1
|
Sun L, Bao L. Neuronal theta oscillation of hippocampal ensemble and memory function. Behav Brain Res 2025; 481:115429. [PMID: 39800078 DOI: 10.1016/j.bbr.2025.115429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/26/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Memory is the ability to acquire and store information following an experience, which can be retrieved by related context exposure. Pioneering studies have demonstrated that sparsely distributed neuronal ensembles or engram cells can serve as neural substrates for storing and recalling memory traces. Many studies of neuronal ensembles have focused on the hippocampus, and increasing evidence has indicated that the neuronal oscillation is closely associated with hippocampal memory functions, including both encoding and retrieval processes. In particular, the theta synchronization of hippocampal ensembles with other brain regions mediates the retrieval of multiple types of memory. The recent progress of theta oscillations in the formation of memory engrams is reviewed, as well as the increased theta power and neurotransmitter regulation on memory function. Detailed information based on an analysis of hippocampal local theta rhythms is presented. Moreover, the hippocampus theta synchronization with the sensory cortex, prefrontal cortex and amygdala, which mediate different types of memory retrieval, are also reviewed. Together, these findings contribute to understanding the important role of hippocampal theta oscillation in the storage and recall of memory traces.
Collapse
Affiliation(s)
- Lin Sun
- School of Clinical Medicine, Changzhi Medical College, Changzhi, Shanxi Province 046013, China
| | - Lihua Bao
- Department of Neurology, Changzhi People's Hospital, Changzhi, Shanxi Province 046000, China.
| |
Collapse
|
2
|
Campbell JM, Cowan RL, Wahlstrom KL, Hollearn MK, Jensen D, Davis T, Rahimpour S, Shofty B, Arain A, Rolston JD, Hamann S, Wang S, Eisenman LN, Swift J, Xie T, Brunner P, Manns JR, Inman CS, Smith EH, Willie JT. Human single-neuron activity is modulated by intracranial theta burst stimulation of the basolateral amygdala. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.11.622161. [PMID: 39605345 PMCID: PMC11601271 DOI: 10.1101/2024.11.11.622161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Direct electrical stimulation of the human brain has been used for numerous clinical and scientific applications. Previously, we demonstrated that intracranial theta burst stimulation (TBS) of the basolateral amygdala (BLA) can enhance declarative memory, likely by modulating hippocampal-dependent memory consolidation. At present, however, little is known about how intracranial stimulation affects activity at the microscale. In this study, we recorded intracranial EEG data from a cohort of patients with medically refractory epilepsy as they completed a visual recognition memory task. During the memory task, brief trains of TBS were delivered to the BLA. Using simultaneous microelectrode recordings, we isolated neurons in the hippocampus, amygdala, orbitofrontal cortex, and anterior cingulate cortex and tested whether stimulation enhanced or suppressed firing rates. Additionally, we characterized the properties of modulated neurons, patterns of firing rate coactivity, and the extent to which modulation affected memory task performance. We observed a subset of neurons (~30%) whose firing rate was modulated by TBS, exhibiting highly heterogeneous responses with respect to onset latency, duration, and direction of effect. Notably, location and baseline activity predicted which neurons were most susceptible to modulation, although the impact of this neuronal modulation on memory remains unclear. These findings advance our limited understanding of how focal electrical fields influence neuronal firing at the single-cell level and motivate future neuromodulatory therapies that aim to recapitulate specific patterns of activity implicated in cognition and memory.
Collapse
Affiliation(s)
- Justin M. Campbell
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA
| | - Rhiannon L. Cowan
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | | | | | - Dylan Jensen
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA
| | - Tyler Davis
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | - Shervin Rahimpour
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | - Ben Shofty
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | - Amir Arain
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - John D. Rolston
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Stephan Hamann
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Shuo Wang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lawrence N. Eisenman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - James Swift
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- National Center for Adaptive Neurotechnologies, St. Louis, MO, USA
| | - Tao Xie
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- National Center for Adaptive Neurotechnologies, St. Louis, MO, USA
| | - Peter Brunner
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- National Center for Adaptive Neurotechnologies, St. Louis, MO, USA
| | - Joseph R. Manns
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Cory S. Inman
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA
- Department of Psychology, University of Utah, Salt Lake City, UT, USA
- Senior author
| | - Elliot H. Smith
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
- Senior author
| | - Jon T. Willie
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- National Center for Adaptive Neurotechnologies, St. Louis, MO, USA
- Senior author
| |
Collapse
|
3
|
Stam CH, van der Veen FM, Franken IHA. Evidence for post-decisional conflict monitoring in delay discounting. Biol Psychol 2024; 192:108849. [PMID: 39053840 DOI: 10.1016/j.biopsycho.2024.108849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Choice impulsivity can be measured by offering a sequence of various binary choices between smaller, immediately available rewards and larger, later available rewards. An individual's delay discount (DD) rate reflects the aggregate decision-making tendency. Given the broad spectrum of disorders associated with a high DD rate, this may be an important transdiagnostic factor. This study aimed to establish whether post-decisional neurophysiological processes reflecting the presence of error monitoring are involved in delay discounting. A large sample (N = 97) was investigated, including 46 females and 51 males. The electroencephalogram (EEG) was recorded during the classic monetary choice questionnaire (MCQ-27). Error-related event-related potentials (ERPs) and event-related oscillations (EROs) following responses were analyzed. A modest relationship between error positivity (Pe) and DD rate was seen centro-parietal, with higher amplitude for low DD individuals after choosing immediate rewards. A robust association was found between DD rate and theta oscillation power increases. This was most prominent in low DD individuals after making an immediate reward choice. Theta power was positively associated with decision (reaction) time, suggesting an association between pre- and post-decisional conflict. No evidence was found for an error-related negativity (ERN) and delta oscillations. This study provides clear evidence for conflict monitoring as a post-decision process in delay discounting. Findings suggest that diminished theta band power bursts and lower Pe amplitude, observed after choosing an immediate reward, reflect the neurophysiological consequence and possibly the cause of steep delay discounting. High DD was characterized by prefrontal hypoactivation and appears to result from affective decision-making.
Collapse
Affiliation(s)
- C Henrico Stam
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Burgemeerster Oudlaan 55, 3062 PA Rotterdam, the Netherlands.
| | - Frederik M van der Veen
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, the Netherlands.
| | - Ingmar H A Franken
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, the Netherlands.
| |
Collapse
|
4
|
Mohan UR, Jacobs J. Why does invasive brain stimulation sometimes improve memory and sometimes impair it? PLoS Biol 2024; 22:e3002894. [PMID: 39453948 PMCID: PMC11616832 DOI: 10.1371/journal.pbio.3002894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/04/2024] [Indexed: 10/27/2024] Open
Abstract
Invasive brain stimulation is used to treat individuals with episodic memory loss; however, studies to date report both enhancement and impairment of memory. This Essay discusses the sources of this variability, and suggests a path towards developing customized stimulation protocols for more consistent memory enhancement.
Collapse
Affiliation(s)
- Uma R. Mohan
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University, New York City, New York, United States of America
- Department of Neurological Surgery, Columbia University, New York City, New York, United States of America
| |
Collapse
|
5
|
Hadar PN, Zelmann R, Salami P, Cash SS, Paulk AC. The Neurostimulationist will see you now: prescribing direct electrical stimulation therapies for the human brain in epilepsy and beyond. Front Hum Neurosci 2024; 18:1439541. [PMID: 39296917 PMCID: PMC11408201 DOI: 10.3389/fnhum.2024.1439541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024] Open
Abstract
As the pace of research in implantable neurotechnology increases, it is important to take a step back and see if the promise lives up to our intentions. While direct electrical stimulation applied intracranially has been used for the treatment of various neurological disorders, such as Parkinson's, epilepsy, clinical depression, and Obsessive-compulsive disorder, the effectiveness can be highly variable. One perspective is that the inability to consistently treat these neurological disorders in a standardized way is due to multiple, interlaced factors, including stimulation parameters, location, and differences in underlying network connectivity, leading to a trial-and-error stimulation approach in the clinic. An alternate view, based on a growing knowledge from neural data, is that variability in this input (stimulation) and output (brain response) relationship may be more predictable and amenable to standardization, personalization, and, ultimately, therapeutic implementation. In this review, we assert that the future of human brain neurostimulation, via direct electrical stimulation, rests on deploying standardized, constrained models for easier clinical implementation and informed by intracranial data sets, such that diverse, individualized therapeutic parameters can efficiently produce similar, robust, positive outcomes for many patients closer to a prescriptive model. We address the pathway needed to arrive at this future by addressing three questions, namely: (1) why aren't we already at this prescriptive future?; (2) how do we get there?; (3) how far are we from this Neurostimulationist prescriptive future? We first posit that there are limited and predictable ways, constrained by underlying networks, for direct electrical stimulation to induce changes in the brain based on past literature. We then address how identifying underlying individual structural and functional brain connectivity which shape these standard responses enable targeted and personalized neuromodulation, bolstered through large-scale efforts, including machine learning techniques, to map and reverse engineer these input-output relationships to produce a good outcome and better identify underlying mechanisms. This understanding will not only be a major advance in enabling intelligent and informed design of neuromodulatory therapeutic tools for a wide variety of neurological diseases, but a shift in how we can predictably, and therapeutically, prescribe stimulation treatments the human brain.
Collapse
Affiliation(s)
- Peter N Hadar
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Rina Zelmann
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Pariya Salami
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Angelique C Paulk
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
6
|
Huang Y, Zelmann R, Hadar P, Dezha-Peralta J, Richardson RM, Williams ZM, Cash SS, Keller CJ, Paulk AC. Theta-burst direct electrical stimulation remodels human brain networks. Nat Commun 2024; 15:6982. [PMID: 39143083 PMCID: PMC11324911 DOI: 10.1038/s41467-024-51443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024] Open
Abstract
Theta-burst stimulation (TBS), a patterned brain stimulation technique that mimics rhythmic bursts of 3-8 Hz endogenous brain rhythms, has emerged as a promising therapeutic approach for treating a wide range of brain disorders, though the neural mechanism of TBS action remains poorly understood. We investigated the neural effects of TBS using intracranial EEG (iEEG) in 10 pre-surgical epilepsy participants undergoing intracranial monitoring. Here we show that individual bursts of direct electrical TBS at 29 frontal and temporal sites evoked strong neural responses spanning broad cortical regions. These responses exhibited dynamic local field potential voltage changes over the course of stimulation presentations, including either increasing or decreasing responses, suggestive of short-term plasticity. Stronger stimulation augmented the mean TBS response amplitude and spread with more recording sites demonstrating short-term plasticity. TBS responses were stimulation site-specific with stronger TBS responses observed in regions with strong baseline stimulation effective (cortico-cortical evoked potentials) and functional (low frequency phase locking) connectivity. Further, we could use these measures to predict stable and varying (e.g. short-term plasticity) TBS response locations. Future work may integrate pre-treatment connectivity alongside other biophysical factors to personalize stimulation parameters, thereby optimizing induction of neuroplasticity within disease-relevant brain networks.
Collapse
Affiliation(s)
- Yuhao Huang
- Department of Neurosurgery, Stanford University, Palo Alto, CA, USA
| | - Rina Zelmann
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Peter Hadar
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jaquelin Dezha-Peralta
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ziv M Williams
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Corey J Keller
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Palo Alto, CA, USA.
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, USA.
| | - Angelique C Paulk
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
7
|
Markowska A, Tarnacka B. Molecular Changes in the Ischemic Brain as Non-Invasive Brain Stimulation Targets-TMS and tDCS Mechanisms, Therapeutic Challenges, and Combination Therapies. Biomedicines 2024; 12:1560. [PMID: 39062133 PMCID: PMC11274560 DOI: 10.3390/biomedicines12071560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Ischemic stroke is one of the leading causes of death and disability. As the currently used neurorehabilitation methods present several limitations, the ongoing research focuses on the use of non-invasive brain stimulation (NIBS) techniques such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). NIBS methods were demonstrated to modulate neural excitability and improve motor and cognitive functioning in neurodegenerative diseases. However, their mechanisms of action are not fully elucidated, and the clinical outcomes are often unpredictable. This review explores the molecular processes underlying the effects of TMS and tDCS in stroke rehabilitation, including oxidative stress reduction, cell death, stimulation of neurogenesis, and neuroprotective phenotypes of glial cells. A highlight is put on the newly emerging therapeutic targets, such as ferroptotic and pyroptotic pathways. In addition, the issue of interindividual variability is discussed, and the role of neuroimaging techniques is investigated to get closer to personalized medicine. Furthermore, translational challenges of NIBS techniques are analyzed, and limitations of current clinical trials are investigated. The paper concludes with suggestions for further neurorehabilitation stroke treatment, putting the focus on combination and personalized therapies, as well as novel protocols of brain stimulation techniques.
Collapse
Affiliation(s)
- Aleksandra Markowska
- Department of Rehabilitation Medicine, Faculty of Medicine, Warsaw Medical University, Spartańska 1, 02-637 Warsaw, Poland;
| | | |
Collapse
|
8
|
Guo L, Zhang Z, Tan XW, Phua K, Wang C, Tor PC, Ang KK. Resting-state EEG biomarkers of accelerated intermittent theta burst stimulation treatment for depression: a pilot study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039406 DOI: 10.1109/embc53108.2024.10782112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Accelerated intermittent theta burst stimulation (aiTBS) is a novel and effective treatment for drug-resistant depression. While past studies have identified encephalography (EEG) features predicting repetitive transcranial magnetic stimulation (rTMS) outcomes, EEG biomarkers specifically for aiTBS in depression patients have not been explored. In this pilot trial on 5 depression patients undergoing aiTBS, we assessed clinical outcome using the Montgomery-Asberg Depression Rating Scale (MADRS) and collected resting-state EEG pre and post-treatment. All patients showed an improvement in MADRS, with 3 having at least 50% improvement. We found significant correlations between MADRS change and pre-treatment frontal beta power, midline frontal Lempel-Ziv Complexity (LZC) and alpha connectivity. We also observed a trend of increased frontal theta power post-treatment. However, no significant correlations emerged between MADRS change and change in EEG feature post-treatment. This preliminary trial highlights the potential for investigating aiTBS-specific EEG biomarkers, paving the way for larger studies to enhance personalized neurostimulation and predict treatment outcomes in drug-resistant depression patients.
Collapse
|
9
|
Daoud A, Elsayed M, Alnajjar AZ, Krayim A, AbdelMeseh M, Alsalloum T, Nabil Y, Faisal R. Efficacy of intermittent theta burst stimulation (iTBS) on post-stroke cognitive impairment (PSCI): a systematic review and meta-analysis. Neurol Sci 2024; 45:2107-2118. [PMID: 38150130 DOI: 10.1007/s10072-023-07267-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/12/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND Stroke is a significant global cause of mortality and morbidity, and post-stroke cognitive impairment (PSCI) affects up to half of stroke patients. Despite the availability of pharmacological and non-pharmacological interventions, there is a lack of definitive effective treatments for PSCI. Non-invasive brain stimulation, particularly intermittent theta burst stimulation (iTBS), has emerged as a promising therapy for the treatment of PSCI. OBJECTIVE This systematic review and meta-analysis aimed to evaluate the efficacy and safety of iTBS in enhancing cognitive function among patients with PSCI. METHODS A comprehensive search was conducted across multiple databases, including PubMed, Web of Science, Scopus, Cochrane Library, and CNKI, to identify relevant randomized controlled trials published before April 2023. The primary outcome measured changes in global cognitive scales, while the secondary outcomes focused on improvements in attention, orientation, visual-spatial perception, and activities of daily living. RESULTS The meta-analysis encompassed six studies involving 325 patients. The results demonstrated that iTBS led to a significant improvement in global cognitive scales (SMD = 1.12, 95% CI = [0.59 to 1.65], P < 0.0001), attention (SMD = 0.48, 95% CI [0.13 to 0.82], P = 0.007), visual perception (SMD = 0.99, 95% CI [0.13 to 1.86], P = 0.02), and activities of daily living (SMD = 0.82, 95% CI [0.55 to 1.08], P < 0.00001). However, there was no significant effect on orientation (SMD = 0.36, 95% CI [- 0.04 to 0.76], P = 0.07). Subgroup analysis based on the number of sessions was conducted, revealing a significant improvement in global cognition among patients with PSCI across the three categories (10 sessions, 20 sessions, and 30 sessions) with no between-group difference (P = 0.28). None of the included studies reported any serious adverse effects. CONCLUSION In conclusion, iTBS appears to be a safe and effective non-invasive treatment that can enhance the cognitive abilities and daily living skills of patients with post-stroke cognitive impairment. However, our conclusion is constrained by the limited number of studies. Further high-quality, large-sample RCTs with extended follow-up periods are necessary to validate these findings. Integrating iTBS with brain imaging techniques, such as functional near-infrared spectroscopy and functional magnetic resonance, could aid in understanding the mechanism of iTBS action.
Collapse
Affiliation(s)
- Asma Daoud
- Medical Research Group of Egypt (MRGE), Cairo, Egypt
- Faculty of Medicine, Ferhat Abbas University, Setif, Algeria
| | - Moaz Elsayed
- Medical Research Group of Egypt (MRGE), Cairo, Egypt.
- Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Asmaa Zakria Alnajjar
- Medical Research Group of Egypt (MRGE), Cairo, Egypt
- Faculty of Medicine, Al- Al-Azhar University, Gaza, Palestine
| | - Abdulrahman Krayim
- Medical Research Group of Egypt (MRGE), Cairo, Egypt
- Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Maickel AbdelMeseh
- Medical Research Group of Egypt (MRGE), Cairo, Egypt
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Taleb Alsalloum
- Medical Research Group of Egypt (MRGE), Cairo, Egypt
- Faculty of Medicine, University of Hama, Hama, Syria
| | - Yehia Nabil
- Medical Research Group of Egypt (MRGE), Cairo, Egypt
- Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Roaa Faisal
- Medical Research Group of Egypt (MRGE), Cairo, Egypt
- School of Medicine, Ahfad University for Women, Omdurman, Sudan
| |
Collapse
|
10
|
Solomon EA, Wang JB, Oya H, Howard MA, Trapp NT, Uitermarkt BD, Boes AD, Keller CJ. TMS provokes target-dependent intracranial rhythms across human cortical and subcortical sites. Brain Stimul 2024; 17:698-712. [PMID: 38821396 PMCID: PMC11313454 DOI: 10.1016/j.brs.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/25/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) is believed to alter ongoing neural activity and cause circuit-level changes in brain function. While the electrophysiological effects of TMS have been extensively studied with scalp electroencephalography (EEG), this approach generally evaluates low-frequency neural activity at the cortical surface. However, TMS can be safely used in patients with intracranial electrodes (iEEG), allowing for direct assessment of deeper and more localized oscillatory responses across the frequency spectrum. OBJECTIVE/HYPOTHESIS Our study used iEEG to understand the effects of TMS on human neural activity in the spectral domain. We asked (1) which brain regions respond to cortically-targeted TMS, and in what frequency bands, (2) whether deeper brain structures exhibit oscillatory responses, and (3) whether the neural responses to TMS reflect evoked versus induced oscillations. METHODS We recruited 17 neurosurgical patients with indwelling electrodes and recorded neural activity while patients underwent repeated trials of single-pulse TMS at either the dorsolateral prefrontal cortex (DLPFC) or parietal cortex. iEEG signals were analyzed using spectral methods to understand the oscillatory responses to TMS. RESULTS Stimulation to DLPFC drove widespread low-frequency increases (3-8 Hz) in frontolimbic cortices and high-frequency decreases (30-110 Hz) in frontotemporal areas, including the hippocampus. Stimulation to parietal cortex specifically provoked low-frequency responses in the medial temporal lobe. While most low-frequency activity was consistent with phase-locked evoked responses, anterior frontal regions exhibited induced theta oscillations following DLPFC stimulation. CONCLUSIONS By combining TMS with intracranial EEG recordings, our results suggest that TMS is an effective means to perturb oscillatory neural activity in brain-wide networks, including deeper structures not directly accessed by stimulation itself.
Collapse
Affiliation(s)
- Ethan A Solomon
- Dept. of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Palo Alto, 94305, CA, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, 94305, CA, USA.
| | - Jeffrey B Wang
- Dept. of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Palo Alto, 94305, CA, USA; Biophysics Graduate Program, Stanford University Medical Center, Stanford, 94305, CA, USA
| | - Hiroyuki Oya
- Department of Neurosurgery, Carver College of Medicine, University of Iowa, Iowa City, 52242, IA, USA
| | - Matthew A Howard
- Department of Neurosurgery, Carver College of Medicine, University of Iowa, Iowa City, 52242, IA, USA
| | - Nicholas T Trapp
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, 52242, IA, USA; Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, 52242, IA, USA
| | - Brandt D Uitermarkt
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, 52242, IA, USA
| | - Aaron D Boes
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, 52242, IA, USA; Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, 52242, IA, USA; Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, 52242, IA, USA
| | - Corey J Keller
- Dept. of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Palo Alto, 94305, CA, USA; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, 94305, CA, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, 94305, CA, USA
| |
Collapse
|
11
|
Vardalakis N, Aussel A, Rougier NP, Wagner FB. A dynamical computational model of theta generation in hippocampal circuits to study theta-gamma oscillations during neurostimulation. eLife 2024; 12:RP87356. [PMID: 38354040 PMCID: PMC10942594 DOI: 10.7554/elife.87356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Neurostimulation of the hippocampal formation has shown promising results for modulating memory but the underlying mechanisms remain unclear. In particular, the effects on hippocampal theta-nested gamma oscillations and theta phase reset, which are both crucial for memory processes, are unknown. Moreover, these effects cannot be investigated using current computational models, which consider theta oscillations with a fixed amplitude and phase velocity. Here, we developed a novel computational model that includes the medial septum, represented as a set of abstract Kuramoto oscillators producing a dynamical theta rhythm with phase reset, and the hippocampal formation, composed of biophysically realistic neurons and able to generate theta-nested gamma oscillations under theta drive. We showed that, for theta inputs just below the threshold to induce self-sustained theta-nested gamma oscillations, a single stimulation pulse could switch the network behavior from non-oscillatory to a state producing sustained oscillations. Next, we demonstrated that, for a weaker theta input, pulse train stimulation at the theta frequency could transiently restore seemingly physiological oscillations. Importantly, the presence of phase reset influenced whether these two effects depended on the phase at which stimulation onset was delivered, which has practical implications for designing neurostimulation protocols that are triggered by the phase of ongoing theta oscillations. This novel model opens new avenues for studying the effects of neurostimulation on the hippocampal formation. Furthermore, our hybrid approach that combines different levels of abstraction could be extended in future work to other neural circuits that produce dynamical brain rhythms.
Collapse
Affiliation(s)
- Nikolaos Vardalakis
- University of Bordeaux, CNRS, IMNBordeauxFrance
- University of Bordeaux, INRIA, IMNBordeauxFrance
| | - Amélie Aussel
- University of Bordeaux, CNRS, IMNBordeauxFrance
- University of Bordeaux, INRIA, IMNBordeauxFrance
- University of Bordeaux, CNRS, Bordeaux INPTalenceFrance
| | - Nicolas P Rougier
- University of Bordeaux, CNRS, IMNBordeauxFrance
- University of Bordeaux, INRIA, IMNBordeauxFrance
- University of Bordeaux, CNRS, Bordeaux INPTalenceFrance
| | | |
Collapse
|
12
|
Oberman LM, Francis SM, Beynel L, Hynd M, Jaime M, Robins PL, Deng ZD, Stout J, van der Veen JW, Lisanby SH. Design and methodology for a proof of mechanism study of individualized neuronavigated continuous Theta burst stimulation for auditory processing in adolescents with autism spectrum disorder. Front Psychiatry 2024; 15:1304528. [PMID: 38389984 PMCID: PMC10881663 DOI: 10.3389/fpsyt.2024.1304528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
It has been suggested that aberrant excitation/inhibition (E/I) balance and dysfunctional structure and function of relevant brain networks may underlie the symptoms of autism spectrum disorder (ASD). However, the nomological network linking these constructs to quantifiable measures and mechanistically relating these constructs to behavioral symptoms of ASD is lacking. Herein we describe a within-subject, controlled, proof-of-mechanism study investigating the pathophysiology of auditory/language processing in adolescents with ASD. We utilize neurophysiological and neuroimaging techniques including magnetic resonance spectroscopy (MRS), diffusion-weighted imaging (DWI), functional magnetic resonance imaging (fMRI), and magnetoencephalography (MEG) metrics of language network structure and function. Additionally, we apply a single, individually targeted session of continuous theta burst stimulation (cTBS) as an experimental probe of the impact of perturbation of the system on these neurophysiological and neuroimaging outcomes. MRS, fMRI, and MEG measures are evaluated at baseline and immediately prior to and following cTBS over the posterior superior temporal cortex (pSTC), a region involved in auditory and language processing deficits in ASD. Also, behavioral measures of ASD and language processing and DWI measures of auditory/language network structures are obtained at baseline to characterize the relationship between the neuroimaging and neurophysiological measures and baseline symptom presentation. We hypothesize that local gamma-aminobutyric acid (GABA) and glutamate concentrations (measured with MRS), and structural and functional activity and network connectivity (measured with DWI and fMRI), will significantly predict MEG indices of auditory/language processing and behavioral deficits in ASD. Furthermore, a single session of cTBS over left pSTC is hypothesized to lead to significant, acute changes in local glutamate and GABA concentration, functional activity and network connectivity, and MEG indices of auditory/language processing. We have completed the pilot phase of the study (n=20 Healthy Volunteer adults) and have begun enrollment for the main phase with adolescents with ASD (n=86; age 14-17). If successful, this study will establish a nomological network linking local E/I balance measures to functional and structural connectivity within relevant brain networks, ultimately connecting them to ASD symptoms. Furthermore, this study will inform future therapeutic trials using cTBS to treat the symptoms of ASD.
Collapse
Affiliation(s)
- Lindsay M Oberman
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Sunday M Francis
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Lysianne Beynel
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Megan Hynd
- Clinical Affective Neuroscience Laboratory, Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, NC, United States
| | - Miguel Jaime
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Pei L Robins
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Zhi-De Deng
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Jeff Stout
- Magnetoencephalography Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Jan Willem van der Veen
- Magnetic Resonance Spectroscopy Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Sarah H Lisanby
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
13
|
Tian Y, Tan C, Tan J, Yang L, Tang Y. Top-down modulation of DLPFC in visual search: a study based on fMRI and TMS. Cereb Cortex 2024; 34:bhad540. [PMID: 38212289 DOI: 10.1093/cercor/bhad540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/23/2023] [Accepted: 12/24/2023] [Indexed: 01/13/2024] Open
Abstract
Effective visual search is essential for daily life, and attention orientation as well as inhibition of return play a significant role in visual search. Researches have established the involvement of dorsolateral prefrontal cortex in cognitive control during selective attention. However, neural evidence regarding dorsolateral prefrontal cortex modulates inhibition of return in visual search is still insufficient. In this study, we employed event-related functional magnetic resonance imaging and dynamic causal modeling to develop modulation models for two types of visual search tasks. In the region of interest analyses, we found that the right dorsolateral prefrontal cortex and temporoparietal junction were selectively activated in the main effect of search type. Dynamic causal modeling results indicated that temporoparietal junction received sensory inputs and only dorsolateral prefrontal cortex →temporoparietal junction connection was modulated in serial search. Such neural modulation presents a significant positive correlation with behavioral reaction time. Furthermore, theta burst stimulation via transcranial magnetic stimulation was utilized to modulate the dorsolateral prefrontal cortex region, resulting in the disappearance of the inhibition of return effect during serial search after receiving continuous theta burst stimulation. Our findings provide a new line of causal evidence that the top-down modulation by dorsolateral prefrontal cortex influences the inhibition of return effect during serial search possibly through the retention of inhibitory tagging via working memory storage.
Collapse
Affiliation(s)
- Yin Tian
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
- School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
- Institute for Advanced Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China
| | - Congming Tan
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Jianling Tan
- School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Li Yang
- School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
- Department of Medical Engineering, Daping Hospital, Army Medical University, ChongQing 400065, China
| | - Yi Tang
- School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| |
Collapse
|
14
|
Ezzyat Y, Kragel JE, Solomon EA, Lega BC, Aronson JP, Jobst BC, Gross RE, Sperling MR, Worrell GA, Sheth SA, Wanda PA, Rizzuto DS, Kahana MJ. Functional and anatomical connectivity predict brain stimulation's mnemonic effects. Cereb Cortex 2024; 34:bhad427. [PMID: 38041253 PMCID: PMC10793570 DOI: 10.1093/cercor/bhad427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 12/03/2023] Open
Abstract
Closed-loop direct brain stimulation is a promising tool for modulating neural activity and behavior. However, it remains unclear how to optimally target stimulation to modulate brain activity in particular brain networks that underlie particular cognitive functions. Here, we test the hypothesis that stimulation's behavioral and physiological effects depend on the stimulation target's anatomical and functional network properties. We delivered closed-loop stimulation as 47 neurosurgical patients studied and recalled word lists. Multivariate classifiers, trained to predict momentary lapses in memory function, triggered the stimulation of the lateral temporal cortex (LTC) during the study phase of the task. We found that LTC stimulation specifically improved memory when delivered to targets near white matter pathways. Memory improvement was largest for targets near white matter that also showed high functional connectivity to the brain's memory network. These targets also reduced low-frequency activity in this network, an established marker of successful memory encoding. These data reveal how anatomical and functional networks mediate stimulation's behavioral and physiological effects, provide further evidence that closed-loop LTC stimulation can improve episodic memory, and suggest a method for optimizing neuromodulation through improved stimulation targeting.
Collapse
Affiliation(s)
- Youssef Ezzyat
- Dept. of Psychology, Wesleyan University, Middletown, CT 06459, USA
| | - James E Kragel
- Dept. of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Ethan A Solomon
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bradley C Lega
- Dept. of Neurosurgery, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Joshua P Aronson
- Dept. of Neurosurgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Barbara C Jobst
- Dept. of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Robert E Gross
- Dept. of Neurosurgery, Emory University Hospital, Atlanta, GA 30322, USA
| | - Michael R Sperling
- Dept. of Neurology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | - Sameer A Sheth
- Dept. of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paul A Wanda
- Dept. of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel S Rizzuto
- Dept. of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J Kahana
- Dept. of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
15
|
Solomon EA, Wang JB, Oya H, Howard MA, Trapp NT, Uitermarkt BD, Boes AD, Keller CJ. TMS provokes target-dependent intracranial rhythms across human cortical and subcortical sites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.09.552524. [PMID: 37645954 PMCID: PMC10461914 DOI: 10.1101/2023.08.09.552524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Transcranial magnetic stimulation (TMS) is increasingly deployed in the treatment of neuropsychiatric illness, under the presumption that stimulation of specific cortical targets can alter ongoing neural activity and cause circuit-level changes in brain function. While the electrophysiological effects of TMS have been extensively studied with scalp electroencephalography (EEG), this approach is most useful for evaluating low-frequency neural activity at the cortical surface. As such, little is known about how TMS perturbs rhythmic activity among deeper structures - such as the hippocampus and amygdala - and whether stimulation can alter higher-frequency oscillations. Recent work has established that TMS can be safely used in patients with intracranial electrodes (iEEG), allowing for direct neural recordings at sufficient spatiotemporal resolution to examine localized oscillatory responses across the frequency spectrum. To that end, we recruited 17 neurosurgical patients with indwelling electrodes and recorded neural activity while patients underwent repeated trials of single-pulse TMS at several cortical sites. Stimulation to the dorsolateral prefrontal cortex (DLPFC) drove widespread low-frequency increases (3-8Hz) in frontolimbic cortices, as well as high-frequency decreases (30-110Hz) in frontotemporal areas, including the hippocampus. Stimulation to parietal cortex specifically provoked low-frequency responses in the medial temporal lobe. While most low-frequency activity was consistent with brief evoked responses, anterior frontal regions exhibited induced theta oscillations following DLPFC stimulation. Taken together, we established that non-invasive stimulation can (1) provoke a mixture of low-frequency evoked power and induced theta oscillations and (2) suppress high-frequency activity in deeper brain structures not directly accessed by stimulation itself.
Collapse
Affiliation(s)
- Ethan A. Solomon
- Dept. of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Palo Alto CA 94305
| | - Jeffrey B. Wang
- Dept. of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Palo Alto CA 94305
- Biophysics Graduate Program, Stanford University Medical Center, Stanford, CA 94305
| | - Hiroyuki Oya
- Department of Neurosurgery, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242
| | - Matthew A. Howard
- Department of Neurosurgery, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242
| | - Nicholas T. Trapp
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242
| | - Brandt D. Uitermarkt
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242
| | - Aaron D. Boes
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242
| | - Corey J. Keller
- Dept. of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Palo Alto CA 94305
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94305
| |
Collapse
|
16
|
Ezzyat Y, Kragel JE, Solomon EA, Lega BC, Aronson JP, Jobst BC, Gross RE, Sperling MR, Worrell GA, Sheth SA, Wanda PA, Rizzuto DS, Kahana MJ. Functional and anatomical connectivity predict brain stimulation's mnemonic effects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.27.550851. [PMID: 37609181 PMCID: PMC10441352 DOI: 10.1101/2023.07.27.550851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Closed-loop direct brain stimulation is a promising tool for modulating neural activity and behavior. However, it remains unclear how to optimally target stimulation to modulate brain activity in particular brain networks that underlie particular cognitive functions. Here, we test the hypothesis that stimulation's behavioral and physiological effects depend on the stimulation target's anatomical and functional network properties. We delivered closed-loop stimulation as 47 neurosurgical patients studied and recalled word lists. Multivariate classifiers, trained to predict momentary lapses in memory function, triggered stimulation of the lateral temporal cortex (LTC) during the study phase of the task. We found that LTC stimulation specifically improved memory when delivered to targets near white matter pathways. Memory improvement was largest for targets near white matter that also showed high functional connectivity to the brain's memory network. These targets also reduced low-frequency activity in this network, an established marker of successful memory encoding. These data reveal how anatomical and functional networks mediate stimulation's behavioral and physiological effects, provide further evidence that closed-loop LTC stimulation can improve episodic memory, and suggest a method for optimizing neuromodulation through improved stimulation targeting.
Collapse
Affiliation(s)
- Youssef Ezzyat
- Dept. of Psychology, Wesleyan University, Middletown CT 06459
| | | | - Ethan A. Solomon
- Perelman School of Medicine, University of Pennsylvania, Philadelphia PA 19104
| | - Bradley C. Lega
- Dept. of Neurosurgery, University of Texas Southwestern, Dallas TX 75390
| | - Joshua P. Aronson
- Dept. of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon NH 03756
| | - Barbara C. Jobst
- Dept. of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon NH 03756
| | - Robert E. Gross
- Dept. of Neurosurgery, Emory University Hospital, Atlanta GA 30322
| | - Michael R. Sperling
- Dept. of Neurology, Thomas Jefferson University Hospital, Philadelphia PA 19107
| | | | - Sameer A. Sheth
- Dept. of Neurosurgery, Columbia University Medical Center, New York, NY 10032
| | - Paul A. Wanda
- Dept. of Psychology, University of Pennsylvania, Philadelphia PA 19104
| | - Daniel S. Rizzuto
- Dept. of Psychology, University of Pennsylvania, Philadelphia PA 19104
| | - Michael J. Kahana
- Dept. of Psychology, University of Pennsylvania, Philadelphia PA 19104
| |
Collapse
|
17
|
Najera RA, Mahavadi AK, Khan AU, Boddeti U, Del Bene VA, Walker HC, Bentley JN. Alternative patterns of deep brain stimulation in neurologic and neuropsychiatric disorders. Front Neuroinform 2023; 17:1156818. [PMID: 37415779 PMCID: PMC10320008 DOI: 10.3389/fninf.2023.1156818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023] Open
Abstract
Deep brain stimulation (DBS) is a widely used clinical therapy that modulates neuronal firing in subcortical structures, eliciting downstream network effects. Its effectiveness is determined by electrode geometry and location as well as adjustable stimulation parameters including pulse width, interstimulus interval, frequency, and amplitude. These parameters are often determined empirically during clinical or intraoperative programming and can be altered to an almost unlimited number of combinations. Conventional high-frequency stimulation uses a continuous high-frequency square-wave pulse (typically 130-160 Hz), but other stimulation patterns may prove efficacious, such as continuous or bursting theta-frequencies, variable frequencies, and coordinated reset stimulation. Here we summarize the current landscape and potential clinical applications for novel stimulation patterns.
Collapse
Affiliation(s)
- Ricardo A. Najera
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anil K. Mahavadi
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anas U. Khan
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ujwal Boddeti
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Victor A. Del Bene
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Harrison C. Walker
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - J. Nicole Bentley
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
18
|
Suzuki T, Gu P, Grove TB, Hammond T, Collins KM, Pamidighantam P, Arnold PD, Taylor SF, Liu Y, Gehring WJ, Hanna GL, Tso IF. Abnormally Enhanced Midfrontal Theta Activity During Response Monitoring in Youths With Obsessive-Compulsive Disorder. Biol Psychiatry 2023; 93:1031-1040. [PMID: 36822934 PMCID: PMC10182182 DOI: 10.1016/j.biopsych.2022.10.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/03/2022] [Accepted: 10/29/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Response monitoring, as reflected in electroencephalogram recordings after commission of errors, has been consistently shown to be abnormally enhanced in individuals with obsessive-compulsive disorder (OCD). This has traditionally been quantified as error-related negativity (ERN) and may reflect abnormal neurophysiological mechanisms underlying OCD. However, the ERN reflects the increase in phase-locked activities, particularly in the theta-band (4-8 Hz), and does not reflect non-phase-locked activities. To more broadly investigate midfrontal theta activity in a brain region that is essential for complex cognition, this study investigated theta abnormalities during response monitoring in participants with OCD to acheive a better understanding of the mechanism underlying the ERN. METHODS Electroencephalogram data were recorded from 99 participants with pediatric OCD and 99 sex- and age-matched healthy control participants while they completed the arrow flanker task. Effects of group (OCD, healthy control) and response type (error, correct) on postresponse theta total power and intertrial phase coherence (ITPC) were examined using mixed analysis of covariance and Bayesian analyses controlling for sex and accuracy. RESULTS Theta total power was larger on error than on correct trials and larger in OCD than healthy control participants, but there was no effect of response type between groups. Theta ITPC was larger on error than correct trials, but there was no group difference or response type difference between the groups. Correlations of theta total power and ITPC with clinical measures were overall small. CONCLUSIONS Abnormally enhanced midfrontal theta total power, but not ITPC, may reflect ineffective heightened response monitoring or compensatory activity in pediatric OCD.
Collapse
Affiliation(s)
- Takakuni Suzuki
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan; Department of Psychology, University of Michigan, Ann Arbor, Michigan.
| | - Pan Gu
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | - Tyler B Grove
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | - Taeah Hammond
- Department of Psychology, University of Michigan, Ann Arbor, Michigan
| | - Kelsey M Collins
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | | | - Paul D Arnold
- Department of Psychiatry, The Mathison Centre for Mental Health Research & Education, University of Calgary, Calgary, Alberta, Canada
| | - Stephan F Taylor
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | - Yanni Liu
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | - William J Gehring
- Department of Psychology, University of Michigan, Ann Arbor, Michigan
| | - Gregory L Hanna
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | - Ivy F Tso
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan; Department of Psychology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
19
|
Das A, Menon V. Concurrent- and After-Effects of Medial Temporal Lobe Stimulation on Directed Information Flow to and from Prefrontal and Parietal Cortices during Memory Formation. J Neurosci 2023; 43:3159-3175. [PMID: 36963847 PMCID: PMC10146497 DOI: 10.1523/jneurosci.1728-22.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/26/2023] Open
Abstract
Electrical stimulation of the medial temporal lobe (MTL) has the potential to uncover causal circuit mechanisms underlying memory function. However, little is known about how MTL stimulation alters information flow with frontoparietal cortical regions implicated in episodic memory. We used intracranial EEG recordings from humans (14 participants, 10 females) to investigate how MTL stimulation alters directed information flow between MTL and PFC and between MTL and posterior parietal cortex (PPC). Participants performed a verbal episodic memory task during which they were presented with words and asked to recall them after a delay of ∼20 s; 50 Hz stimulation was applied to MTL electrodes on selected trials during memory encoding. Directed information flow was examined using phase transfer entropy. Behaviorally, we observed that MTL stimulation reduced memory recall. MTL stimulation decreased top-down PFC→MTL directed information flow during both memory encoding and subsequent memory recall, revealing aftereffects more than 20 s after end of stimulation. Stimulation suppressed top-down PFC→MTL influences to a greater extent than PPC→MTL. Finally, MTL→PFC information flow on stimulation trials was significantly lower for successful, compared with unsuccessful, memory recall; in contrast, MTL→ventral PPC information flow was higher for successful, compared with unsuccessful, memory recall. Together, these results demonstrate that the effects of MTL stimulation are behaviorally, regionally, and directionally specific, that MTL stimulation selectively impairs directional signaling with PFC, and that causal MTL-ventral PPC circuits support successful memory recall. Findings provide new insights into dynamic casual circuits underling episodic memory and their modulation by MTL stimulation.SIGNIFICANCE STATEMENT The medial temporal lobe (MTL) and its interactions with prefrontal and parietal cortices (PFC and PPC) play a critical role in human memory. Dysfunctional MTL-PFC and MTL-PPC circuits are prominent in psychiatric and neurologic disorders, including Alzheimer's disease and schizophrenia. Brain stimulation has emerged as a potential mechanism for enhancing memory and cognitive functions, but the underlying neurophysiological mechanisms and dynamic causal circuitry underlying bottom-up and top-down signaling involving the MTL are unknown. Here, we use intracranial EEG recordings to investigate the effects of MTL stimulation on causal signaling in key episodic memory circuits linking the MTL with PFC and PPC. Our findings have implications for translational applications aimed at realizing the promise of brain stimulation-based treatment of memory disorders.
Collapse
Affiliation(s)
- Anup Das
- Department of Psychiatry & Behavioral Sciences
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences
- Department of Neurology & Neurological Sciences
- Stanford Neurosciences Institute, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
20
|
Li KP, Wu JJ, Zhou ZL, Xu DS, Zheng MX, Hua XY, Xu JG. Noninvasive Brain Stimulation for Neurorehabilitation in Post-Stroke Patients. Brain Sci 2023; 13:brainsci13030451. [PMID: 36979261 PMCID: PMC10046557 DOI: 10.3390/brainsci13030451] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Characterized by high morbidity, mortality, and disability, stroke usually causes symptoms of cerebral hypoxia due to a sudden blockage or rupture of brain vessels, and it seriously threatens human life and health. Rehabilitation is the essential treatment for post-stroke patients suffering from functional impairments, through which hemiparesis, aphasia, dysphagia, unilateral neglect, depression, and cognitive dysfunction can be restored to various degrees. Noninvasive brain stimulation (NIBS) is a popular neuromodulatory technology of rehabilitation focusing on the local cerebral cortex, which can improve clinical functions by regulating the excitability of corresponding neurons. Increasing evidence has been obtained from the clinical application of NIBS, especially repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS). However, without a standardized protocol, existing studies on NIBS show a wide variation in terms of stimulation site, frequency, intensity, dosage, and other parameters. Its application for neurorehabilitation in post-stroke patients is still limited. With advances in neuronavigation technologies, functional near-infrared spectroscopy, and functional MRI, specific brain regions can be precisely located for stimulation. On the basis of our further understanding on neural circuits, neuromodulation in post-stroke rehabilitation has also evolved from single-target stimulation to co-stimulation of two or more targets, even circuits and the network. The present study aims to review the findings of current research, discuss future directions of NIBS application, and finally promote the use of NIBS in post-stroke rehabilitation.
Collapse
Affiliation(s)
- Kun-Peng Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jia-Jia Wu
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Zong-Lei Zhou
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai 200032, China
| | - Dong-Sheng Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mou-Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Correspondence: (M.-X.Z.); (X.-Y.H.); (J.-G.X.)
| | - Xu-Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Correspondence: (M.-X.Z.); (X.-Y.H.); (J.-G.X.)
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai 201203, China
- Correspondence: (M.-X.Z.); (X.-Y.H.); (J.-G.X.)
| |
Collapse
|
21
|
Feng X, Wang T, Jiang Y, Liu Y, Yang H, Duan Z, Ji L, Wei J. Cerebral Theta-Burst Stimulation Combined with Physiotherapy in Patients with Incomplete Spinal Cord Injury: A Pilot Randomized Controlled Trial. J Rehabil Med 2023; 55:jrm00375. [PMID: 36779636 PMCID: PMC9941982 DOI: 10.2340/jrm.v55.4375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/04/2023] [Indexed: 02/14/2023] Open
Abstract
OBJECTIVE To measure the effects of cerebral intermittent theta-burst stimulation with physiotherapy on lower extremity motor recovery in patients with incomplete spinal cord injury. DESIGN Randomized, double-blinded, sham-controlled trial. SUBJECTS Adults with incomplete spinal cord injury. METHODS A total of 38 patients with incomplete spinal cord injury were randomized into either an intermittent theta-burst stimulation or a sham group. Both groups participated in physiotherapy 5 times per week for 9 weeks, and cerebral intermittent theta-burst stimulation or sham intermittent theta-burst stimulation was performed daily, immediately before physiotherapy. The primary outcomes were lower extremity motor score (LEMS), root-mean square (RMS), RMS of the quadriceps femoris muscle, walking speed (WS), and stride length (SL). Secondary outcomes comprised Holden Walking Ability Scale (HWAS) and modified Barthel Index (MBI). The outcomes were assessed before the intervention and 9 weeks after the start of the intervention. RESULTS Nine weeks of cerebral intermittent theta-burst stimulation with physiotherapy intervention resulted in improved recovery of lower extremity motor recovery in patients with incomplete spinal cord injury. Compared with baseline, the changes in LEMS, WS, SL, RMS, HWAS, and MBI were significant in both groups after intervention. The LEMS, WS, SL, RMS, HWAS, and MBI scores were improved more in the intermittent theta-burst stimulation group than in the sham group. CONCLUSION Cerebral intermittent theta-burst stimulation with physiotherapy promotes lower extremity motor recovery in patients with incomplete spinal cord injury. However, this study included a small sample size and lacked a comparison of the treatment effects of multiple stimulation modes, the further research will be required in the future.
Collapse
Affiliation(s)
- Xiaojun Feng
- Department of Rehabilitation Medicine; Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei City, Anhui Province; Department of Rehabilitation Medicine, The Fuyang Hospital of Anhui Medical University, Fuyang City, Anhui Province, China.
| | - Tingting Wang
- Department of Rehabilitation Medicine; Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei City, Anhui Province; Department of Rehabilitation Medicine, The Fuyang Hospital of Anhui Medical University, Fuyang City, Anhui Province, China
| | - Yan Jiang
- Department of Rehabilitation Medicine
| | - Yi Liu
- Department of Rehabilitation Medicine
| | - Haifeng Yang
- Department of Rehabilitation Medicine, The Fuyang Hospital of Anhui Medical University, Fuyang City, Anhui Province, China
| | - Zongyu Duan
- Department of Rehabilitation Medicine, The Fuyang Hospital of Anhui Medical University, Fuyang City, Anhui Province, China
| | - Leilei Ji
- Department of Rehabilitation Medicine
| | - Juan Wei
- Department of Rehabilitation Medicine
| |
Collapse
|
22
|
Qiao J, Wang Y, Wang S. Natural frequencies of neural activities and cognitions may serve as precise targets of rhythmic interventions to the aging brain. Front Aging Neurosci 2022; 14:988193. [PMID: 36172484 PMCID: PMC9510897 DOI: 10.3389/fnagi.2022.988193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Rhythmic neural activities are critical to the efficiency of regulatory procedures in brain functions. However, brain functions usually decline in aging as accompanied by frequency shift and temporal dedifferentiation of neural activities. Considering the strong oscillations and long-lasting after-effects induced by rhythmic brain stimulations, we suggest that non-invasive rhythmic brain stimulation technique may help restore the natural frequencies of neural activities in aging to that in younger and healthy brains. Although with tremendous work to do, this technique offers great opportunities for the restoration of normal brain functions in aging, or even in those suffering from neurodegenerative diseases and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jingwen Qiao
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Yifeng Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Shouyan Wang
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Jivraj J, Ameis SH. Is Repetitive Transcranial Magnetic Stimulation (rTMS) Ready for Clinical Use as a Treatment Tool for Mental Health Targets in Children and Youth? JOURNAL OF THE CANADIAN ACADEMY OF CHILD AND ADOLESCENT PSYCHIATRY = JOURNAL DE L'ACADEMIE CANADIENNE DE PSYCHIATRIE DE L'ENFANT ET DE L'ADOLESCENT 2022; 31:93-99. [PMID: 35614951 PMCID: PMC9084373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/10/2022] [Indexed: 06/15/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation tool with potential for broad application in individuals with neuropsychiatric conditions. As in adults, most rTMS research in youth has focused on treatment-resistant depression. A limited number of rTMS studies have also been conducted in children and youth with primary diagnoses of Autism Spectrum Disorder (ASD), Attention-Deficit/Hyperactivity Disorder (ADHD) or Tourette's syndrome. Across the available rTMS literature, rTMS appears to be well tolerated with few adverse effects reported when applied to child and youth research samples. However, the potential efficacy of rTMS treatment for a variety of targets in children and youth remains unclear, due in part to limitations of the current literature, including studies using diverse protocols, potential for bias in existing clinical trial designs, variability in the research samples, and the use of heterogenous outcome measures. While rTMS is unlikely to take the place of more accessible treatments (e.g., psychopharmacological, psychosocial, psychotherapeutic), rTMS may provide a valuable alternative treatment option, particularly for those individuals where conventional treatments are inaccessible, poorly tolerated, or ineffective. A more robust body of well-designed, controlled trials, is needed in order to clarify rTMS treatment efficacy across relevant neuropsychiatric conditions, optimize treatment protocols, and meet the critical need for novel mental health interventions in children and youth.
Collapse
Affiliation(s)
- Jamil Jivraj
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta
| | - Stephanie H Ameis
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario
- The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario
- Centre for Brain and Mental Health, Department of Psychiatry, The Hospital for Sick Children, Toronto, Ontario
| |
Collapse
|