activity of the left primary motor area (l-M1) and supplementary motor area (SMA) in a group of sixteen post-COVID patients complaining of lingering fatigue as compared to a sample of age-matched healthy controls. Perceived fatigue was assessed with the Fatigue Severity Scale (FSS) and Fatigue Rating Scale (FRS). RESULTS Post-COVID patients showed a remarkable reduction of beta frequency in both areas. Correlation analysis exploring linear relation between neurophysiological and clinical measures revealed a significant inverse correlation between the individual level of beta oscillations evoked by TMS of SMA with the individual scores in the FRS (r(15) = -0.596; p = 0.012). CONCLUSIONS Post-COVID fatigue is associated with a reduction of TMS-evoked beta oscillatory activity in SMA. SIGNIFICANCE TMS-EEG could be used to identify early alterations of cortical oscillatory activity that could be related to the COVID impact in central fatigue.
Collapse
Affiliation(s)
- Elias P Casula
- Department of System Medicine, University of Tor Vergata, Via Cracovia 50, 00133, Rome, Italy; Experimental Neuropsychophysiology Laboratory, IRCCS Santa Lucia Foundation, Via Ardeatina 354, 00179, Rome, Italy
| | - Romina Esposito
- Experimental Neuropsychophysiology Laboratory, IRCCS Santa Lucia Foundation, Via Ardeatina 354, 00179, Rome, Italy
| | - Sabrina Dezi
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy, Teaching Hospital of the Paracelsus Medical Unversity (PMU), Salzburg, Austria; Teaching Hospital of the Paracelsus Medical University (PMU), Salzburg, Austria
| | - Paola Ortelli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy, Teaching Hospital of the Paracelsus Medical Unversity (PMU), Salzburg, Austria; Teaching Hospital of the Paracelsus Medical University (PMU), Salzburg, Austria
| | - Luca Sebastianelli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy, Teaching Hospital of the Paracelsus Medical Unversity (PMU), Salzburg, Austria; Teaching Hospital of the Paracelsus Medical University (PMU), Salzburg, Austria
| | - Davide Ferrazzoli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy, Teaching Hospital of the Paracelsus Medical Unversity (PMU), Salzburg, Austria; Teaching Hospital of the Paracelsus Medical University (PMU), Salzburg, Austria
| | - Leopold Saltuari
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy, Teaching Hospital of the Paracelsus Medical Unversity (PMU), Salzburg, Austria; Teaching Hospital of the Paracelsus Medical University (PMU), Salzburg, Austria
| | - Valentina Pezzopane
- Experimental Neuropsychophysiology Laboratory, IRCCS Santa Lucia Foundation, Via Ardeatina 354, 00179, Rome, Italy
| | - Ilaria Borghi
- Experimental Neuropsychophysiology Laboratory, IRCCS Santa Lucia Foundation, Via Ardeatina 354, 00179, Rome, Italy
| | - Lorenzo Rocchi
- Department of Medical Sciences and Public Health, University of Cagliari, Via Università 40, 09124 Cagliari, Italy
| | - Valentina Ajello
- Department of Cardiac Anesthesia, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Eugen Trinka
- Department of Neurology, Neurocritical Care and Neurorehabilitation, Christian Doppler University Hospital, Centre for Cognitive Neuroscience, Paracelsus Medical University, Member of the European Reference Network EpiCARE, Salzburg, Ignaz-Harrer-Straße 79, 5020 Salzburg, Austria; Neuroscience Institute, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, Ignaz-Harrer-Straße 79, 5020 Salzburg, Austria; Karl Landsteiner Institute of Neurorehabilitation and Space Neurology, Julius Raab-Promenade 49/1, 3100 St. Pölten, Salzburg, Austria
| | - Antonio Oliviero
- FENNSI Group, Hospital Nacional de Parapléjicos, SESCAM, FINCA DE, Carr. de la Peraleda, S/N, 45004 Toledo, Spain; Center for Clinical Neuroscience, Hospital Los Madroños, M-501 Km 17, 900 - 28690 Brunete, Spain
| | - Giacomo Koch
- Experimental Neuropsychophysiology Laboratory, IRCCS Santa Lucia Foundation, Via Ardeatina 354, 00179, Rome, Italy; Department of Neuroscience and Rehabilitation, University of Ferrara, Via Ludovico Ariosto 35, 44121 Ferrara, Italy
| | - Viviana Versace
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy, Teaching Hospital of the Paracelsus Medical Unversity (PMU), Salzburg, Austria; Teaching Hospital of the Paracelsus Medical University (PMU), Salzburg, Austria; Department of Neurology, Neurocritical Care and Neurorehabilitation, Christian Doppler University Hospital, Centre for Cognitive Neuroscience, Paracelsus Medical University, Member of the European Reference Network EpiCARE, Salzburg, Ignaz-Harrer-Straße 79, 5020 Salzburg, Austria.
| |
Collapse
|
32
|
Noda Y, Takano M, Wada M, Mimura Y, Nakajima S. Validation of the number of pulses required for TMS-EEG in the prefrontal cortex considering test feasibility. Neuroscience 2024; 554:63-71. [PMID: 39002755 DOI: 10.1016/j.neuroscience.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) combined with electroencephalography (EEG), TMS-EEG, is a useful neuroscientific tool for the assessment of neurophysiology in the human cerebral cortex. Theoretically, TMS-EEG data is expected to have a better data quality as the number of stimulation pulses increases. However, since TMS-EEG testing is a modality that is examined on human subjects, the burden on the subject and tolerability of the test must also be carefully considered. METHOD In this study, we aimed to determine the number of stimulation pulses that satisfy the reliability and validity of data quality in single-pulse TMS (spTMS) for the dorsolateral prefrontal cortex (DLPFC). TMS-EEG data for (1) 40-pulse, (2) 80-pulse, (3) 160-pulse, and (4) 240-pulse conditions were extracted from spTMS experimental data for the left DLPFC of 20 healthy subjects, and the similarities between TMS-evoked potentials (TEP) and oscillations across the conditions were evaluated. RESULTS As a result, (2) 80-pulse and (3) 160-pulse conditions showed highly equivalent to the benchmark condition of (4) 240-pulse condition. However, (1) 40-pulse condition showed only weak to moderate equivalence to the (4) 240-pulse condition. Thus, in the DLPFC TMS-EEG experiment, 80 pulses of stimulations was found to be a reasonable enough number of pulses to extract reliable TEPs, compared to 160 or 240 pulses. CONCLUSIONS This is the first substantial study to examine the appropriate number of stimulus pulses that are reasonable and feasible for TMS-EEG testing of the DLPFC.
Collapse
Affiliation(s)
- Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.
| | - Mayuko Takano
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; Teijin Pharma Ltd., Tokyo, Japan
| | - Masataka Wada
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yu Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
33
|
Hall JD, Green JM, Chen YCA, Liu Y, Zhang H, Sundman MH, Chou YH. Exploring the potential of combining transcranial magnetic stimulation and electroencephalography to investigate mild cognitive impairment and Alzheimer's disease: a systematic review. GeroScience 2024; 46:3659-3693. [PMID: 38356029 PMCID: PMC11226590 DOI: 10.1007/s11357-024-01075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024] Open
Abstract
Transcranial magnetic stimulation (TMS) and electroencephalography (EEG) are non-invasive techniques used for neuromodulation and recording brain electrical activity, respectively. The integration of TMS-EEG has emerged as a valuable tool for investigating the complex mechanisms involved in age-related disorders, such as mild cognitive impairment (MCI) and Alzheimer's disease (AD). By systematically synthesizing TMS-EEG studies, this review aims to shed light on the neurophysiological mechanisms underlying MCI and AD, while also exploring the practical applications of TMS-EEG in clinical settings. PubMed, ScienceDirect, and PsychInfo were selected as the databases for this review. The 22 eligible studies included a total of 592 individuals with MCI or AD as well as 301 cognitively normal adults. TMS-EEG assessments unveiled specific patterns of corticospinal excitability, plasticity, and brain connectivity that distinguished individuals on the AD spectrum from cognitively normal older adults. Moreover, the TMS-induced EEG features were observed to be correlated with cognitive performance and the presence of AD pathological biomarkers. The comprehensive examination of the existing studies demonstrates that the combination of TMS and EEG has yielded valuable insights into the neurophysiology of MCI and AD. This integration shows great potential for early detection, monitoring disease progression, and anticipating response to treatment. Future research is of paramount importance to delve into the potential utilization of TMS-EEG for treatment optimization in individuals with MCI and AD.
Collapse
Affiliation(s)
- J D Hall
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, 1230 N Cherry Ave., Tucson, AZ, USA
| | - Jacob M Green
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, 1230 N Cherry Ave., Tucson, AZ, USA
| | - Yu-Chin A Chen
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, 1230 N Cherry Ave., Tucson, AZ, USA
| | - Yilin Liu
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, 1230 N Cherry Ave., Tucson, AZ, USA
| | - Hangbin Zhang
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, 1230 N Cherry Ave., Tucson, AZ, USA
| | - Mark H Sundman
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, 1230 N Cherry Ave., Tucson, AZ, USA
| | - Ying-Hui Chou
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, 1230 N Cherry Ave., Tucson, AZ, USA.
- Evelyn F McKnight Brain Institute, Arizona Center On Aging, and BIO5 Institute, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
34
|
Gogulski J, Cline CC, Ross JM, Truong J, Sarkar M, Parmigiani S, Keller CJ. Mapping cortical excitability in the human dorsolateral prefrontal cortex. Clin Neurophysiol 2024; 164:138-148. [PMID: 38865780 PMCID: PMC11246810 DOI: 10.1016/j.clinph.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 04/10/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) to the dorsolateral prefrontal cortex (dlPFC) is an effective treatment for depression, but the neural effects after TMS remains unclear. TMS paired with electroencephalography (TMS-EEG) can causally probe these neural effects. Nonetheless, variability in single pulse TMS-evoked potentials (TEPs) across dlPFC subregions, and potential artifact induced by muscle activation, necessitate detailed mapping for accurate treatment monitoring. OBJECTIVE To characterize early TEPs anatomically and temporally (20-50 ms) close to the TMS pulse (EL-TEPs), as well as associated muscle artifacts (<20 ms), across the dlPFC. We hypothesized that TMS location and angle influence EL-TEPs, and specifically that conditions with larger muscle artifact may exhibit lower observed EL-TEPs due to over-rejection during preprocessing. Additionally, we sought to determine an optimal group-level TMS target and angle, while investigating the potential benefits of a personalized approach. METHODS In 16 healthy participants, we applied single-pulse TMS to six targets within the dlPFC at two coil angles and measured EEG responses. RESULTS Stimulation location significantly influenced observed EL-TEPs, with posterior and medial targets yielding larger EL-TEPs. Regions with high EL-TEP amplitude had less muscle artifact, and vice versa. The best group-level target yielded 102% larger EL-TEP responses compared to other dlPFC targets. Optimal dlPFC target differed across subjects, suggesting that a personalized targeting approach might boost the EL-TEP by an additional 36%. SIGNIFICANCE EL-TEPs can be probed without significant muscle-related confounds in posterior-medial regions of the dlPFC. The identification of an optimal group-level target and the potential for further refinement through personalized targeting hold significant implications for optimizing depression treatment protocols.
Collapse
Affiliation(s)
- Juha Gogulski
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA; Department of Clinical Neurophysiology, HUS Diagnostic Center, Clinical Neurosciences, Helsinki University Hospital and University of Helsinki, Helsinki, FI-00029 HUS, Finland
| | - Christopher C Cline
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Jessica M Ross
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA; Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Jade Truong
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Manjima Sarkar
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Sara Parmigiani
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Corey J Keller
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA.
| |
Collapse
|
35
|
Santoro V, Hou MD, Premoli I, Belardinelli P, Biondi A, Carobin A, Puledda F, Michalopoulou PG, Richardson MP, Rocchi L, Shergill SS. Investigating cortical excitability and inhibition in patients with schizophrenia: A TMS-EEG study. Brain Res Bull 2024; 212:110972. [PMID: 38710310 DOI: 10.1016/j.brainresbull.2024.110972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) combined with electromyography (EMG) has widely been used as a non-invasive brain stimulation tool to assess excitation/inhibition (E/I) balance. E/I imbalance is a putative mechanism underlying symptoms in patients with schizophrenia. Combined TMS-electroencephalography (TMS-EEG) provides a detailed examination of cortical excitability to assess the pathophysiology of schizophrenia. This study aimed to investigate differences in TMS-evoked potentials (TEPs), TMS-related spectral perturbations (TRSP) and intertrial coherence (ITC) between patients with schizophrenia and healthy controls. MATERIALS AND METHODS TMS was applied over the motor cortex during EEG recording. Differences in TEPs, TRSP and ITC between the patient and healthy subjects were analysed for all electrodes at each time point, by applying multiple independent sample t-tests with a cluster-based permutation analysis to correct for multiple comparisons. RESULTS Patients demonstrated significantly reduced amplitudes of early and late TEP components compared to healthy controls. Patients also showed a significant reduction of early delta (50-160 ms) and theta TRSP (30-250ms),followed by a reduction in alpha and beta suppression (220-560 ms; 190-420 ms). Patients showed a reduction of both early (50-110 ms) gamma increase and later (180-230 ms) gamma suppression. Finally, the ITC was significantly lower in patients in the alpha band, from 30 to 260 ms. CONCLUSION Our findings support the putative role of impaired GABA-receptor mediated inhibition in schizophrenia impacting excitatory neurotransmission. Further studies can usefully elucidate mechanisms underlying specific symptoms clusters using TMS-EEG biometrics.
Collapse
Affiliation(s)
- V Santoro
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom; Headache Group, Wolfson SPaRC, Institute of Psychiatry Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom.
| | - M D Hou
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - I Premoli
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - P Belardinelli
- Cimec, Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| | - A Biondi
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - A Carobin
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - F Puledda
- Headache Group, Wolfson SPaRC, Institute of Psychiatry Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - P G Michalopoulou
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - M P Richardson
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - L Rocchi
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom; Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy; Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - S S Shergill
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom; Kent and Medway Medical School, Canterbury CT2 7FS, United Kingdom; Kent and Medway NHS and Social Care Partnership Trust, Maidstone, ME7 4JL, United Kingdom
| |
Collapse
|
36
|
Pokorny L, Biermann L, Breitinger E, Jarczok TA, Wagner D, Vöckel J, Bender S. Young Adults with Anxiety Disorders Show Reduced Inhibition in the Dorsolateral Prefrontal Cortex at Higher Trait Anxiety Levels: A TMS-EEG Study. Depress Anxiety 2024; 2024:2758522. [PMID: 40226677 PMCID: PMC11918925 DOI: 10.1155/2024/2758522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 04/15/2025] Open
Abstract
Background The neuropathology of anxiety disorders, including specific phobias, social phobias, and generalized anxiety disorders (GAD), has been believed to be rooted in a reduced inhibition of limbic areas by the dorsolateral prefrontal cortex (DLPFC). Trait anxiety has been linked to insufficient recruitment of DLPFC mechanisms for attentional control. Despite limited research on individuals with anxiety disorders, our study utilized transcranial magnetic stimulation to assess DLPFC cortical activity and emotional states using the N100 as an indicator of GABA-B-mediated cortical inhibition. Additionally, we aimed to correlate trait anxiety scores with cortical activity. Methods A total of 20 subjects with social phobia and GAD and 21 subjects with specific phobia were compared to 24 control subjects regarding their inhibitory N100 in the DLPFC. Therefore, TMS was applied on the left and right DLPFC during an emotional task with fearful, angry, and neutral faces and a rest condition. Results Smaller N100 amplitudes after DLPFC stimulation were found in subjects with social phobia, GAD, and social phobias compared to the control group. Furthermore, a correlation between trait anxiety scores and smaller N100 amplitudes, independent of group effects, was found. Conclusion There appears to be a decrease in GABA-B-mediated cortical inhibition in the DLPFC in subjects with anxiety disorders. The correlation between trait anxiety and N100 amplitudes suggests a trait-related modulation of cortical inhibition.
Collapse
Affiliation(s)
- Lena Pokorny
- Department of Child and Adolescent Psychiatry, Psychosomatics, And Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Lea Biermann
- Department of Child and Adolescent Psychiatry, Psychosomatics, And Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Eva Breitinger
- Department of Child and Adolescent Psychiatry, Psychosomatics, And Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Tomasz Antoni Jarczok
- Department of Child and Adolescent Psychiatry, Psychosomatics, And Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy, KJF Klinik Josefinum, Kapellenstrasse 30 86154, Augsburg, Germany
| | - Daniel Wagner
- Department of Psychiatry and Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Jasper Vöckel
- Department of Child and Adolescent Psychiatry, Psychosomatics, And Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Stephan Bender
- Department of Child and Adolescent Psychiatry, Psychosomatics, And Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| |
Collapse
|
37
|
Mutanen TP, Ilmoniemi I, Atti I, Metsomaa J, Ilmoniemi RJ. A simulation study: comparing independent component analysis and signal-space projection - source-informed reconstruction for rejecting muscle artifacts evoked by transcranial magnetic stimulation. Front Hum Neurosci 2024; 18:1324958. [PMID: 38784523 PMCID: PMC11112076 DOI: 10.3389/fnhum.2024.1324958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/02/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction The combination of transcranial magnetic stimulation (TMS) and electroencephalography (EEG) allows researchers to explore cortico-cortical connections. To study effective connections, the first few tens of milliseconds of the TMS-evoked potentials are the most critical. Yet, TMS-evoked artifacts complicate the interpretation of early-latency data. Data-processing strategies like independent component analysis (ICA) and the combined signal-space projection-source-informed reconstruction approach (SSP-SIR) are designed to mitigate artifacts, but their objective assessment is challenging because the true neuronal EEG responses under large-amplitude artifacts are generally unknown. Through simulations, we quantified how the spatiotemporal properties of the artifacts affect the cleaning performances of ICA and SSP-SIR. Methods We simulated TMS-induced muscle artifacts and superposed them on pre-processed TMS-EEG data, serving as the ground truth. The simulated muscle artifacts were varied both in terms of their topography and temporal profiles. The signals were then cleaned using ICA and SSP-SIR, and subsequent comparisons were made with the ground truth data. Results ICA performed better when the artifact time courses were highly variable across the trials, whereas the effectiveness of SSP-SIR depended on the congruence between the artifact and neuronal topographies, with the performance of SSP-SIR being better when difference between topographies was larger. Overall, SSP-SIR performed better than ICA across the tested conditions. Based on these simulations, SSP-SIR appears to be more effective in suppressing TMS-evoked muscle artifacts. These artifacts are shown to be highly time-locked to the TMS pulse and manifest in topographies that differ substantially from the patterns of neuronal potentials. Discussion Selecting between ICA and SSP-SIR should be guided by the characteristics of the artifacts. SSP-SIR might be better equipped for suppressing time-locked artifacts, provided that their topographies are sufficiently different from the neuronal potential patterns of interest, and that the SSP-SIR algorithm can successfully find those artifact topographies from the high-pass-filtered data. ICA remains a powerful tool for rejecting artifacts that are not strongly time locked to the TMS pulse.
Collapse
Affiliation(s)
- Tuomas Petteri Mutanen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | | | | | | | | |
Collapse
|
38
|
Fong PY, Rothwell JC, Rocchi L. The Past, Current and Future Research in Cerebellar TMS Evoked Responses-A Narrative Review. Brain Sci 2024; 14:432. [PMID: 38790411 PMCID: PMC11118133 DOI: 10.3390/brainsci14050432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Transcranial magnetic stimulation coupled with electroencephalography (TMS-EEG) is a novel technique to investigate cortical physiology in health and disease. The cerebellum has recently gained attention as a possible new hotspot in the field of TMS-EEG, with several reports published recently. However, EEG responses obtained by cerebellar stimulation vary considerably across the literature, possibly due to different experimental methods. Compared to conventional TMS-EEG, which involves stimulation of the cortex, cerebellar TMS-EEG presents some technical difficulties, including strong muscle twitches in the neck area and a loud TMS click when double-cone coils are used, resulting in contamination of responses by electromyographic activity and sensory potentials. Understanding technical difficulties and limitations is essential for the development of cerebellar TMS-EEG research. In this review, we summarize findings of cerebellar TMS-EEG studies, highlighting limitations in experimental design and potential issues that can result in discrepancies between experimental outcomes. Lastly, we propose a possible direction for academic and clinical research with cerebellar TMS-EEG.
Collapse
Affiliation(s)
- Po-Yu Fong
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (J.C.R.)
- Division of Movement Disorders, Department of Neurology and Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Medical School, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - John C. Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (J.C.R.)
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (J.C.R.)
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
39
|
De Martino E, Casali A, Casarotto S, Hassan G, Couto BA, Rosanova M, Graven‐Nielsen T, de Andrade DC. Evoked oscillatory cortical activity during acute pain: Probing brain in pain by transcranial magnetic stimulation combined with electroencephalogram. Hum Brain Mapp 2024; 45:e26679. [PMID: 38647038 PMCID: PMC11034005 DOI: 10.1002/hbm.26679] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/26/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
Temporal dynamics of local cortical rhythms during acute pain remain largely unknown. The current study used a novel approach based on transcranial magnetic stimulation combined with electroencephalogram (TMS-EEG) to investigate evoked-oscillatory cortical activity during acute pain. Motor (M1) and dorsolateral prefrontal cortex (DLPFC) were probed by TMS, respectively, to record oscillatory power (event-related spectral perturbation and relative spectral power) and phase synchronization (inter-trial coherence) by 63 EEG channels during experimentally induced acute heat pain in 24 healthy participants. TMS-EEG was recorded before, during, and after noxious heat (acute pain condition) and non-noxious warm (Control condition), delivered in a randomized sequence. The main frequency bands (α, β1, and β2) of TMS-evoked potentials after M1 and DLPFC stimulation were recorded close to the TMS coil and remotely. Cold and heat pain thresholds were measured before TMS-EEG. Over M1, acute pain decreased α-band oscillatory power locally and α-band phase synchronization remotely in parietal-occipital clusters compared with non-noxious warm (all p < .05). The remote (parietal-occipital) decrease in α-band phase synchronization during acute pain correlated with the cold (p = .001) and heat pain thresholds (p = .023) and to local (M1) α-band oscillatory power decrease (p = .024). Over DLPFC, acute pain only decreased β1-band power locally compared with non-noxious warm (p = .015). Thus, evoked-oscillatory cortical activity to M1 stimulation is reduced by acute pain in central and parietal-occipital regions and correlated with pain sensitivity, in contrast to DLPFC, which had only local effects. This finding expands the significance of α and β band oscillations and may have relevance for pain therapies.
Collapse
Affiliation(s)
- Enrico De Martino
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of MedicineAalborg UniversityAalborgDenmark
| | - Adenauer Casali
- Institute of Science and TechnologyFederal University of São PauloSão PauloBrazil
| | - Silvia Casarotto
- Department of Biomedical and Clinical SciencesUniversity of MilanMilanItaly
- IRCCS Fondazione Don Carlo GnocchiMilanItaly
| | - Gabriel Hassan
- Department of Biomedical and Clinical SciencesUniversity of MilanMilanItaly
| | - Bruno Andry Couto
- Institute of Science and TechnologyFederal University of São PauloSão PauloBrazil
| | - Mario Rosanova
- Department of Biomedical and Clinical SciencesUniversity of MilanMilanItaly
| | - Thomas Graven‐Nielsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of MedicineAalborg UniversityAalborgDenmark
| | - Daniel Ciampi de Andrade
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of MedicineAalborg UniversityAalborgDenmark
| |
Collapse
|
40
|
Casula EP, Pezzopane V, Roncaioli A, Battaglini L, Rumiati R, Rothwell J, Rocchi L, Koch G. Real-time cortical dynamics during motor inhibition. Sci Rep 2024; 14:7871. [PMID: 38570543 PMCID: PMC10991402 DOI: 10.1038/s41598-024-57602-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/20/2024] [Indexed: 04/05/2024] Open
Abstract
The inhibition of action is a fundamental executive mechanism of human behaviour that involve a complex neural network. In spite of the progresses made so far, many questions regarding the brain dynamics occurring during action inhibition are still unsolved. Here, we used a novel approach optimized to investigate real-time effective brain dynamics, which combines transcranial magnetic stimulation (TMS) with simultaneous electroencephalographic (EEG) recordings. 22 healthy volunteers performed a motor Go/NoGo task during TMS of the hand-hotspot of the primary motor cortex (M1) and whole-scalp EEG recordings. We reconstructed source-based real-time spatiotemporal dynamics of cortical activity and cortico-cortical connectivity throughout the task. Our results showed a task-dependent bi-directional change in theta/gamma supplementary motor cortex (SMA) and M1 connectivity that, when participants were instructed to inhibit their response, resulted in an increase of a specific TMS-evoked EEG potential (N100), likely due to a GABA-mediated inhibition. Interestingly, these changes were linearly related to reaction times, when participants were asked to produce a motor response. In addition, TMS perturbation revealed a task-dependent long-lasting modulation of SMA-M1 natural frequencies, i.e. alpha/beta activity. Some of these results are shared by animal models and shed new light on the physiological mechanisms of motor inhibition in humans.
Collapse
Affiliation(s)
- Elias Paolo Casula
- Department of Clinical and Movement Neurosciences, University College London, London, WC1N 3BG, UK.
- Department of System Medicine, University of Tor Vergata, 00133, Rome, Italy.
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation, 00179, Rome, Italy.
| | - Valentina Pezzopane
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation, 00179, Rome, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121, Ferrara, Italy
| | - Andrea Roncaioli
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation, 00179, Rome, Italy
| | - Luca Battaglini
- Department of General Psychology, University of Padua, 35131, Padua, Italy
| | - Raffaella Rumiati
- Department of System Medicine, University of Tor Vergata, 00133, Rome, Italy
| | - John Rothwell
- Department of Clinical and Movement Neurosciences, University College London, London, WC1N 3BG, UK
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, University College London, London, WC1N 3BG, UK
- Department of Medical Sciences and Public Health, University of Cagliari, 09124, Cagliari, Italy
| | - Giacomo Koch
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation, 00179, Rome, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121, Ferrara, Italy
| |
Collapse
|
41
|
Gogulski J, Cline CC, Ross JM, Parmigiani S, Keller CJ. Reliability of the TMS-evoked potential in dorsolateral prefrontal cortex. Cereb Cortex 2024; 34:bhae130. [PMID: 38596882 PMCID: PMC11004671 DOI: 10.1093/cercor/bhae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/11/2024] Open
Abstract
We currently lack a reliable method to probe cortical excitability noninvasively from the human dorsolateral prefrontal cortex (dlPFC). We recently found that the strength of early and local dlPFC transcranial magnetic stimulation (TMS)-evoked potentials (EL-TEPs) varied widely across dlPFC subregions. Despite these differences in response amplitude, reliability at each target is unknown. Here we quantified within-session reliability of dlPFC EL-TEPs after TMS to six left dlPFC subregions in 15 healthy subjects. We evaluated reliability (concordance correlation coefficient [CCC]) across targets, time windows, quantification methods, regions of interest, sensor- vs. source-space, and number of trials. On average, the medial target was most reliable (CCC = 0.78) and the most anterior target was least reliable (CCC = 0.24). However, all targets except the most anterior were reliable (CCC > 0.7) using at least one combination of the analytical parameters tested. Longer (20 to 60 ms) and later (30 to 60 ms) windows increased reliability compared to earlier and shorter windows. Reliable EL-TEPs (CCC up to 0.86) were observed using only 25 TMS trials at a medial dlPFC target. Overall, medial dlPFC targeting, wider windows, and peak-to-peak quantification improved reliability. With careful selection of target and analytic parameters, highly reliable EL-TEPs can be extracted from the dlPFC after only a small number of trials.
Collapse
Affiliation(s)
- Juha Gogulski
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA 94305, United States
- Wu Tsai Neurosciences Institute, Stanford University, 290 Jane Stanford Way, Stanford, CA 94305, United States
- Department of Clinical Neurophysiology, HUS Diagnostic Center, Clinical Neurosciences, Helsinki University Hospital and University of Helsinki, Haartmaninkatu 4, Helsinki FI-00029, Finland
| | - Christopher C Cline
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA 94305, United States
- Wu Tsai Neurosciences Institute, Stanford University, 290 Jane Stanford Way, Stanford, CA 94305, United States
| | - Jessica M Ross
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA 94305, United States
- Wu Tsai Neurosciences Institute, Stanford University, 290 Jane Stanford Way, Stanford, CA 94305, United States
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), 3801 Miranda Avenue, Palo Alto, CA 94394, United States
| | - Sara Parmigiani
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA 94305, United States
- Wu Tsai Neurosciences Institute, Stanford University, 290 Jane Stanford Way, Stanford, CA 94305, United States
| | - Corey J Keller
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA 94305, United States
- Wu Tsai Neurosciences Institute, Stanford University, 290 Jane Stanford Way, Stanford, CA 94305, United States
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), 3801 Miranda Avenue, Palo Alto, CA 94394, United States
| |
Collapse
|
42
|
Mancuso M, Cruciani A, Sveva V, Casula E, Brown KE, Di Lazzaro V, Rothwell JC, Rocchi L. Changes in Cortical Activation by Transcranial Magnetic Stimulation Due to Coil Rotation Are Not Attributable to Cranial Muscle Activation. Brain Sci 2024; 14:332. [PMID: 38671984 PMCID: PMC11048461 DOI: 10.3390/brainsci14040332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Transcranial magnetic stimulation coupled with electroencephalography (TMS-EEG) allows for the study of brain dynamics in health and disease. Cranial muscle activation can decrease the interpretability of TMS-EEG signals by masking genuine EEG responses and increasing the reliance on preprocessing methods but can be at least partly prevented by coil rotation coupled with the online monitoring of signals; however, the extent to which changing coil rotation may affect TMS-EEG signals is not fully understood. Our objective was to compare TMS-EEG data obtained with an optimal coil rotation to induce motor evoked potentials (M1standard) while rotating the coil to minimize cranial muscle activation (M1emg). TMS-evoked potentials (TEPs), TMS-related spectral perturbation (TRSP), and intertrial phase clustering (ITPC) were calculated in both conditions using two different preprocessing pipelines based on independent component analysis (ICA) or signal-space projection with source-informed reconstruction (SSP-SIR). Comparisons were performed with cluster-based correction. The concordance correlation coefficient was computed to measure the similarity between M1standard and M1emg TMS-EEG signals. TEPs, TRSP, and ITPC were significantly larger in M1standard than in M1emg conditions; a lower CCC than expected was also found. These results were similar across the preprocessing pipelines. While rotating the coil may be advantageous to reduce cranial muscle activation, it may result in changes in TMS-EEG signals; therefore, this solution should be tailored to the specific experimental context.
Collapse
Affiliation(s)
- Marco Mancuso
- Department of Human Neuroscience, University of Rome “Sapienza”, Viale dell’Università 30, 00185 Rome, Italy;
| | - Alessandro Cruciani
- Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (A.C.); (V.D.L.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Valerio Sveva
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, University of Rome “Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Elias Casula
- Department of System Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
| | - Katlyn E. Brown
- Department of Kinesiology, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G5, Canada;
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (A.C.); (V.D.L.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - John C. Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria di Monserrato, Blocco I S.S. 554 bivio per Sestu, Monserrato, 09042 Cagliari, Italy
| |
Collapse
|
43
|
Song Y, Gordon PC, Metsomaa J, Rostami M, Belardinelli P, Ziemann U. Evoked EEG Responses to TMS Targeting Regions Outside the Primary Motor Cortex and Their Test-Retest Reliability. Brain Topogr 2024; 37:19-36. [PMID: 37996562 PMCID: PMC10771591 DOI: 10.1007/s10548-023-01018-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
Transcranial magnetic stimulation (TMS)-evoked electroencephalography (EEG) potentials (TEPs) provide unique insights into cortical excitability and connectivity. However, confounding EEG signals from auditory and somatosensory co-stimulation complicate TEP interpretation. Our optimized sham procedure established with TMS of primary motor cortex (Gordon in JAMA 245:118708, 2021) differentiates direct cortical EEG responses to TMS from those caused by peripheral sensory inputs. Using this approach, this study aimed to investigate TEPs and their test-retest reliability when targeting regions outside the primary motor cortex, specifically the left angular gyrus, supplementary motor area, and medial prefrontal cortex. We conducted three identical TMS-EEG sessions one week apart involving 24 healthy participants. In each session, we targeted the three areas separately using a figure-of-eight TMS coil for active TMS, while a second coil away from the head produced auditory input for sham TMS. Masking noise and electric scalp stimulation were applied in both conditions to achieve matched EEG responses to peripheral sensory inputs. High test-retest reliability was observed in both conditions. However, reliability declined for the 'cleaned' TEPs, resulting from the subtraction of evoked EEG response to the sham TMS from those to the active, particularly for latencies > 100 ms following the TMS pulse. Significant EEG differences were found between active and sham TMS at latencies < 90 ms for all targeted areas, exhibiting distinct spatiotemporal characteristics specific to each target. In conclusion, our optimized sham procedure effectively reveals EEG responses to direct cortical activation by TMS in brain areas outside primary motor cortex. Moreover, we demonstrate the impact of peripheral sensory inputs on test-retest reliability of TMS-EEG responses.
Collapse
Affiliation(s)
- Yufei Song
- Department of Neurology and Stroke, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Pedro C Gordon
- Department of Neurology and Stroke, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Johanna Metsomaa
- Department of Neurology and Stroke, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Maryam Rostami
- Faculty of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| | - Paolo Belardinelli
- Department of Neurology and Stroke, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Center for Mind/Brain Sciences, CIMeC, University of Trento, Trento, Italy
| | - Ulf Ziemann
- Department of Neurology and Stroke, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany.
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
44
|
Ross JM, Cline CC, Sarkar M, Truong J, Keller CJ. Neural effects of TMS trains on the human prefrontal cortex. Sci Rep 2023; 13:22700. [PMID: 38123591 PMCID: PMC10733322 DOI: 10.1038/s41598-023-49250-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
How does a train of TMS pulses modify neural activity in humans? Despite adoption of repetitive TMS (rTMS) for the treatment of neuropsychiatric disorders, we still do not understand how rTMS changes the human brain. This limited understanding stems in part from a lack of methods for noninvasively measuring the neural effects of a single TMS train-a fundamental building block of treatment-as well as the cumulative effects of consecutive TMS trains. Gaining this understanding would provide foundational knowledge to guide the next generation of treatments. Here, to overcome this limitation, we developed methods to noninvasively measure causal and acute changes in cortical excitability and evaluated this neural response to single and sequential TMS trains. In 16 healthy adults, standard 10 Hz trains were applied to the dorsolateral prefrontal cortex in a randomized, sham-controlled, event-related design and changes were assessed based on the TMS-evoked potential (TEP), a measure of cortical excitability. We hypothesized that single TMS trains would induce changes in the local TEP amplitude and that those changes would accumulate across sequential trains, but primary analyses did not indicate evidence in support of either of these hypotheses. Exploratory analyses demonstrated non-local neural changes in sensor and source space and local neural changes in phase and source space. Together these results suggest that single and sequential TMS trains may not be sufficient to modulate local cortical excitability indexed by typical TEP amplitude metrics but may cause neural changes that can be detected outside the stimulation area or using phase or source space metrics. This work should be contextualized as methods development for the monitoring of transient noninvasive neural changes during rTMS and contributes to a growing understanding of the neural effects of rTMS.
Collapse
Affiliation(s)
- Jessica M Ross
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305-5797, USA
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), 3801 Miranda Avenue, Palo Alto, CA, 94304, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
| | - Christopher C Cline
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305-5797, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
| | - Manjima Sarkar
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305-5797, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
| | - Jade Truong
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305-5797, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
| | - Corey J Keller
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305-5797, USA.
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), 3801 Miranda Avenue, Palo Alto, CA, 94304, USA.
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
45
|
Horvath S, Arunachalam S. Assessing receptive verb knowledge in late talkers and autistic children: advances and cautionary tales. J Neurodev Disord 2023; 15:44. [PMID: 38087233 PMCID: PMC10717976 DOI: 10.1186/s11689-023-09512-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
PURPOSE Using eye-tracking, we assessed the receptive verb vocabularies of age-matched late talkers and typically developing children (experiment 1) and autistic preschoolers (experiment 2). We evaluated how many verbs participants knew and how quickly they processed the linguistic prompt. Our goal is to explore how these eye-gaze measures can be operationalized to capture verb knowledge in late talkers and autistic children. METHOD Participants previewed two dynamic scenes side-by-side (e.g., "stretching" and "clapping") and were then prompted to find the target verb's referent. Children's eye-gaze behaviors were operationalized using established approaches in the field with modifications in consideration for the type of stimuli (dynamic scenes versus static images) and the populations included. Accuracy was calculated as a proportion of time spent looking to the target, and linguistic processing was operationalized as latency of children's first look to the target. RESULTS In experiment 1, there were no group differences in the proportion of verbs known, but late talkers required longer to demonstrate their knowledge than typically developing children. Latency was predicted by age but not language abilities. In experiment 2, autistic children's accuracy and latency were both predicted by receptive language abilities. CONCLUSION Eye gaze can be used to assess receptive verb vocabulary in a variety of populations, but in operationalizing gaze behavior, we must account for between- and within-group differences. Bootstrapped cluster-permutation analysis is one way to create individualized measures of children's gaze behavior, but more research is warranted using an individual differences approach with this type of analysis.
Collapse
|
46
|
Perera ND, Alekseichuk I, Shirinpour S, Wischnewski M, Linn G, Masiello K, Butler B, Russ BE, Schroeder CE, Falchier A, Opitz A. Dissociation of Centrally and Peripherally Induced Transcranial Magnetic Stimulation Effects in Nonhuman Primates. J Neurosci 2023; 43:8649-8662. [PMID: 37852789 PMCID: PMC10727178 DOI: 10.1523/jneurosci.1016-23.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) is a noninvasive brain stimulation method that is rapidly growing in popularity for studying causal brain-behavior relationships. However, its dose-dependent centrally induced neural mechanisms and peripherally induced sensory costimulation effects remain debated. Understanding how TMS stimulation parameters affect brain responses is vital for the rational design of TMS protocols. Studying these mechanisms in humans is challenging because of the limited spatiotemporal resolution of available noninvasive neuroimaging methods. Here, we leverage invasive recordings of local field potentials in a male and a female nonhuman primate (rhesus macaque) to study TMS mesoscale responses. We demonstrate that early TMS-evoked potentials show a sigmoidal dose-response curve with stimulation intensity. We further show that stimulation responses are spatially specific. We use several control conditions to dissociate centrally induced neural responses from auditory and somatosensory coactivation. These results provide crucial evidence regarding TMS neural effects at the brain circuit level. Our findings are highly relevant for interpreting human TMS studies and biomarker developments for TMS target engagement in clinical applications.SIGNIFICANCE STATEMENT Transcranial magnetic stimulation (TMS) is a widely used noninvasive brain stimulation method to stimulate the human brain. To advance its utility for clinical applications, a clear understanding of its underlying physiological mechanisms is crucial. Here, we perform invasive electrophysiological recordings in the nonhuman primate brain during TMS, achieving a spatiotemporal precision not available in human EEG experiments. We find that evoked potentials are dose dependent and spatially specific, and can be separated from peripheral stimulation effects. This means that TMS-evoked responses can indicate a direct physiological stimulation response. Our work has important implications for the interpretation of human TMS-EEG recordings and biomarker development.
Collapse
Affiliation(s)
- Nipun D Perera
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| | - Ivan Alekseichuk
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| | - Sina Shirinpour
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| | - Miles Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| | - Gary Linn
- Translational Neuroscience Lab Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
- Department of Psychiatry, NYU Grossman School of Medicine, New York, New York 10016
| | - Kurt Masiello
- Translational Neuroscience Lab Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
| | - Brent Butler
- Translational Neuroscience Lab Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
| | - Brian E Russ
- Translational Neuroscience Lab Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
| | - Charles E Schroeder
- Translational Neuroscience Lab Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032
- Department of Neurosurgery, The Neurological Institute of New York, Columbia University Irving Medical Center, New York, New York 10032
| | - Arnaud Falchier
- Translational Neuroscience Lab Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
- Department of Psychiatry, NYU Grossman School of Medicine, New York, New York 10016
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
47
|
Leodori G, Fabbrini A, Suppa A, Mancuso M, Tikoo S, Belvisi D, Conte A, Fabbrini G, Berardelli A. Effective connectivity abnormalities in Lewy body disease with visual hallucinations. Clin Neurophysiol 2023; 156:156-165. [PMID: 37952445 DOI: 10.1016/j.clinph.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/14/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023]
Abstract
OBJECTIVE To assess the changes in effective connectivity of important regions of the visual network (VIS) and dorsal attention network (DAN) underlying visual hallucinations (VHs) in Dementia with Lewy Bodies (DLB), Parkinson's Disease (PD) and Parkinson's Disease Dementia (PDD), as measured by a transcranial magnetic stimulation-electroencephalographic technique (TMS-EEG). METHODS We stimulated the right visual cortex (V1/V2), the right intraparietal sulcus and the right frontal eye fields, two key regions of the DAN, and measured TMS-evoked cortical activation within the VIS and the DAN. We compared 11 patients with VHs and 15 patients without VHs. RESULTS Patients with VHs showed lower TMS-evoked cortical activation within the DAN following intraparietal sulcus and frontal eye fields stimulation than patients without VHs. No difference was found between patients with and without cognitive impairment. Also, when considering only patients with cognitive impairment, VHs were associated with lower TMS-evoked cortical activation following intraparietal sulcus stimulation. CONCLUSIONS DLB, PD, and PDD patients with VHs had less effective connectivity of the right intraparietal sulcus within the DAN than patients without VHs. SIGNIFICANCE We provided the first evidence that VHs are associated with specific intraparietal sulcus dysfunction within the DAN in patients with PDD, PD, and DLB.
Collapse
Affiliation(s)
- Giorgio Leodori
- IRCCS Neuromed, Pozzilli, Italy; Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Andrea Fabbrini
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Suppa
- IRCCS Neuromed, Pozzilli, Italy; Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Marco Mancuso
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Sankalp Tikoo
- Biomedical Imaging Research Institute, Department of Biomedical Sciences, and Imaging, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Daniele Belvisi
- IRCCS Neuromed, Pozzilli, Italy; Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonella Conte
- IRCCS Neuromed, Pozzilli, Italy; Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Giovanni Fabbrini
- IRCCS Neuromed, Pozzilli, Italy; Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli, Italy; Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
48
|
Mancuso M, Cruciani A, Sveva V, Casula EP, Brown K, Rothwell JC, Di Lazzaro V, Koch G, Rocchi L. Somatosensory input in the context of transcranial magnetic stimulation coupled with electroencephalography: An evidence-based overview. Neurosci Biobehav Rev 2023; 155:105434. [PMID: 37890602 DOI: 10.1016/j.neubiorev.2023.105434] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023]
Abstract
The transcranial evoked potential (TEP) is a powerful technique to investigate brain dynamics, but some methodological issues limit its interpretation. A possible contamination of the TEP by electroencephalographic (EEG) responses evoked by the somatosensory input generated by transcranial magnetic stimulation (TMS) has been postulated; nonetheless, a characterization of these responses is lacking. The aim of this work was to review current evidence about possible somatosensory evoked potentials (SEP) induced by sources of somatosensory input in the craniofacial region. Among these, only contraction of craniofacial muscle and stimulation of free cutaneous nerve endings may be able to induce EEG responses, but direct evidence is lacking due to experimental difficulties in isolating these inputs. Notably, EEG evoked activity in this context is represented by a N100/P200 complex, reflecting a saliency-related multimodal response, rather than specific activation of the primary somatosensory cortex. Strategies to minimize or remove these responses by EEG processing still yield uncertain results; therefore, data inspection is of paramount importance to judge a possible contamination of the TEP by multimodal potentials caused by somatosensory input.
Collapse
Affiliation(s)
- M Mancuso
- Department of Human Neurosciences, University of Rome "Sapienza", Viale dell'Università 30, 00185 Rome, Italy
| | - A Cruciani
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - V Sveva
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, University of Rome "Sapienza", Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - E P Casula
- Department of System Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - K Brown
- Department of Kinesiology, University of Waterloo, 200 University Ave W, N2L 3G5 Waterloo, ON, Canada
| | - J C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, United Kingdom
| | - V Di Lazzaro
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - G Koch
- Non-Invasive Brain Stimulation Unit, IRCCS Santa Lucia Foundation, Via Ardeatina, 306/354, 00179 Rome, Italy
| | - L Rocchi
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria di Monserrato Blocco I S.S, 554 bivio per Sestu 09042, Monserrato, Cagliari, Italy.
| |
Collapse
|
49
|
Ross JM, Cline CC, Sarkar M, Truong J, Keller CJ. Neural effects of TMS trains on the human prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526374. [PMID: 36778457 PMCID: PMC9915614 DOI: 10.1101/2023.01.30.526374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
How does a train of TMS pulses modify neural activity in humans? Despite adoption of repetitive TMS (rTMS) for the treatment of neuropsychiatric disorders, we still do not understand how rTMS changes the human brain. This limited understanding stems in part from a lack of methods for noninvasively measuring the neural effects of a single TMS train - a fundamental building block of treatment - as well as the cumulative effects of consecutive TMS trains. Gaining this understanding would provide foundational knowledge to guide the next generation of treatments. Here, to overcome this limitation, we developed methods to noninvasively measure causal and acute changes in cortical excitability and evaluated this neural response to single and sequential TMS trains. In 16 healthy adults, standard 10 Hz trains were applied to the dorsolateral prefrontal cortex (dlPFC) in a randomized, sham-controlled, event-related design and changes were assessed based on the TMS-evoked potential (TEP), a measure of cortical excitability. We hypothesized that single TMS trains would induce changes in the local TEP amplitude and that those changes would accumulate across sequential trains, but primary analyses did not indicate evidence in support of either of these hypotheses. Exploratory analyses demonstrated non-local neural changes in sensor and source space and local neural changes in phase and source space. Together these results suggest that single and sequential TMS trains may not be sufficient to modulate local cortical excitability indexed by typical TEP amplitude metrics but may cause neural changes that can be detected outside the stimulation area or using phase or source space metrics. This work should be contextualized as methods development for the monitoring of transient noninvasive neural changes during rTMS and contributes to a growing understanding of the neural effects of rTMS.
Collapse
Affiliation(s)
- Jessica M. Ross
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305, USA
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), 3801 Miranda Avenue, Palo Alto, CA 94304, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
| | - Christopher C. Cline
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
| | - Manjima Sarkar
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
| | - Jade Truong
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
| | - Corey J. Keller
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305, USA
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), 3801 Miranda Avenue, Palo Alto, CA 94304, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
50
|
Gogulski J, Cline CC, Ross JM, Truong J, Sarkar M, Parmigiani S, Keller CJ. Mapping cortical excitability in the human dorsolateral prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524867. [PMID: 36711689 PMCID: PMC9882363 DOI: 10.1101/2023.01.20.524867] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Objective To characterize early TEPs anatomically and temporally (20-50 ms) close to the TMS pulse (EL-TEPs), as well as associated muscle artifacts (<20 ms), across the dlPFC. We hypothesized that TMS location and angle influence EL-TEPs, and that EL-TEP amplitude is inversely related to muscle artifact. Additionally, we sought to determine an optimal group-level TMS target and angle, while investigating the potential benefits of a personalized approach. Methods In 16 healthy participants, we applied single-pulse TMS to six targets within the dlPFC at two coil angles and measured EEG responses. Results Stimulation location significantly influenced EL-TEPs, with posterior and medial targets yielding larger EL-TEPs. Regions with high EL-TEP amplitude had less muscle artifact, and vice versa. The best group-level target yielded 102% larger EL-TEP responses compared to other dlPFC targets. Optimal dlPFC target differed across subjects, suggesting that a personalized targeting approach might boost the EL-TEP by an additional 36%. Significance Early local TMS-evoked potentials (EL-TEPs) can be probed without significant muscle-related confounds in posterior-medial regions of the dlPFC. The identification of an optimal group-level target and the potential for further refinement through personalized targeting hold significant implications for optimizing depression treatment protocols. Highlights Early local TMS-evoked potentials (EL-TEPs) varied significantly across the dlPFC as a function of TMS target.TMS targets with less muscle artifact had significantly larger EL-TEPs.Selection of a postero-medial target increased EL-TEPs by 102% compared to anterior targets.
Collapse
|