1
|
Wang J, Yue J, Wang Y, Li X, Deng X, Lou Y, Gao L, Chen X, Su Q, Zang Y, Feng J. Function-Specific Localization in the Supplementary Motor Area: A Potential Effective Target for Tourette Syndrome. CNS Neurosci Ther 2025; 31:e70280. [PMID: 39981770 PMCID: PMC11843473 DOI: 10.1111/cns.70280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 01/07/2025] [Accepted: 02/03/2025] [Indexed: 02/22/2025] Open
Abstract
AIMS Repetitive transcranial magnetic stimulation (rTMS) targeting the supplementary motor area (SMA) may treat Tourette's syndrome (TS) by modulating the function of the globus pallidus internus (GPi) via the cortico-striato-thalamo-cortical circuit. METHODS We conducted a randomized longitudinal study to examine circuit functionality and clinical efficacy. The GPi was identified as an "effective region" for TS treatment. Using functional MRI, individualized targets within the SMA were identified. Function-specific targets [left SMA (n = 19), right SMA (n = 16)] were compared with conventional scalp-localized SMA targets (n = 19). Age- and gender-matched typical developmental children (TDC) served as controls (n = 48). TS patients received 50 Hz continuous theta burst stimulation (cTBS) at 70% RMT over five consecutive days (1800 pulses/day). Clinical efficacy was assessed using the Yale Global Tic Severity Scale (YGTSS) at one and two weeks post-cTBS. Functional connectivity (FC) analyses of the GPi evaluated the impact on brain function. RESULTS There was an approximately 3 cm Y-axis distance between the function-specific and conventional targets. TS patients exhibited significantly reduced GPi-base FC in bilateral motor areas at baseline compared to TDC. Following cTBS, 4 out of 19 patients in the left SMA group achieved a ≥ 30% reduction in YGTSS scores. cTBS modulated brain function in the left inferior orbital frontal cortex and right Lingual/cerebellum, primarily influenced by the right SMA target, whereas the conventional target showed no effect on YGTSS scores. Changes in GPi-target FC were significantly correlated with reduction in YGTSS total scores (r = 0.638, p = 0.026). CONCLUSION These findings suggest that function-specific SMA targets may yield more pronounced modulatory effects, with the left SMA target achieving "Effectiveness" after just one week of cTBS. Combining function-specific SMA-targeted cTBS with standard treatment shows promise in accelerating clinical efficacy for TS treatment, warranting further investigation.
Collapse
Affiliation(s)
- Jue Wang
- Institute of Sports Medicine and HealthChengdu Sport UniversityChengduChina
| | - Juan Yue
- TMS CenterHangzhou Normal University Affiliated Deqing HospitalHuzhouChina
| | - Ye Wang
- Department of Pediatrics, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiao‐Long Li
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouChina
| | - Xin‐Ping Deng
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouChina
| | - Yu‐Ting Lou
- Department of Pediatrics, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Liu‐Yan Gao
- Department of Pediatrics, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiao‐Quan Chen
- Department of Pediatrics, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Qun‐Yan Su
- Department of PediatricsTaizhou Woman and Children's HospitalTaizhouChina
| | - Yu‐Feng Zang
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouChina
| | - Jian‐Hua Feng
- Department of Pediatrics, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
2
|
Wohlgemuth JB, Watson KH, Gill KD, Isaacs DA. Premonitory urge in tic disorders - a scoping review. Front Psychiatry 2025; 16:1504442. [PMID: 39950174 PMCID: PMC11821575 DOI: 10.3389/fpsyt.2025.1504442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/06/2025] [Indexed: 02/16/2025] Open
Abstract
Introduction Premonitory urges are uncomfortable bodily sensations preceding tics. They are highly prevalent, frequently bothersome, and increasingly recognized as a central phenotypic feature in tic disorder populations. This scoping review aimed to systematically consolidate published knowledge and identify knowledge gaps regarding premonitory urges in primary tic disorders. Methods Search strategies were deployed in five databases and five topic-relevant journals. Two independent reviewers screened all candidate abstracts against predefined inclusion criteria. One hundred and fifty-five articles were included in the scoping review. The same two reviewers independently extracted and consolidated pertinent data from included articles. Results Multiple methods for assessing premonitory urge were identified, each with strengths and weaknesses. The subjective quality of premonitory urges varies between individuals, with increased prevalence of a "not just right" urge quality in individuals with comorbid obsessive-compulsive disorder. Awareness of premonitory urge appears to arise several years after tic-onset, yet many individuals perceive their tics as voluntary responses to premonitory urges. Premonitory urges and tics are temporally coupled in real time, but premonitory urge severity and tic severity, as assessed by clinical scales, are not consistently associated. The mechanistic and developmental relationship between premonitory urges and tics remains unclear. Data are limited on premonitory urge response to treatment, but several promising interventions were identified. The insula and supplementary motor area are the neuroanatomical structures most strongly implicated in emergence of the premonitory urge. Discussion Knowledge of the clinical characteristics, measurement, and neural mechanisms of premonitory urge has advanced considerably in recent years, but important knowledge gaps remain in each of these domains. Addressing these knowledge gaps will be key to developing effective interventions for premonitory urge. Systematic Review Registration Open Science Framework (OSF) https://doi.org/10.17605/OSF.IO/WT43Z.
Collapse
Affiliation(s)
- John B. Wohlgemuth
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Kelly H. Watson
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Kayce D. Gill
- Annette and Irwin Eskind Family Biomedical Library and Learning Center, Vanderbilt University, Nashville, TN, United States
| | - David A. Isaacs
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
3
|
Baldermann JC, Petry-Schmelzer JN, Schüller T, Mahfoud L, Brandt GA, Dembek TA, van der Linden C, Krauss JK, Szejko N, Müller-Vahl KR, Ganos C, Al-Fatly B, Heiden P, Servello D, Galbiati T, Johnson KA, Butson CR, Okun MS, Andrade P, Domschke K, Fink GR, Fox MD, Horn A, Kuhn J, Visser-Vandewalle V, Barbe MT. A critical role of action-related functional networks in Gilles de la Tourette syndrome. Nat Commun 2024; 15:10687. [PMID: 39681552 PMCID: PMC11649905 DOI: 10.1038/s41467-024-55242-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Gilles de la Tourette Syndrome (GTS) is a chronic tic disorder, characterized by unwanted motor actions and vocalizations. While brain stimulation techniques show promise in reducing tic severity, optimal target networks are not well-defined. Here, we leverage datasets from two independent deep brain stimulation (DBS) cohorts and a cohort of tic-inducing lesions to infer critical networks for treatment and occurrence of tics by mapping stimulation sites and lesions to a functional connectome derived from 1,000 healthy participants. We find that greater tic reduction is linked to higher connectivity of DBS sites (N = 37) with action-related functional resting-state networks, i.e., the cingulo-opercular (r = 0.62; p < 0.001) and somato-cognitive action networks (r = 0.47; p = 0.002). Regions of the cingulo-opercular network best match the optimal connectivity profiles of thalamic DBS. We replicate the significance of targeting cingulo-opercular and somato-cognitive action network connectivity in an independent DBS cohort (N = 10). Finally, we demonstrate that tic-inducing brain lesions (N = 22) exhibit similar connectivity to these networks. Collectively, these results suggest a critical role for these action-related networks in the pathophysiology and treatment of GTS.
Collapse
Affiliation(s)
- Juan Carlos Baldermann
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| | - Jan Niklas Petry-Schmelzer
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Schüller
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lin Mahfoud
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gregor A Brandt
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Till A Dembek
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christina van der Linden
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Natalia Szejko
- Department of Neurology, University of Calgary, Calgary, Alberta, Canada
- Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
- Department of Bioethics, Medical University of Warsaw, Warsaw, Poland
| | - Kirsten R Müller-Vahl
- Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Christos Ganos
- Movement Disorder Clinic, Edmond J. Safra Program in Parkinson's Disease, Division of Neurology University of Toronto, Toronto Western Hospital, Toronto, Canada
| | - Bassam Al-Fatly
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Petra Heiden
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Domenico Servello
- Neurosurgical Department, IRCCS Istituto Ortopedico Galeazzi, Milan, Lombardia, Italy
| | - Tommaso Galbiati
- Neurosurgical Department, IRCCS Istituto Ortopedico Galeazzi, Milan, Lombardia, Italy
| | - Kara A Johnson
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA; Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Christopher R Butson
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA; Department of Neurology, University of Florida, Gainesville, FL, USA
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA; J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA; Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Pablo Andrade
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Center for Mental Health (DZPG), Partner Site Berlin, Berlin, Germany
| | - Gereon R Fink
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andreas Horn
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jens Kuhn
- Alexianer Hospital Cologne, Alexianer Köln GmbH, Cologne, Germany
- Department of Psychiatry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Michael T Barbe
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
4
|
Ranjan R, Chourey A, Kabir Y, García Mata HD, Tiepolo E, Fiallos Vinueza IL, Mohammed C, Mohammed SF, Thottakurichi AA. Role of Neurosurgical Interventions in the Treatment of Movement Disorders Like Parkinson's Disease, Dystonia, and Tourette Syndrome. Cureus 2024; 16:e72613. [PMID: 39610627 PMCID: PMC11603398 DOI: 10.7759/cureus.72613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
This article provides an overview of neurosurgical therapies for movement disorders (MDs), including Tourette syndrome, dystonia, Parkinson's disease (PD), and others. It focuses on the benefits of these treatments and suggests directions for further research. A total of 10 years' worth of English-language PubMed articles were combed through, with an emphasis on studies conducted in North America. To manage MDs like Parkinson's disease and Tourette syndrome, the results suggest that non-invasive neuromodulation techniques, closed-loop deep brain stimulation (DBS), and other advanced therapies may become the treatment of choice in the future. Research on dystonia is being focused on improving treatment methods by investigating new areas of the brain that might be stimulated through neurosurgery and looking at gene therapy. Modern technological developments, such as non-invasive neuromodulation procedures and improved imaging, provide promising substitutes for traditional surgical approaches. This study highlights the need for continuous clinical trials for better outcomes, which is why research and development in this area must continue.
Collapse
Affiliation(s)
- Rachel Ranjan
- Neurology, St. John's Medical College, Bangalore, IND
| | | | - Yasmin Kabir
- Medicine, Royal College of Surgeons, Manama, BHR
| | | | | | | | - Cara Mohammed
- Orthopaedic Surgery, Sangre Grande Hospital, Sangre Grande, TTO
| | | | | |
Collapse
|
5
|
Wang S, Zhang Y, Wang M, Meng F, Liu Y, Zhang J. Deep brain stimulation for Tourette's syndrome. Cochrane Database Syst Rev 2024; 8:CD015924. [PMID: 39136257 PMCID: PMC11320656 DOI: 10.1002/14651858.cd015924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
This is a protocol for a Cochrane Review (intervention). The objectives are as follows: To assess the efficacy and harm of deep brain stimulation for motor symptoms, with psychiatric and behavioural comorbidities, either individually or in combination, in adults and adolescents with Tourette's syndrome compared to placebo, sham intervention, or the best available behavioural and pharmacological treatment.
Collapse
Affiliation(s)
- Shu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yuan Zhang
- Neonatal Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Minzhong Wang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Fangang Meng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Beijing Key Laboratory of Neurostimulation, Beijing 100070, China
| | - Yali Liu
- Center for Clinical Epidemiology and Evidence-based Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Beijing Key Laboratory of Neurostimulation, Beijing 100070, China
| |
Collapse
|
6
|
Gao Y, Wang S, Wang A, Fan S, Ge Y, Wang H, Gao D, Wang J, Mao Z, Zhao H, Zhang H, Shi L, Liu H, Zhu G, Yang A, Bai Y, Zhang X, Liu C, Wang Q, Li R, Liang K, Brown KG, Cui Z, Han C, Zhang J, Meng F. Comparison of children and adults in deep brain stimulation for Tourette Syndrome: a large-scale multicenter study of 102 cases with long-term follow-up. BMC Med 2024; 22:218. [PMID: 38816877 PMCID: PMC11141040 DOI: 10.1186/s12916-024-03432-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) is a promising therapy for refractory Gilles de la Tourette syndrome (GTS). However, its long-term efficacy, safety, and recommended surgical age remain controversial, requiring evidence to compare different age categories. METHODS This retrospective cohort study recruited 102 GTS patients who underwent DBS between October 2006 and April 2022 at two national centers. Patients were divided into two age categories: children (aged < 18 years; n = 34) and adults (aged ≥ 18 years; n = 68). The longitudinal outcomes as tic symptoms were assessed by the YGTSS, and the YBOCS, BDI, and GTS-QOL were evaluated for symptoms of obsessive-compulsive disorder (OCD), depression, and quality of life, respectively. RESULTS Overall, these included patients who finished a median 60-month follow-up, with no significant difference between children and adults (p = 0.44). Overall, the YGTSS total score showed significant postoperative improvements and further improved with time (improved 45.2%, 51.6%, 55.5%, 55.6%, 57.8%, 61.4% after 6, 12, 24, 36, 48, and ≥ 60 months of follow-up compared to baseline, respectively) in all included patients (all p < 0.05). A significantly higher improvement was revealed in children than adults at ≥ 60 months of follow-up in the YGTSS scores (70.1% vs 55.9%, p = 0.043), and the time to achieve 60% improvement was significantly shorter in the children group (median 6 months vs 12 months, p = 0.013). At the last follow-up, the mean improvements were 45.4%, 48.9%, and 55.9% and 40.3%, 45.4%, and 47.9% in YBOCS, BDI, and GTS-QOL scores for children and adults, respectively, which all significantly improved compared to baseline (all p < 0.05) but without significant differences between these two groups (all p > 0.05), and the children group received significantly higher improvement in GTS-QOL scores than adults (55.9% vs. 47.9%, p = 0.049). CONCLUSIONS DBS showed acceptable long-term efficacy and safety for both children and adults with GTS. Surgeries performed for patients younger than 18 years seemed to show acceptable long-term efficacy and safety and were not associated with increased risks of loss of benefit compared to patients older than 18 at the time of surgery. However, surgeries for children should also be performed cautiously to ensure their refractoriness and safety.
Collapse
Affiliation(s)
- Yuan Gao
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Shu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Anni Wang
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Shiying Fan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yan Ge
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, 100070, China
| | - Huimin Wang
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, 100070, China
| | - Dongmei Gao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Jian Wang
- Department of Neurosurgery, The First Medical Center of Chinese, PLA General Hospital, Beijing, 100853, China
| | - Zhiqi Mao
- Department of Neurosurgery, The First Medical Center of Chinese, PLA General Hospital, Beijing, 100853, China
| | - Hulin Zhao
- Department of Neurosurgery, The First Medical Center of Chinese, PLA General Hospital, Beijing, 100853, China
| | - Hua Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Lin Shi
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Huanguang Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Anchao Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yutong Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xin Zhang
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Chong Liu
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Qiao Wang
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Renpeng Li
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Kun Liang
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Kayla Giovanna Brown
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Zhiqiang Cui
- Department of Neurosurgery, The First Medical Center of Chinese, PLA General Hospital, Beijing, 100853, China.
| | - Chunlei Han
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| | - Jianguo Zhang
- Beijing Key Laboratory of Neurostimulation, Beijing, 100070, China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| | - Fangang Meng
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Beijing Key Laboratory of Neurostimulation, Beijing, 100070, China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
7
|
Runge J, Nagel JM, Blahak C, Kinfe TM, Heissler HE, Schrader C, Wolf ME, Saryyeva A, Krauss JK. Does Temporary Externalization of Electrodes After Deep Brain Stimulation Surgery Result in a Higher Risk of Infection? Neuromodulation 2024; 27:565-571. [PMID: 37804281 DOI: 10.1016/j.neurom.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 10/09/2023]
Abstract
OBJECTIVES Deep brain stimulation (DBS) is a well-established surgical therapy for movement disorders that comprises implantation of stimulation electrodes and a pacemaker. These procedures can be performed separately, leaving the possibility of externalizing the electrodes for local field potential recording or testing multiple targets for therapeutic efficacy. It is still debated whether the temporary externalization of DBS electrodes leads to an increased risk of infection. We therefore aimed to assess the risk of infection during and after lead externalization in DBS surgery. MATERIALS AND METHODS In this retrospective study, we analyzed a consecutive series of 624 DBS surgeries, including 266 instances with temporary externalization of DBS electrodes for a mean of 6.1 days. Patients were available for follow-up of at least one year, except in 15 instances. In 14 patients with negative test stimulation, electrodes were removed. All kinds of infections related to implantation of the neurostimulation system were accounted for. RESULTS Overall, infections occurred in 22 of 624 surgeries (3.5%). Without externalization of electrodes, infections were noted after 7 of 358 surgeries (2.0%), whereas with externalization, 15 of 252 infections were found (6.0%). This difference was significant (p = 0.01), but it did not reach statistical significance when comparing groups within different diagnoses. The rate of infection with externalized electrodes was highest in psychiatric disorders (9.1%), followed by Parkinson's disease (7.3%), pain (5.7%), and dystonia (5.5%). The duration of the externalization of the DBS electrodes was comparable in patients who developed an infection (6.1 ± 3.1 days) with duration in those who did not (6.0 ± 3.5 days). CONCLUSIONS Although infection rates were relatively low in our study, there was a slightly higher infection rate when DBS electrodes were externalized. On the basis of our results, the indication for electrode externalization should be carefully considered, and patients should be informed about the possibility of a higher infection risk when externalization of DBS electrodes is planned.
Collapse
Affiliation(s)
- Joachim Runge
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany.
| | - Johanna M Nagel
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | | | - Thomas M Kinfe
- Division of Functional Neurosurgery, Friedrich-Alexander University, Erlangen-Nürnberg, Germany
| | - Hans E Heissler
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | | | - Marc E Wolf
- Department of Neurology, Katharinenhospital Stuttgart, Stuttgart, Germany
| | - Assel Saryyeva
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
8
|
Müller‐Vahl KR, Pisarenko A, Fremer C, Haas M, Jakubovski E, Szejko N. Functional Tic-Like Behaviors: A Common Comorbidity in Patients with Tourette Syndrome. Mov Disord Clin Pract 2024; 11:227-237. [PMID: 38468554 PMCID: PMC10928340 DOI: 10.1002/mdc3.13932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/24/2023] [Accepted: 11/07/2023] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Comorbid functional tic-like behaviors (FTB) have been described only rarely in patients with Tourette syndrome (TS). OBJECTIVES We present the first large sample of patients suffering from TS and FTB to raise awareness of this clinical presentation and to guide how to differentiate one from the other. METHODS We analyzed clinical data of 71 patients (n = 27 [38.0%] female, mean age: 21.5, range: 11-55) with TS + FTB. RESULTS In the majority of patients, FTB started abruptly on average 15 years after tic onset with "treatment-resistant" complex movements and ("coprophenomena-like") vocalizations preceded by timely related psychological stressors. Psychological evaluation revealed evidence for internal conflicts (79%), emotional dysregulation (56%), and maintaining factors (70%). About one third of patients had a positive history for further medically unexplained symptoms. Compared to a large TS sample (n = 1032), patients with TS + FTB were more likely to be female, and presented significantly more common with "coprophenomena-like" symptoms, atypical influential factors, atypical descriptions of premonitory sensations, and higher rates of comorbid obsessive-compulsive disorder and "self-injurious" behavior. CONCLUSIONS Based on our data it can be assumed that FTB is a common comorbidity in TS, similar to functional overlay in other movement disorders and epilepsy. Before classifying a patient as suffering from treatment-resistant TS, FTB should be ruled out.
Collapse
Affiliation(s)
- Kirsten R. Müller‐Vahl
- Clinic of Psychiatry, Social Psychiatry and PsychotherapyHannover Medical SchoolHannoverGermany
| | - Anna Pisarenko
- Clinic of Psychiatry, Social Psychiatry and PsychotherapyHannover Medical SchoolHannoverGermany
| | - Carolin Fremer
- Clinic of Psychiatry, Social Psychiatry and PsychotherapyHannover Medical SchoolHannoverGermany
| | - Martina Haas
- Clinic of Psychiatry, Social Psychiatry and PsychotherapyHannover Medical SchoolHannoverGermany
| | - Ewgeni Jakubovski
- Clinic of Psychiatry, Social Psychiatry and PsychotherapyHannover Medical SchoolHannoverGermany
| | - Natalia Szejko
- Clinic of Psychiatry, Social Psychiatry and PsychotherapyHannover Medical SchoolHannoverGermany
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
- Department of BioethicsMedical University of WarsawWarsawPoland
| |
Collapse
|
9
|
Lee J, Chang KW, Jung HH, Kim D, Chang JW, Song DH. One-year outcomes of deep brain stimulation in refractory Tourette syndrome. Psychiatry Clin Neurosci 2023; 77:605-612. [PMID: 37565663 DOI: 10.1111/pcn.13584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
AIM Deep brain stimulation (DBS) is one option for treating refractory Tourette syndrome (TS); however, it remains unclear which preoperative factors are predictive of DBS outcomes. This study investigated the efficacy of DBS targeting the anteromedial globus pallidus internus and evaluated predisposing factors affecting the outcomes of DBS in a single center in Korea. METHOD Twenty patients who had undergone DBS for refractory TS were reviewed retrospectively. Tic symptoms were followed up at 3-month intervals for up to 1 year after surgery. The Yale Global Tic Severity Scale was used to evaluate preoperative/postoperative tic symptoms. Scores from the Yale-Brown Obsessive Compulsive Scale, Beck Depression Inventory-II, and Beck Anxiety Inventory were also evaluated. RESULTS Patients with refractory TS achieved improvement in tic symptoms within 1 year after DBS. Initial responders who achieved a 35% reduction in Yale Global Tic Severity Scale total score within the first 3 months after DBS showed larger treatment effects during 1-year follow-up. Although no clinical or demographic factors were predictive of initial responses, patients with serious self-injurious behaviors tended to show delayed responses. CONCLUSION This is the first study to our knowledge to report the DBS outcomes of 20 patients with TS in a single center in Asia. Our study supports the efficacy of DBS targeting anteromedial globus pallidus internus in refractory TS with no evident serious adverse events. Initial responses after DBS seem to be a predictor of long-term outcomes after surgery.
Collapse
Affiliation(s)
- Junghan Lee
- Department of Psychiatry and Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyung Won Chang
- Brain Research Institute, Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Ho Jung
- Brain Research Institute, Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dre Kim
- Iian Psychiatric Clinic, Sejong, Republic of Korea
| | - Jin Woo Chang
- Brain Research Institute, Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dong-Ho Song
- Department of Psychiatry and Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
10
|
Arnts H, Coolen SE, Fernandes FW, Schuurman R, Krauss JK, Groenewegen HJ, van den Munckhof P. The intralaminar thalamus: a review of its role as a target in functional neurosurgery. Brain Commun 2023; 5:fcad003. [PMID: 37292456 PMCID: PMC10244065 DOI: 10.1093/braincomms/fcad003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 10/06/2022] [Accepted: 01/03/2023] [Indexed: 09/29/2023] Open
Abstract
The intralaminar thalamus, in particular the centromedian-parafascicular complex, forms a strategic node between ascending information from the spinal cord and brainstem and forebrain circuitry that involves the cerebral cortex and basal ganglia. A large body of evidence shows that this functionally heterogeneous region regulates information transmission in different cortical circuits, and is involved in a variety of functions, including cognition, arousal, consciousness and processing of pain signals. Not surprisingly, the intralaminar thalamus has been a target area for (radio)surgical ablation and deep brain stimulation (DBS) in different neurological and psychiatric disorders. Historically, ablation and stimulation of the intralaminar thalamus have been explored in patients with pain, epilepsy and Tourette syndrome. Moreover, DBS has been used as an experimental treatment for disorders of consciousness and a variety of movement disorders. In this review, we provide a comprehensive analysis of the underlying mechanisms of stimulation and ablation of the intralaminar nuclei, historical clinical evidence, and more recent (experimental) studies in animals and humans to define the present and future role of the intralaminar thalamus as a target in the treatment of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Hisse Arnts
- Department of Neurosurgery, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, The Netherlands
- Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stan E Coolen
- Department of Neurosurgery, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, The Netherlands
| | | | - Rick Schuurman
- Department of Neurosurgery, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, The Netherlands
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Henk J Groenewegen
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, Amsterdam University Medical Centers, location VU University Medical Center, Amsterdam, The Netherlands
| | - Pepijn van den Munckhof
- Department of Neurosurgery, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Spindler P, Braun F, Truckenmüller P, Wasilewski D, Faust K, Schneider GH, Trampuz A, Conen A, Kühn AA, Vajkoczy P, Prinz V. Surgical Site Infections Associated With Implanted Pulse Generators for Deep Brain Stimulation: Meta-Analysis and Systematic Review. Neuromodulation 2023; 26:280-291. [PMID: 35970765 DOI: 10.1016/j.neurom.2022.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/18/2022] [Accepted: 03/14/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The aim of this study was to identify and systematically analyze relevant literature on surgical site infections (SSIs) associated with implantable pulse generator (IPG) procedures for deep brain stimulation (DBS). MATERIALS AND METHODS In compliance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, we conducted a systematic review and meta-analyses of 58 studies that reported SSI rates of 11,289 patients and 15,956 IPG procedures. A meta-analysis of proportions was performed to estimate the pooled proportion of SSIs across DBS procedures in general and to estimate the proportion of SSIs that occur at the IPG pocket. Moreover, a meta-analysis of odds ratio (OR) was conducted on those studies that reported their results of applying topical vancomycin powder during closure of the IPG wound. Results are presented as rates and OR with 95% CIs. RESULTS The pooled proportion of SSIs was 4.9% (95% CI, 4.1%-6.1%) among all DBS procedures. The dominant SSI localization was the IPG pocket in 61.2% (95% CI, 53.4%-68.5%). A trend toward a beneficial effect of vancomycin powder over standard wound closure was found with an OR of 0.46 (95% CI, 0.21-1.02). Most studies (79.1%) that reported their treatment strategy in case of SSI had a strict protocol of removal of the IPG, followed by antimicrobial treatment and reimplantation of the IPG once the SSI had been eradicated. CONCLUSIONS The IPG pocket was identified as the main site of SSI after DBS procedures. Most studies recommend complete IPG removal, antimicrobial treatment, and reimplantation of an IPG once the SSI has been eradicated. Future studies are needed to clarify the role of alternative approaches (eg, topical vancomycin powder) in the prevention of SSI associated with IPG.
Collapse
Affiliation(s)
- Philipp Spindler
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Franziska Braun
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Peter Truckenmüller
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - David Wasilewski
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Katharina Faust
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Gerd-Helge Schneider
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andrej Trampuz
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anna Conen
- Clinic for Infectious Diseases and Infection Prevention, Department of Infectious Diseases and Hospital Hygiene, Kantonsspital Aarau, Aarau, Switzerland
| | - Andrea A Kühn
- Department of Neurology, Movement Disorder Section, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Vincent Prinz
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Neurosurgery, University Hospital, Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
12
|
Johnson KA, Worbe Y, Foote KD, Butson CR, Gunduz A, Okun MS. Tourette syndrome: clinical features, pathophysiology, and treatment. Lancet Neurol 2023; 22:147-158. [PMID: 36354027 PMCID: PMC10958485 DOI: 10.1016/s1474-4422(22)00303-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 05/24/2022] [Accepted: 07/11/2022] [Indexed: 11/07/2022]
Abstract
Tourette syndrome is a chronic neurodevelopmental disorder characterised by motor and phonic tics that can substantially diminish the quality of life of affected individuals. Evaluating and treating Tourette syndrome is complex, in part due to the heterogeneity of symptoms and comorbidities between individuals. The underlying pathophysiology of Tourette syndrome is not fully understood, but recent research in the past 5 years has brought new insights into the genetic variations and the alterations in neurophysiology and brain networks contributing to its pathogenesis. Treatment options for Tourette syndrome are expanding with novel pharmacological therapies and increased use of deep brain stimulation for patients with symptoms that are refractory to pharmacological or behavioural treatments. Potential predictors of patient responses to therapies for Tourette syndrome, such as specific networks modulated during deep brain stimulation, can guide clinical decisions. Multicentre data sharing initiatives have enabled several advances in our understanding of the genetics and pathophysiology of Tourette syndrome and will be crucial for future large-scale research and in refining effective treatments.
Collapse
Affiliation(s)
- Kara A Johnson
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA; Department of Neurology, University of Florida, Gainesville, FL, USA.
| | - Yulia Worbe
- Sorbonne University, ICM, Inserm, CNRS, Department of Neurophysiology, Hôpital Saint Antoine (DMU 6), AP-HP, Paris, France
| | - Kelly D Foote
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA; Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Christopher R Butson
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA; Department of Neurology, University of Florida, Gainesville, FL, USA; Department of Neurosurgery, University of Florida, Gainesville, FL, USA; J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Aysegul Gunduz
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA; J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA; Department of Neurology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
13
|
Chou CY, Agin-Liebes J, Kuo SH. Emerging therapies and recent advances for Tourette syndrome. Heliyon 2023; 9:e12874. [PMID: 36691528 PMCID: PMC9860289 DOI: 10.1016/j.heliyon.2023.e12874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/27/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Tourette syndrome is the most prevalent hyperkinetic movement disorder in children and can be highly disabling. While the pathomechanism of Tourette syndrome remains largely obscure, recent studies have greatly improved our knowledge about this disease, providing a new perspective in our understanding of this condition. Advances in electrophysiology and neuroimaging have elucidated that there is a reduction in frontal cortical volume and reduction of long rage connectivity to the frontal lobe from other parts of the brain. Several genes have also been identified to be associated with Tourette syndrome. Treatment of Tourette syndrome requires a multidisciplinary approach which includes behavioral and pharmacological therapy. In severe cases surgical therapy with deep brain stimulation may be warranted, though the optimal location for stimulation is still being investigated. Studies on alternative therapies including traditional Chinese medicine and neuromodulation, such as transcranial magnetic stimulation have shown promising results, but still are being used in an experimental basis. Several new therapies have also recently been tested in clinical trials. This review provides an overview of the latest findings with regards to genetics and neuroimaging for Tourette syndrome as well as an update on advanced therapeutics.
Collapse
Affiliation(s)
- Chih-Yi Chou
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Julian Agin-Liebes
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Sheng-Han Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
- Corresponding author. 650 West 168th Street, Room 305, New York, NY, 10032, USA. Fax: +(212) 305 1304.
| |
Collapse
|
14
|
Hartmann A, Andrén P, Atkinson-Clement C, Czernecki V, Delorme C, Debes NM, Szejko N, Ueda K, Black K. Tourette syndrome research highlights from 2021. F1000Res 2022; 11:716. [PMID: 35923292 PMCID: PMC9315233 DOI: 10.12688/f1000research.122708.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2022] [Indexed: 11/05/2022] Open
Abstract
We summarize selected research reports from 2021 relevant to Tourette syndrome that the authors consider most important or interesting. The authors welcome article suggestions and thoughtful feedback from readers.
Collapse
Affiliation(s)
- Andreas Hartmann
- Department of Neurology, APHP, Sorbonne University, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France,
| | - Per Andrén
- Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm, Sweden
| | - Cyril Atkinson-Clement
- Paris Brain Institute (ICM), Sorbonne Université, Inserm, CNRS, APHP, Paris, 75013, France
| | - Virginie Czernecki
- Department of Neurology, APHP, Sorbonne University, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France
| | - Cécile Delorme
- Department of Neurology, APHP, Sorbonne University, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France
| | | | - Natalia Szejko
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Keisuke Ueda
- Department of Psychiatry, Neurology, Radiology and Neuroscience, Washington University in St. Louis, Saint Louis, Missouri, USA
| | - Kevin Black
- Department of Psychiatry, Neurology, Radiology and Neuroscience, Washington University in St. Louis, Saint Louis, Missouri, USA
| |
Collapse
|
15
|
Cui ZQ, Wang J, Mao ZQ, Pan LS, Jiang C, Gao QY, Ling ZP, Xu BN, Yu XG, Zhang JN, Chen T. Long-term efficacy, prognostic factors, and safety of deep brain stimulation in patients with refractory Tourette syndrome: A single center, single target, retrospective study. J Psychiatr Res 2022; 151:523-530. [PMID: 35636027 DOI: 10.1016/j.jpsychires.2022.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/11/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND To evaluate the long-term efficacy, prognostic factors, and safety of posteroventral globus pallidus internus deep brain stimulation (DBS) in patients with refractory Tourette syndrome (RTS). METHODS This retrospective study recruited 61 patients with RTS who underwent posteroventral globus pallidus internus (GPi) DBS from January 2010 to December 2020 at the Chinese People's Liberation Army General Hospital. The Yale Global Tic Severity Scale (YGTSS), Yale-Brown Obsessive-Compulsive Scale (YBOCS), Beck Depression Inventory (BDI), Gilles de la Tourette Syndrome Quality-of-Life Scale (GTS-QOL) were used to evaluate the preoperative and postoperative clinical condition in all patients. Prognostic factors and adverse events following surgery were analyzed. RESULTS Patient follow up was conducted for an average of 73.33 ± 28.44 months. The final postoperative YGTSS (32.39 ± 22.34 vs 76.61 ± 17.07), YBOCS (11.26 ± 5.57 vs 18.31 ± 8.55), BDI (14.36 ± 8.16 vs 24.79 ± 11.03) and GTS-QOL (39.69 ± 18.29 vs 78.08 ± 14.52) scores at the end of the follow-up period were significantly lower than those before the surgery (p < 0.05). While age and the duration of follow-up were closely related to prognosis, the disease duration and gender were not. No serious adverse events were observed and only one patient exhibited symptomatic deterioration. CONCLUSIONS Posteroventral-GPI DBS provides long-term effectiveness, acceptable safety and can improve the quality of life in RTS patients. Moreover, DBS is more successful among younger patients and with longer treatment duration.
Collapse
Affiliation(s)
- Zhi-Qiang Cui
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jian Wang
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, 100853, China
| | - Zhi-Qi Mao
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, 100853, China
| | - Long-Sheng Pan
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, 100853, China
| | - Chao Jiang
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Qing-Yao Gao
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Zhi-Pei Ling
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, 100853, China
| | - Bai-Nan Xu
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xin-Guang Yu
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jian-Ning Zhang
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, 100853, China
| | - Tong Chen
- Department of Neurology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
16
|
Tomskiy AA, Poddubskaya AA, Gamaleya AA, Zaitsev OS. Neurosurgical management of Tourette syndrome: A literature review and analysis of a case series treated with deep brain stimulation. PROGRESS IN BRAIN RESEARCH 2022; 272:41-72. [PMID: 35667806 DOI: 10.1016/bs.pbr.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tourette syndrome (TS) is a heterogeneous disorder, which clinical presentation includes both multiple motor and vocal tics and commonly associated psychiatric conditions (obsessive-compulsive disorder, attention deficit hyperactivity disorder, depression, anxiety, etc.). Treatment options primarily consist of non-pharmacological interventions (habit reversal training, relaxation techniques, cognitive behavioral therapy, and social rehabilitation) and pharmacotherapy. In case of the intractable forms, neurosurgical treatment may be considered, primarily deep brain stimulation (DBS). DBS appear to be effective in medically intractable TS patients, although, the preferential brain target is still not defined. The majority of studies describe small number of cases and the issues of appropriate patient selection and ethics remain to be clarified. In this article, we review the main points in management of TS, discuss possible indications and contraindications for neurosurgical treatment, and analyze our experience of DBS in a case series of refractory TS patients with the focus on target selection and individual outcomes.
Collapse
Affiliation(s)
- Alexey A Tomskiy
- Department of Functional Neurosurgery, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russian Federation.
| | - Anna A Poddubskaya
- Department of Functional Neurosurgery, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russian Federation; Psychiatry Research Group, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russian Federation
| | - Anna A Gamaleya
- Department of Functional Neurosurgery, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russian Federation
| | - Oleg S Zaitsev
- Psychiatry Research Group, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russian Federation
| |
Collapse
|
17
|
Szejko N, Worbe Y, Hartmann A, Visser-Vandewalle V, Ackermans L, Ganos C, Porta M, Leentjens AFG, Mehrkens JH, Huys D, Baldermann JC, Kuhn J, Karachi C, Delorme C, Foltynie T, Cavanna AE, Cath D, Müller-Vahl K. European clinical guidelines for Tourette syndrome and other tic disorders-version 2.0. Part IV: deep brain stimulation. Eur Child Adolesc Psychiatry 2022; 31:443-461. [PMID: 34605960 PMCID: PMC8940783 DOI: 10.1007/s00787-021-01881-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022]
Abstract
In 2011 the European Society for the Study of Tourette Syndrome (ESSTS) published its first European clinical guidelines for the treatment of Tourette Syndrome (TS) with part IV on deep brain stimulation (DBS). Here, we present a revised version of these guidelines with updated recommendations based on the current literature covering the last decade as well as a survey among ESSTS experts. Currently, data from the International Tourette DBS Registry and Database, two meta-analyses, and eight randomized controlled trials (RCTs) are available. Interpretation of outcomes is limited by small sample sizes and short follow-up periods. Compared to open uncontrolled case studies, RCTs report less favorable outcomes with conflicting results. This could be related to several different aspects including methodological issues, but also substantial placebo effects. These guidelines, therefore, not only present currently available data from open and controlled studies, but also include expert knowledge. Although the overall database has increased in size since 2011, definite conclusions regarding the efficacy and tolerability of DBS in TS are still open to debate. Therefore, we continue to consider DBS for TS as an experimental treatment that should be used only in carefully selected, severely affected and otherwise treatment-resistant patients.
Collapse
Affiliation(s)
- Natalia Szejko
- Department of Neurology, Medical University of Warsaw, Banacha 1a, 02-091, Warsaw, Poland.
- Department of Bioethics, Medical University of Warsaw, Banacha 1a, 02-091, Warsaw, Poland.
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, USA.
| | - Yulia Worbe
- Department on Neurophysiology, Saint Antoine Hospital, Sorbonne Université, Paris, France
- National Reference Center for Tourette Disorder, Pitié Salpetiere Hospital, Paris, France
| | - Andreas Hartmann
- Department of Neurosurgery, Pitié-Salpetriere Hospital, Sorbonne Université, Paris, France
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Linda Ackermans
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Christos Ganos
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Mauro Porta
- Department of Neurosurgery and Neurology, IRCCS Instituto Ortopedico Galeazzi, Milan, Italy
| | - Albert F G Leentjens
- Department of Psychiatry, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jan-Hinnerk Mehrkens
- Department of Neurosurgery, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Daniel Huys
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | | | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Johanniter Hospital Oberhausen, Oberhausen, Germany
| | - Carine Karachi
- National Reference Center for Tourette Disorder, Pitié Salpetiere Hospital, Paris, France
- Department of Neurosurgery, Pitié-Salpetriere Hospital, Sorbonne Université, Paris, France
- Department of Neurology, Pitié-Salpetriere Hospital, Sorbonne Université, Paris, France
| | - Cécile Delorme
- Department of Neurosurgery, Pitié-Salpetriere Hospital, Sorbonne Université, Paris, France
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Andrea E Cavanna
- Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - Danielle Cath
- Department of Specialist Trainings, GGZ Drenthe Mental Health Institution, Assen, The Netherlands
- Department of Psychiatry, University Medical Center Groningen, Rijks University Groningen, Groningen, The Netherlands
| | - Kirsten Müller-Vahl
- Clinic of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| |
Collapse
|
18
|
Wehmeyer L, Schüller T, Kiess J, Heiden P, Visser-Vandewalle V, Baldermann JC, Andrade P. Target-Specific Effects of Deep Brain Stimulation for Tourette Syndrome: A Systematic Review and Meta-Analysis. Front Neurol 2021; 12:769275. [PMID: 34744993 PMCID: PMC8563609 DOI: 10.3389/fneur.2021.769275] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/21/2021] [Indexed: 01/09/2023] Open
Abstract
Background: Extended research has pointed to the efficacy of deep brain stimulation (DBS) in treatment of patients with treatment-refractory Tourette syndrome (TS). The four most commonly used DBS targets for TS include the centromedian nucleus-nucleus ventrooralis internus (CM-Voi) and the centromedian nucleus-parafascicular (CM-Pf) complexes of the thalamus, and the posteroventrolateral (pvIGPi) and the anteromedial portion of the globus pallidus internus (amGPi). Differences and commonalities between those targets need to be compared systematically. Objective: Therefore, we evaluated whether DBS is effective in reducing TS symptoms and target-specific differences. Methods: A PubMed literature search was conducted according to the PRISMA guidelines. Eligible literature was used to conduct a systematic review and meta-analysis. Results: In total, 65 studies with 376 patients were included. Overall, Yale Global Tic Severity Scale (YGTSS) scores were reduced by more than 50 in 69% of the patients. DBS also resulted in significant reductions of secondary outcome measures, including the total YGTSS, modified Rush Video-Based Tic Rating Scale (mRVRS), Yale-Brown Obsessive Compulsive Scale (YBOCS), and Becks Depression Inventory (BDI). All targets resulted in significant reductions of YGTSS scores and, with the exception of the CM-Pf, also in reduced YBOCS scores. Interestingly, DBS of pallidal targets showed increased YGTSS and YBOCS reductions compared to thalamic targets. Also, the meta-analysis including six randomized controlled and double-blinded trials demonstrated clinical efficacy of DBS for TS, that remained significant for GPi but not thalamic stimulation in two separate meta-analyses. Conclusion: We conclude that DBS is a clinically effective treatment option for patients with treatment-refractory TS, with all targets showing comparable improvement rates. Future research might focus on personalized and symptom-specific target selection.
Collapse
Affiliation(s)
- Laura Wehmeyer
- Faculty of Medicine and University Hospital Cologne, Department of Stereotactic and Functional Neurosurgery, University of Cologne, Cologne, Germany,*Correspondence: Laura Wehmeyer
| | - Thomas Schüller
- Faculty of Medicine and University Hospital Cologne, Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Jana Kiess
- Faculty of Medicine and University Hospital Cologne, Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Petra Heiden
- Faculty of Medicine and University Hospital Cologne, Department of Stereotactic and Functional Neurosurgery, University of Cologne, Cologne, Germany
| | - Veerle Visser-Vandewalle
- Faculty of Medicine and University Hospital Cologne, Department of Stereotactic and Functional Neurosurgery, University of Cologne, Cologne, Germany
| | - Juan Carlos Baldermann
- Faculty of Medicine and University Hospital Cologne, Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany,Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany
| | - Pablo Andrade
- Faculty of Medicine and University Hospital Cologne, Department of Stereotactic and Functional Neurosurgery, University of Cologne, Cologne, Germany
| |
Collapse
|
19
|
Baldermann JC, Kuhn J, Schüller T, Kohl S, Andrade P, Schleyken S, Prinz-Langenohl R, Hellmich M, Barbe MT, Timmermann L, Visser-Vandewalle V, Huys D. Thalamic deep brain stimulation for Tourette Syndrome: A naturalistic trial with brief randomized, double-blinded sham-controlled periods. Brain Stimul 2021; 14:1059-1067. [PMID: 34245918 DOI: 10.1016/j.brs.2021.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/15/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND There is still a lack of controlled studies to prove efficacy of thalamic deep brain stimulation for Tourette's Syndrome. OBJECTIVES In this controlled trial, we investigated the course of tic severity, comorbidities and quality of life during thalamic stimulation and whether changes in tic severity can be assigned to ongoing compared to sham stimulation. METHODS We included eight adult patients with medically refractory Tourette's syndrome. Bilateral electrodes were implanted in the centromedian-parafascicular-complex and the nucleus ventro-oralis internus. Tic severity, quality of life and comorbidities were assessed before surgery as well as six and twelve months after. Short randomized, double-blinded sham-controlled crossover sequences with either active or sham stimulation were implemented at both six- and twelve-months' assessments. The primary outcome measurement was the difference in the Yale Global Tic Severity Scale tic score between active and sham stimulation. Adverse events were systematically surveyed for all patients to evaluate safety. RESULTS Active stimulation resulted in significantly higher tic reductions than sham stimulation (F = 79.5; p = 0.001). Overall quality of life and comorbidities improved significantly in the open-label-phase. Over the course of the trial two severe adverse events occurred that were resolved without sequelae. CONCLUSION Our results provide evidence that thalamic stimulation is effective in improving tic severity and overall quality of life. Crucially, the reduction of tic severity was primarily driven by active stimulation. Further research may focus on improving stimulation protocols and refining patient selection to improve efficacy and safety of deep brain stimulation for Tourette's Syndrome.
Collapse
Affiliation(s)
- Juan Carlos Baldermann
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Psychiatry and Psychotherapy, Cologne, Germany.
| | - Jens Kuhn
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Psychiatry and Psychotherapy, Cologne, Germany; Department of Psychiatry, Psychotherapy, and Psychosomatics, Johanniter Hospital Oberhausen, Oberhausen, Germany
| | - Thomas Schüller
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Psychiatry and Psychotherapy, Cologne, Germany
| | - Sina Kohl
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Psychiatry and Psychotherapy, Cologne, Germany
| | - Pablo Andrade
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Functional Neurosurgery and Stereotaxy, Cologne, Germany
| | - Sophia Schleyken
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Psychiatry and Psychotherapy, Cologne, Germany
| | - Reinhild Prinz-Langenohl
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre, Cologne, Germany
| | - Martin Hellmich
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Medical Statistics and Computational Biology, Cologne, Germany
| | - Michael T Barbe
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Lars Timmermann
- University Hospital Giessen and Marburg, Department of Neurology, Campus Marburg, Marburg, Germany; Center for Mind, Brain and Behaviour, Marburg, Germany
| | - Veerle Visser-Vandewalle
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Functional Neurosurgery and Stereotaxy, Cologne, Germany
| | - Daniel Huys
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Psychiatry and Psychotherapy, Cologne, Germany
| |
Collapse
|