1
|
Wu GR, Baeken C. Depression and metabolic connectivity: insights into the locus coeruleus, HF-rTMS, and anxiety. Transl Psychiatry 2024; 14:459. [PMID: 39488540 PMCID: PMC11531544 DOI: 10.1038/s41398-024-03171-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
The use of repetitive Transcranial Magnetic Stimulation (rTMS) in treating major depressive disorder (MDD) is increasingly being explored in precision medicine. However, there's a notable lack of understanding of the underlying neurobiological effects, which limits our ability to correlate specific imaging features with treatment efficacy. As one possible neurobiological mechanism, clinical research has already shown that in MDD, lower norepinephrine release in the locus coeruleus (LC) triggers depressive symptoms, and pharmacological approaches that block norepinephrine reuptake boost its levels, easing depression. Surprisingly, the LC has not received a more pronounced focus in contemporary rTMS research. This study investigates the role of the LC in MDD and its response to high-frequency (HF)-rTMS using 18FDG-PET imaging. We compared LC metabolic connectivity between MDD patients (n = 43) and healthy controls (n = 32). Additionally, we evaluated the predictive value of LC connectivity for HF-rTMS treatment outcomes and examined post-treatment changes in LC metabolic connectivity. Our findings revealed significant differences in LC metabolic connectivity between MDD patients and controls. Baseline LC metabolic connectivity did not predict HF-rTMS treatment outcomes. However, post-treatment analyses showed a significant correlation between improved clinical outcomes and attenuation of LC metabolic connectivity in regions associated with cognitive control and the default mode network. Notably, a reduction in state anxiety moderated this relationship, highlighting the role of anxiety in HF-rTMS efficacy for MDD treatment. Our findings suggest that LC metabolic connectivity, influenced by state anxiety levels, may be crucial in HF-rTMS efficacy, offering further insights for personalized MDD treatment strategies.
Collapse
Affiliation(s)
- Guo-Rong Wu
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, China.
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) lab, Ghent University, Ghent, Belgium.
| | - Chris Baeken
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) lab, Ghent University, Ghent, Belgium
- Vrije Universiteit Brussel (VUB), Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium
- Eindhoven University of Technology, Department of Electrical Engineering, Eindhoven, the Netherlands
| |
Collapse
|
2
|
Briley PM, Webster L, Boutry C, Oh H, Auer DP, Liddle PF, Morriss R. Magnetic resonance imaging connectivity features associated with response to transcranial magnetic stimulation in major depressive disorder. Psychiatry Res Neuroimaging 2024; 342:111846. [PMID: 38908353 DOI: 10.1016/j.pscychresns.2024.111846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 03/23/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024]
Abstract
Transcranial magnetic stimulation (TMS) is an FDA-approved neuromodulation treatment for major depressive disorder (MDD), thought to work by altering dysfunctional brain connectivity pathways, or by indirectly modulating the activity of subcortical brain regions. Clinical response to TMS remains highly variable, highlighting the need for baseline predictors of response and for understanding brain changes associated with response. This systematic review examined brain connectivity features, and changes in connectivity features, associated with clinical improvement following TMS in MDD. Forty-one studies met inclusion criteria, including 1097 people with MDD. Most studies delivered one of two types of TMS to left dorsolateral prefrontal cortex and measured connectivity using resting-state functional MRI. The subgenual anterior cingulate cortex was the most well-studied brain region, particularly its connectivity with the TMS target or with the "executive control network" of brain regions. There was marked heterogeneity in findings. There is a need for greater understanding of how cortical TMS modulates connectivity with, and the activity of, subcortical regions, and how these effects change within and across treatment sessions.
Collapse
Affiliation(s)
- P M Briley
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Nottingham National Institute for Health and Care Research (NIHR) Biomedical Research Centre, Nottingham, United Kingdom; Institute of Mental Health, Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, United Kingdom.
| | - L Webster
- Nottingham National Institute for Health and Care Research (NIHR) Biomedical Research Centre, Nottingham, United Kingdom; Institute of Mental Health, Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, United Kingdom
| | - C Boutry
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Institute of Mental Health, Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, United Kingdom; NIHR Applied Research Collaboration East Midlands, University of Nottingham, Nottingham, United Kingdom
| | - H Oh
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Nottingham National Institute for Health and Care Research (NIHR) Biomedical Research Centre, Nottingham, United Kingdom; Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom
| | - D P Auer
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Nottingham National Institute for Health and Care Research (NIHR) Biomedical Research Centre, Nottingham, United Kingdom; Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom
| | - P F Liddle
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Institute of Mental Health, Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, United Kingdom
| | - R Morriss
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Nottingham National Institute for Health and Care Research (NIHR) Biomedical Research Centre, Nottingham, United Kingdom; Institute of Mental Health, Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, United Kingdom; NIHR Applied Research Collaboration East Midlands, University of Nottingham, Nottingham, United Kingdom; NIHR Mental Health (MindTech) Health Technology Collaboration, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
3
|
Wu GR, Baeken C. Precision targeting in prediction for rTMS clinical outcome in depression: what about sgACC lateralization, metabolic connectivity, and the potential role of the cerebellum? Eur Arch Psychiatry Clin Neurosci 2023; 273:1443-1450. [PMID: 37329365 DOI: 10.1007/s00406-023-01637-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/03/2023] [Indexed: 06/19/2023]
Abstract
Predicting clinical response to repetitive transcranial magnetic stimulation (rTMS) in medication-resistant depression (MRD) has gained great importance in recent years. Mainly, the right subgenual anterior cingulate cortex (sgACC) functional connectivity has been put forward as biomarker in relation to rTMS clinical outcome. Even though the left and right sgACC may have different neurobiological functions, little is known about the possible lateralized predictive role of the sgACC in rTMS clinical outcome. In 43 right-handed antidepressant-free MRD patients, we applied a searchlight-based interregional covariance connectivity approach using the baseline 18FDG-PET scan-collected from two previous high-frequency (HF)-rTMS treatment studies delivering stimulation to the left dorsolateral prefrontal cortex (DLPFC)-and investigated whether unilateral or bilateral sgACC glucose metabolism at baseline would result in different predictive metabolic connectivity patterns. Regardless of sgACC lateralization, the weaker the sgACC seed-based baseline metabolic functional connections with the (left anterior) cerebellar areas, the significantly better the clinical outcome. However, the seed diameter seems to be crucial. Similar significant findings on sgACC metabolic connectivity with the left anterior cerebellum, also unrelated to sgACC lateralization, in relation to clinical outcome were observed when using the HCPex atlas. Although we could not substantiate that specifically right sgACC metabolic connectivity would predict HF-rTMS clinical outcome, our findings suggest considering the entire sgACC in functional connectivity predictions. Given that the interregional covariance connectivity results were significant only when using the Beck Depression Inventory (BDI-II) and not with the Hamilton Depression Rating Scale (HDRS), our sgACC metabolic connectivity observations also suggest the possible involvement of the (left) anterior cerebellum involved in higher-order cognitive processing as part of this predictive value.
Collapse
Affiliation(s)
- Guo-Rong Wu
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, China.
- School of Psychology, Jiangxi Normal University, Nanchang, China.
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium.
| | - Chris Baeken
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium
- Department of Psychiatry, University Hospital (UZBrussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
4
|
Wang Z, Baeken C, Wu GR. Metabolic Covariance Connectivity of Posterior Cingulate Cortex Associated with Depression Symptomatology Level in Healthy Young Adults. Metabolites 2023; 13:920. [PMID: 37623864 PMCID: PMC10456574 DOI: 10.3390/metabo13080920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023] Open
Abstract
Early detection in the development of a Major Depressive Disorder (MDD) could guide earlier clinical interventions. Although MDD can begin at a younger age, most people have their first episode in young adulthood. The underlying pathophysiological mechanisms relating to such an increased risk are not clear. The posterior cingulate cortex (PCC), exhibiting high levels of brain connectivity and metabolic activity, plays a pivotal role in the pathological mechanism underlying MDD. In the current study, we used the (F-18) fluorodeoxyglucose (FDG) positron emission tomography (PET) to measure metabolic covariance connectivity of the PCC and investigated its association with depression symptomatology evaluated by the Centre for Epidemiological Studies Depression Inventory-Revised (CESD-R) among 27 healthy individuals aged between 18 and 23 years. A significant negative correlation has been observed between CESD-R scale scores and the PCC metabolic connectivity with the anterior cingulate, medial prefrontal cortex, inferior and middle frontal gyrus, as well as the insula. Overall, our findings suggest that the neural correlates of depressive symptomatology in healthy young adults without a formal diagnosis involve the metabolic connectivity of the PCC. Our findings may have potential implications for early identification and intervention in people at risk of developing depression.
Collapse
Affiliation(s)
- Zhixin Wang
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing 400715, China;
| | - Chris Baeken
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, 9000 Ghent, Belgium;
| | - Guo-Rong Wu
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing 400715, China;
| |
Collapse
|
5
|
Chen L, Klooster DCW, Tik M, Thomas EHX, Downar J, Fitzgerald PB, Williams NR, Baeken C. Accelerated Repetitive Transcranial Magnetic Stimulation to Treat Major Depression: The Past, Present, and Future. Harv Rev Psychiatry 2023; 31:142-161. [PMID: 37171474 PMCID: PMC10188211 DOI: 10.1097/hrp.0000000000000364] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is an effective and evidence-based therapy for treatment-resistant major depressive disorder. A conventional course of rTMS applies 20-30 daily sessions over 4-6 weeks. The schedule of rTMS delivery can be accelerated by applying multiple stimulation sessions per day, which reduces the duration of a treatment course with a predefined number of sessions. Accelerated rTMS reduces time demands, improves clinical efficiency, and potentially induces faster onset of antidepressant effects. However, considerable heterogeneity exists across study designs. Stimulation protocols vary in parameters such as the stimulation target, frequency, intensity, number of pulses applied per session or over a course of treatment, and duration of intersession intervals. In this article, clinician-researchers and neuroscientists who have extensive research experience in accelerated rTMS synthesize a consensus based on two decades of investigation and development, from early studies ("Past") to contemporaneous theta burst stimulation, a time-efficient form of rTMS gaining acceptance in clinical settings ("Present"). We propose descriptive nomenclature for accelerated rTMS, recommend avenues to optimize therapeutic and efficiency potential, and suggest using neuroimaging and electrophysiological biomarkers to individualize treatment protocols ("Future"). Overall, empirical studies show that accelerated rTMS protocols are well tolerated and not associated with serious adverse effects. Importantly, the antidepressant efficacy of accelerated rTMS appears comparable to conventional, once daily rTMS protocols. Whether accelerated rTMS induces antidepressant effects more quickly remains uncertain. On present evidence, treatment protocols incorporating high pulse dose and multiple treatments per day show promise and improved efficacy.
Collapse
Affiliation(s)
- Leo Chen
- From the Monash Alfred Psychiatry Research Centre, Department of Psychiatry, Central Clinical School, Monash University, Melbourne, Australia (Drs. Chen, Thomas); Ghent Experimental Psychiatry (GHEP) Lab, Department of Head and Skin (UZGent), Ghent University, Ghent, Belgium (Drs. Klooster, Baeken); Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford University, Stanford, CA (Drs. Tik, Williams); Institute of Medical Science and Department of Psychiatry, University of Toronto, Canada (Dr. Downar); School of Medicine and Psychology, he Australian National University, Canberra, Australia (Dr. Fitzgerald)
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Wu GR, Baeken C. Lateralized subgenual ACC metabolic connectivity patterns in refractory melancholic depression: does it matter? Cereb Cortex 2023; 33:3490-3497. [PMID: 35984291 DOI: 10.1093/cercor/bhac286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Although treatment resistance to antidepressant pharmacotherapy is quite common, the phenomenon of refractory major depressive disorder (rMDD) is not well understood. Nevertheless, the metabolic activity of the subgenual anterior cingulate cortex (sgACC) has been put forward as a possible metabolic biomarker of clinical prediction and response, albeit sgACC lateralization differences in functional connectivity have not yet been extensively examined. Also not in the refractory depressed state. To examine sgACC lateralization differences in metabolic connectivity, we recruited 43 right-handed antidepressant-free unipolar melancholic rMDD patients and 32 right-handed healthy controls to participate in this 18FDG PET study and developed a searchlight-based interregional covariance connectivity approach. Compared to non-depressed individuals, sgACC covariance analysis showed stronger metabolic connections with frontolimbic brain regions known to be affected in the depressed state. Furthermore, whereas the left sgACC showed stronger metabolic connections with ventromedial prefrontal cortical regions, implicated in anhedonia, suicidal ideation, and self-referential processes, the right sgACC showed significantly stronger metabolic connections with posterior hippocampal and cerebellar regions, respectively specialized in memory and social processing. Overall, our results substantiate earlier research that the sgACC is a metabolic key player when clinically depressed and that distinct lateralized sgACC metabolic connectivity patterns are present.
Collapse
Affiliation(s)
- Guo-Rong Wu
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing 400715, China
- School of Psychology, Jiangxi Normal University, Nanchang 330022, China
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent 9000, Belgium
| | - Chris Baeken
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent 9000, Belgium
- Department of Psychiatry, University Hospital (UZBrussel), Brussels 1090, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| |
Collapse
|
7
|
Zhao Y, He Z, Luo W, Yu Y, Chen J, Cai X, Gao J, Li L, Gao Q, Chen H, Lu F. Effect of intermittent theta burst stimulation on suicidal ideation and depressive symptoms in adolescent depression with suicide attempt: A randomized sham-controlled study. J Affect Disord 2023; 325:618-626. [PMID: 36682694 DOI: 10.1016/j.jad.2023.01.061] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/04/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
BACKGROUND Suicidal ideation is a serious symptom of major depressive disorder (MDD). Intermittent theta burst stimulation (iTBS) is a safe, effective brain stimulation treatment for alleviating suicidal ideation in adults with MDD. This study aimed to examine the clinical efficacy of iTBS on reducing suicidal ideation in adolescent MDD with suicide attempt. METHODS In a randomized, sham-controlled protocol, a total of 10 sessions of iTBS was administrated to the left dorsolateral prefrontal cortex (DLPFC) in patients once a day for two weeks. The suicidal ideation and depressive symptoms were assessed using Beck Scale for Suicide Ideation-Chinese Version (BSI-CV), Hamilton Rating Scale for Depression (HAMD-24), and Self-rating Depression Scale (SDS) at baseline and after 10 treatment sessions. RESULTS Forty-five patients were randomized assigned to either active iTBS (n = 23) or sham group (n = 22). The suicidal ideation and depressive symptoms of the active iTBS group were significantly ameliorated over 2 weeks of treatment. Further, higher baseline SDS, HAMD-24 and BSI-CV scores in the active iTBS group were associated with greater reductions. LIMITATIONS A larger sample size and double-blinded clinical trial should be conducted to verify the reliability and reproducibility. CONCLUSIONS The current study suggested that daily iTBS of the left DLPFC for 2 weeks could effectively and safely alleviate suicidal ideation and mitigate depression in adolescent MDD, especially for individuals with relatively more severe symptoms. Although caution is warranted, the findings could provide further evidence for the effectiveness and safety of iTBS in clinical practice.
Collapse
Affiliation(s)
- Yi Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zongling He
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Wei Luo
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yue Yu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jiajia Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xiao Cai
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jingjing Gao
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lingjiang Li
- Health Institute, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qing Gao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
8
|
Wu GR, Baeken C. The left ventrolateral prefrontal cortex as a more optimal target for accelerated rTMS treatment protocols for depression? Brain Stimul 2023; 16:642-644. [PMID: 36935001 DOI: 10.1016/j.brs.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Affiliation(s)
- Guo-Rong Wu
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, China; School of Psychology, Jiangxi Normal University, Nanchang, China; Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium.
| | - Chris Baeken
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium; Vrije Universiteit Brussel (VUB), Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium; Eindhoven University of Technology, Department of Electrical Engineering, Eindhoven, the Netherlands.
| |
Collapse
|
9
|
Caulfield KA, Fleischmann HH, George MS, McTeague LM. A transdiagnostic review of safety, efficacy, and parameter space in accelerated transcranial magnetic stimulation. J Psychiatr Res 2022; 152:384-396. [PMID: 35816982 PMCID: PMC10029148 DOI: 10.1016/j.jpsychires.2022.06.038] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND Accelerated transcranial magnetic stimulation (aTMS) is an emerging delivery schedule of repetitive TMS (rTMS). TMS is "accelerated" by applying two or more stimulation sessions within a day. This three-part review comprehensively reports the safety/tolerability, efficacy, and stimulation parameters affecting response across disorders. METHODS We used the PubMed database to identify studies administering aTMS, which we defined as applying at least two rTMS sessions within one day. RESULTS Our targeted literature search identified 85 aTMS studies across 18 diagnostic and healthy control groups published from July 2001 to June 2022. Excluding overlapping populations, 63 studies delivered 43,873 aTMS sessions using low frequency, high frequency, and theta burst stimulation in 1543 participants. Regarding safety, aTMS studies had similar seizure and side effect incidence rates to those reported for once daily rTMS. One seizure was reported from aTMS (0.0023% of aTMS sessions, compared with 0.0075% in once daily rTMS). The most common side effects were acute headache (28.4%), fatigue (8.6%), and scalp discomfort (8.3%), with all others under 5%. We evaluated aTMS efficacy in 23 depression studies (the condition with the most studies), finding an average response rate of 42.4% and remission rate of 28.4% (range = 0-90.5% for both). Regarding parameters, aTMS studies ranged from 2 to 10 sessions per day over 2-30 treatment days, 10-640 min between sessions, and a total of 9-104 total accelerated TMS sessions per participant (including tapering sessions). Qualitatively, response rate tends to be higher with an increasing number of sessions per day, total sessions, and total pulses. DISCUSSION The literature to date suggests that aTMS is safe and well-tolerated across conditions. Taken together, these early studies suggest potential effectiveness even in highly treatment refractory conditions with the added potential to reduce patient burden while also expediting response time. Future studies are warranted to systematically investigate how key aTMS parameters affect treatment outcome and durability.
Collapse
Affiliation(s)
- Kevin A Caulfield
- Brain Stimulation Division, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA.
| | - Holly H Fleischmann
- Brain Stimulation Division, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA; Department of Psychology, University of Georgia, Athens, GA, USA
| | - Mark S George
- Brain Stimulation Division, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Lisa M McTeague
- Brain Stimulation Division, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| |
Collapse
|
10
|
Does switching between high frequency rTMS and theta burst stimulation improve depression outcomes? Brain Stimul 2022; 15:889-891. [PMID: 35714945 DOI: 10.1016/j.brs.2022.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/14/2022] [Accepted: 06/08/2022] [Indexed: 11/20/2022] Open
|
11
|
Wei L, Weng T, Dong H, Baeken C, Jiang T, Wu GR. The Cortico-basal-cerebellar Neurocircuit is Linked to Personality Trait of Novelty Seeking. Neuroscience 2022; 488:96-101. [PMID: 35227833 DOI: 10.1016/j.neuroscience.2022.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 11/28/2022]
Abstract
Previous neuroimaging studies have highlighted the role of the prefrontal-subcortical circuits in personality trait of novelty seeking (NS), thought to be mediated by the dopaminergic system. However, it remains largely unknown whether cortico-basal-cerebellar connections, heavily influenced by dopamine, are implicated in this temperament dimension as well. The present study aimed to further investigate the relationship between the NS trait and the cortico-basal-cerebellar pathways by using structural covariance network analysis. Ninety-five healthy female volunteers were included in this work, and NS was assessed with the Temperament and Character Inventory (TCI). Our results showed that NS scores were associated with structural connections between the cerebellum and the cerebral cortex, thalamus, and basal ganglia, substantiating the implication of the cortico-basal-cerebellar circuits in the NS construct. In addition, structural connections between visual and sensorimotor regions were also associated with NS scores, indicating that sensory and motor information processing may contribute to NS-related behaviors. Overall, the current findings may deepen our understanding of brain structural circuits related to this temperament dimension.
Collapse
Affiliation(s)
- Luqing Wei
- School of Psychology, Jiangxi Normal University, Nanchang, China.
| | - Tingting Weng
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, China
| | - Hui Dong
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, China
| | - Chris Baeken
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium; Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium; Eindhoven University of Technology, Department of Electrical Engineering, Eindhoven, the Netherlands
| | - Ting Jiang
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, China
| | - Guo-Rong Wu
- School of Psychology, Jiangxi Normal University, Nanchang, China; Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, China; Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium.
| |
Collapse
|