1
|
Cao H, Shang L, Hu D, Huang J, Wang Y, Li M, Song Y, Yang Q, Luo Y, Wang Y, Cai X, Liu J. Neuromodulation techniques for modulating cognitive function: Enhancing stimulation precision and intervention effects. Neural Regen Res 2026; 21:491-501. [PMID: 39665818 DOI: 10.4103/nrr.nrr-d-24-00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/19/2024] [Indexed: 12/13/2024] Open
Abstract
Neuromodulation techniques effectively intervene in cognitive function, holding considerable scientific and practical value in fields such as aerospace, medicine, life sciences, and brain research. These techniques utilize electrical stimulation to directly or indirectly target specific brain regions, modulating neural activity and influencing broader brain networks, thereby regulating cognitive function. Regulating cognitive function involves an understanding of aspects such as perception, learning and memory, attention, spatial cognition, and physical function. To enhance the application of cognitive regulation in the general population, this paper reviews recent publications from the Web of Science to assess the advancements and challenges of invasive and non-invasive stimulation methods in modulating cognitive functions. This review covers various neuromodulation techniques for cognitive intervention, including deep brain stimulation, vagus nerve stimulation, and invasive methods using microelectrode arrays. The non-invasive techniques discussed include transcranial magnetic stimulation, transcranial direct current stimulation, transcranial alternating current stimulation, transcutaneous electrical acupoint stimulation, and time interference stimulation for activating deep targets. Invasive stimulation methods, which are ideal for studying the pathogenesis of neurological diseases, tend to cause greater trauma and have been less researched in the context of cognitive function regulation. Non-invasive methods, particularly newer transcranial stimulation techniques, are gentler and more appropriate for regulating cognitive functions in the general population. These include transcutaneous acupoint electrical stimulation using acupoints and time interference methods for activating deep targets. This paper also discusses current technical challenges and potential future breakthroughs in neuromodulation technology. It is recommended that neuromodulation techniques be combined with neural detection methods to better assess their effects and improve the accuracy of non-invasive neuromodulation. Additionally, researching closed-loop feedback neuromodulation methods is identified as a promising direction for future development.
Collapse
Affiliation(s)
- Hanwen Cao
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Li Shang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Deheng Hu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Jianbing Huang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yu Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Ming Li
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yilin Song
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Qianzi Yang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Luo
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Wang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Juntao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Xu Y, Yamashita A, Uno K, Kawashima T, Amano K. Prediction of Alpha Power Using Multiple Subjective Measures and Autonomic Responses. Psychophysiology 2025; 62:e70028. [PMID: 40071874 PMCID: PMC11898570 DOI: 10.1111/psyp.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/02/2025] [Accepted: 02/11/2025] [Indexed: 03/15/2025]
Abstract
Alpha oscillations are associated with various cognitive functions. However, the determinants of alpha power variation remain ambiguous, primarily due to its inconsistent associations with autonomic responses and subjective states under different experimental conditions. To thoroughly examine the correlations between alpha power variation and these factors, we implemented a range of experimental conditions, encompassing attentional and emotional tasks, as well as a resting-state. In addition to the electroencephalogram data, we gathered a suite of autonomic response measurements and subjective ratings. We employed multiple linear regression analysis, utilizing autonomic responses and subjective reports as predictors of alpha power. We also subtracted the aperiodic components for better estimation of the power of periodic alpha oscillations. Our results from two separately conducted experiments robustly demonstrated that the combined use of autonomic response measurements and subjective ratings effectively predicted the parietal-occipital periodic alpha power variation across a range of conditions. These predictions were supported by leave-one-participant-out cross-validation and cross-experiment validation, confirming that multiple linear relationships can be generalized to new participants. This study demonstrates the links of alpha power variations with autonomic responses and subjective states, suggesting that during investigations of the cognitive functions of alpha oscillations, it is important to consider the potential influences of autonomic responses and subjective states on alpha oscillations.
Collapse
Affiliation(s)
- Yuting Xu
- Graduate School of Information Science and TechnologyThe University of TokyoTokyoJapan
| | - Ayumu Yamashita
- Graduate School of Information Science and TechnologyThe University of TokyoTokyoJapan
| | - Kyuto Uno
- Graduate School of Information Science and TechnologyThe University of TokyoTokyoJapan
| | - Tomoya Kawashima
- Department of Psychological Science, College of Informatics and Human CommunicationKanazawa Institute of TechnologyKanazawaJapan
| | - Kaoru Amano
- Graduate School of Information Science and TechnologyThe University of TokyoTokyoJapan
| |
Collapse
|
3
|
Song Y, Wang Q, Fang F. Time courses of brain plasticity underpinning visual motion perceptual learning. Neuroimage 2024; 302:120897. [PMID: 39442899 DOI: 10.1016/j.neuroimage.2024.120897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024] Open
Abstract
Visual perceptual learning (VPL) refers to a long-term improvement of visual task performance through training or experience, reflecting brain plasticity even in adults. In human subjects, VPL has been mostly studied using functional magnetic resonance imaging (fMRI). However, due to the low temporal resolution of fMRI, how VPL affects the time course of visual information processing is largely unknown. To address this issue, we trained human subjects to perform a visual motion direction discrimination task. Their behavioral performance and magnetoencephalography (MEG) signals responding to the motion stimuli were measured before, immediately after, and two weeks after training. Training induced a long-lasting behavioral improvement for the trained direction. Based on the MEG signals from occipital sensors, we found that, for the trained motion direction, VPL increased the motion direction decoding accuracy, reduced the motion direction decoding latency, enhanced the direction-selective channel response, and narrowed the tuning profile. Following the MEG source reconstruction, we showed that VPL enhanced the cortical response in early visual cortex (EVC) and strengthened the feedforward connection from EVC to V3A. These VPL-induced neural changes co-occurred in 160-230 ms after stimulus onset. Complementary to previous fMRI findings on VPL, this study provides a comprehensive description on the neural mechanisms of visual motion perceptual learning from a temporal perspective and reveals how VPL shapes the time course of visual motion processing in the adult human brain.
Collapse
Affiliation(s)
- Yongqian Song
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China; IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Qian Wang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China; IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China; National Key Laboratory of General Artificial Intelligence, Peking University, Beijing 100871, China
| | - Fang Fang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China; IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing 100871, China.
| |
Collapse
|
4
|
Yang M, Li Z, Pan F, Wu S, Jia X, Wang R, Ji L, Li W, Li C. Alpha tACS on Parieto-Occipital Cortex Mitigates Motion Sickness Based on Multiple Physiological Observation. IEEE Trans Neural Syst Rehabil Eng 2024; 32:2398-2407. [PMID: 38949929 DOI: 10.1109/tnsre.2024.3419753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Approximately one third of the population is prone to motion sickness (MS), which is associated with the dysfunction in the integration of sensory inputs. Transcranial alternating current stimulation (tACS) has been widely used to modulate neurological functions by affecting neural oscillation. However, it has not been applied in the treatment of motion sickness. This study aims to investigate changes in brain oscillations during exposure to MS stimuli and to further explore the potential impact of tACS with the corresponding frequency and site on MS symptoms. A total of 19 subjects were recruited to be exposed to Coriolis stimuli to complete an inducing session. After that, they were randomly assigned to tACS stimulation group or sham stimulation group to complete a stimulation session. Electroencephalography (EEG), electrocardiogram, and galvanic skin response were recorded during the experiment. All the subjects suffering from obvious MS symptoms after inducing session were observed that alpha power of four channels of parieto-occipital lobe significantly decreased (P7: t =3.589, p <0.001; P8: t =2.667, p <0.05; O1: t =3.556, p <0.001; O2: t =2.667, p <0.05). Based on this, tACS group received the tACS stimulation at 10Hz from Oz to CPz. Compared to sham group, tACS stimulation significantly improved behavioral performance and entrained the alpha oscillation in individuals whose alpha power decrease during the inducing session. The findings show that parieto-occipital alpha oscillation plays a critical role in the integration of sensory inputs, and alpha tACS on parieto-occipital can become a potential method to mitigate MS symptoms.
Collapse
|
5
|
Wu D, Zhu Y, Wang Y, Liu N, Zhang P. Transcranial direct current stimulation of the prefrontal and visual cortices diversely affects early and late perceptual learning. Brain Behav 2024; 14:e3620. [PMID: 38989886 PMCID: PMC11238241 DOI: 10.1002/brb3.3620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Research has shown that visual perceptual learning (VPL) is related to modifying neural activity in higher level decision-making regions. However, the causal roles of the prefrontal and visual cortexes in VPL are still unclear. Here, we investigated how anodal transcranial direct current stimulation (tDCS) of the prefrontal and visual cortices modulates VPL in the early and later phases and the role of multiple brain regions. METHODS Perceptual learning on the coherent motion direction identification task included early and later stages. After early training, participants needed to continuously train to reach a plateau; once the plateau was reached, participants entered a later stage. Sixty participants were randomly divided into five groups. Regardless of the training at the early and later stages, four groups received multitarget tDCS over the right dorsolateral prefrontal cortex (rDLPFC) and right middle temporal area (rMT), single-target tDCS over the rDLPFC, and single-target tDCS over the rMT or sham stimulation, and one group was stimulated at the ipsilateral brain region (i.e., left MT). RESULTS Compared with sham stimulation, multitarget and two single-target tDCS over the rDLPFC or rMT improved posttest performance and accelerated learning during the early period. However, multitarget tDCS and two single-target tDCS led to equivalent benefits for VPL. Additionally, these beneficial effects were absent when anodal tDCS was applied to the ipsilateral brain region. For the later period, the above facilitating effects on VPL induced by multitarget or single-target tDCS disappeared. CONCLUSIONS This study suggested the causal role of the prefrontal and visual cortices in visual motion perceptual learning by anodal tDCS but failed to find greater beneficial effects by simultaneously stimulating the prefrontal and visual cortices. Future research should investigate the functional associations between multiple brain regions to further promote VPL.
Collapse
Affiliation(s)
- Di Wu
- Department of Medical PsychologyAir Force Medical UniversityXi'anShaanxiChina
- Department of NeurobiologyBasic Medical SchoolAir Force Medical UniversityXi'anShaanxiChina
| | - Yan Zhu
- Department of Medical PsychologyAir Force Medical UniversityXi'anShaanxiChina
| | - Yifan Wang
- Department of Medical PsychologyAir Force Medical UniversityXi'anShaanxiChina
| | - Na Liu
- Department of NursingAir Force Medical UniversityXi'anShaanxiChina
| | - Pan Zhang
- Department of PsychologyHebei Normal UniversityShijiazhuangHebeiChina
| |
Collapse
|
6
|
Chang M, Suzuki S, Kurose T, Ibaraki T. Pretraining alpha rhythm enhancement by neurofeedback facilitates short-term perceptual learning and improves visual acuity by facilitated consolidation. FRONTIERS IN NEUROERGONOMICS 2024; 5:1399578. [PMID: 38894852 PMCID: PMC11184131 DOI: 10.3389/fnrgo.2024.1399578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
Introduction Learning through perceptual training using the Gabor patch (GP) has attracted attention as a new vision restoration technique for myopia and age-related deterioration of visual acuity (VA). However, the task itself is monotonous and painful and requires numerous training sessions and some time before being effective, which has been a challenge for its widespread application. One effective means of facilitating perceptual learning is the empowerment of EEG alpha rhythm in the sensory cortex before neurofeedback (NF) training; however, there is a lack of evidence for VA. Methods We investigated whether four 30-min sessions of GP training, conducted over 2 weeks with/without EEG NF to increase alpha power (NF and control group, respectively), can improve vision in myopic subjects. Contrast sensitivity (CS) and VA were measured before and after each GP training. Results The NF group showed an improvement in CS at the fourth training session, not observed in the control group. In addition, VA improved only in the NF group at the third and fourth training sessions, this appears as a consolidation effect (maintenance of the previous training effect). Participants who produced stronger alpha power during the third training session showed greater VA recovery during the fourth training session. Discussion These results indicate that enhanced pretraining alpha empowerment strengthens the subsequent consolidation of perceptual learning and that even a short period of GP training can have a positive effect on VA recovery. This simple protocol may facilitate use of a training method to easily recover vision.
Collapse
Affiliation(s)
| | - Shuntaro Suzuki
- Vie, Inc., Kamakura, Japan
- NTT Data Institute of Management Consulting, Inc., Tokyo, Japan
| | | | - Takuya Ibaraki
- Vie, Inc., Kamakura, Japan
- NTT Data Institute of Management Consulting, Inc., Tokyo, Japan
| |
Collapse
|
7
|
Wang J, Choi KY, Thompson B, Chan HHL, Cheong AMY. The effect of montages of transcranial alternating current stimulation on occipital responses-a sham-controlled pilot study. Front Psychiatry 2024; 14:1273044. [PMID: 38328519 PMCID: PMC10849049 DOI: 10.3389/fpsyt.2023.1273044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/13/2023] [Indexed: 02/09/2024] Open
Abstract
Background Transcranial alternative current stimulation (tACS) refers to a promising non-invasive technique to improve brain functions. However, owing to various stimulation parameters in the literature, optimization of the stimulation is warranted. In this study, the authors aimed to compare the effect of tACS electrode montages on occipital responses. Methods In three montage sessions (i.e., Oz-Cz, Oz-cheek, and sham), 10 healthy young adults participated, receiving 20-min 2-mA alpha-tACS. Pattern-reversal visual evoked potentials (VEPs) were measured before tACS (T0), immediately after (T20), and 20 min (T40) after tACS. Normalized changes in time-domain features (i.e., N75, P100 amplitudes, and P100 latency) and frequency-domain features [i.e., power spectral density in alpha (PSDα) and beta (PSDβ) bands] were evaluated. Results In contrast to our hypothesis, the occipital response decreased immediately (T20) after receiving the 20-min tACS in all montages in terms of P100 amplitude (p = 0.01). This reduction returned to baseline level (T0) in Oz-cheek and sham conditions but sustained in the Oz-Cz condition (T40, p = 0.03) after 20 min of tACS. The effects on N75 amplitude and P100 latency were statistically insignificant. For spectral analysis, both PSDα and PSDβ were significantly increased after tACS at T20, in which the effect sustained until T40. However, there was no differential effect by montages. There was no significant difference in the occurrence of sensations across the montages. The effectiveness of the blinding is supported by the participants' rate of guessing correctly. Conclusion This study revealed an immediate inhibitory effect of tACS, regardless of the montages. This inhibitory effect sustained in the Oz-Cz montage but faded out in other montages after 20 min.
Collapse
Affiliation(s)
- Jingying Wang
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- College of Health and Human Performance, University of Florida, Gainesville, FL, United States
| | - Kai Yip Choi
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Benjamin Thompson
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
- Centre for Eye and Vision Research, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
| | - Henry Ho Lung Chan
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Centre for Eye and Vision Research, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
| | - Allen Ming Yan Cheong
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Centre for Eye and Vision Research, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
8
|
He Q, Zhu X, Fang F. Enhancing visual perceptual learning using transcranial electrical stimulation: Transcranial alternating current stimulation outperforms both transcranial direct current and random noise stimulation. J Vis 2023; 23:2. [PMID: 38054934 PMCID: PMC10702794 DOI: 10.1167/jov.23.14.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/23/2023] [Indexed: 12/07/2023] Open
Abstract
Diverse strategies can be employed to enhance visual skills, including visual perceptual learning (VPL) and transcranial electrical stimulation (tES). Combining VPL and tES is a popular method that holds promise for producing significant improvements in visual acuity within a short time frame. However, there is still a lack of comprehensive evaluation regarding the effects of combining different types of tES and VPL on enhancing visual function, especially with a larger sample size. In the present study, we recruited four groups of subjects (26 subjects each) to learn an orientation discrimination task with five daily training sessions. During training, the occipital region of each subject was stimulated by one type of tES-anodal transcranial direct current stimulation (tDCS), alternating current stimulation (tACS) at 10 Hz, high-frequency random noise stimulation (tRNS), and sham tACS-while the subject performed the training task. We found that, compared with the sham stimulation, both the high-frequency tRNS and the 10-Hz tACS facilitated VPL efficiently in terms of learning rate and performance improvement, but there was little modulatory effect in the anodal tDCS condition. Remarkably, the 10-Hz tACS condition exhibited superior modulatory effects compared with the tRNS condition, demonstrating the strongest modulation among the most commonly used tES types for further enhancing vision when combined with VPL. Our results suggest that alpha oscillations play a vital role in VPL. Our study provides a practical guide for vision rehabilitation.
Collapse
Affiliation(s)
- Qing He
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
- Key Laboratory of Machine Perception, Ministry of Education, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xinyi Zhu
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
- Key Laboratory of Machine Perception, Ministry of Education, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Fang Fang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
- Key Laboratory of Machine Perception, Ministry of Education, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
9
|
Zhang Y, Bi K, Li J, Wang Y, Fang F. Dyadic visual perceptual learning on orientation discrimination. Curr Biol 2023:S0960-9822(23)00552-3. [PMID: 37224810 DOI: 10.1016/j.cub.2023.04.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 02/24/2023] [Accepted: 04/26/2023] [Indexed: 05/26/2023]
Abstract
The belief that learning can be modulated by social context is mainly supported by high-level value-based learning studies. However, whether social context can even modulate low-level learning such as visual perceptual learning (VPL) is still unknown. Unlike traditional VPL studies in which participants were trained singly, here, we developed a novel dyadic VPL paradigm in which paired participants were trained with the same orientation discrimination task and could monitor each other's performance. We found that the social context (i.e., dyadic training) led to a greater behavioral performance improvement and a faster learning rate compared with the single training. Interestingly, the facilitating effects could be modulated by the performance difference between paired participants. Functional magnetic resonance imaging (fMRI) results showed that, compared with the single training, social cognition areas including bilateral parietal cortex and dorsolateral prefrontal cortex displayed a different activity pattern and enhanced functional connectivities to early visual cortex (EVC) during the dyadic training. Furthermore, the dyadic training resulted in more refined orientation representation in primary visual cortex (V1), which was closely associated with the greater behavioral performance improvement. Taken together, we demonstrate that the social context, learning with a partner, can remarkably augment the plasticity of low-level visual information process by means of reshaping the neural activities in EVC and social cognition areas, as well as their functional interplays.
Collapse
Affiliation(s)
- Yifei Zhang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China; Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Keyan Bi
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China; Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jian Li
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Yizhou Wang
- Center on Frontiers of Computing Studies, School of Computer Science, Peking University, Beijing 100871, China
| | - Fang Fang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China; Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
10
|
Li R, Xu M, You J, Zhou X, Meng J, Xiao X, Jung TP, Ming D. Modulation of rhythmic visual stimulation on left-right attentional asymmetry. Front Neurosci 2023; 17:1156890. [PMID: 37250403 PMCID: PMC10213214 DOI: 10.3389/fnins.2023.1156890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
The rhythmic visual stimulation (RVS)-induced oscillatory brain responses, namely steady-state visual evoked potentials (SSVEPs), have been widely used as a biomarker in studies of neural processing based on the assumption that they would not affect cognition. However, recent studies have suggested that the generation of SSVEPs might be attributed to neural entrainment and thus could impact brain functions. But their neural and behavioral effects are yet to be explored. No study has reported the SSVEP influence on functional cerebral asymmetry (FCA). We propose a novel lateralized visual discrimination paradigm to test the SSVEP effects on visuospatial selective attention by FCA analyses. Thirty-eight participants covertly shifted their attention to a target triangle appearing in either the lower-left or -right visual field (LVF or RVF), and judged its orientation. Meanwhile, participants were exposed to a series of task-independent RVSs at different frequencies, including 0 (no RVS), 10, 15, and 40-Hz. As a result, it showed that target discrimination accuracy and reaction time (RT) varied significantly across RVS frequency. Furthermore, attentional asymmetries differed for the 40-Hz condition relative to the 10-Hz condition as indexed by enhanced RT bias to the right visual field, and larger Pd EEG component for attentional suppression. Our results demonstrated that RVSs had frequency-specific effects on left-right attentional asymmetries in both behavior and neural activities. These findings provided new insights into the functional role of SSVEP on FCAs.
Collapse
Affiliation(s)
- Rong Li
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Minpeng Xu
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Jia You
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Xiaoyu Zhou
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Jiayuan Meng
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Xiaolin Xiao
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Tzyy-Ping Jung
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Swartz Center for Computational Neuroscience, University of California San Diego, San Diego, CA, United States
| | - Dong Ming
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| |
Collapse
|
11
|
Wu D, Zhang P, Wang Y, Liu N, Sun K, Wang P, Xiao W. Anodal online transcranial direct current stimulation facilitates visual motion perceptual learning. Eur J Neurosci 2023; 57:479-489. [PMID: 36511948 DOI: 10.1111/ejn.15895] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Visual perceptual learning (VPL) has great potential implications for clinical populations, but adequate improvement often takes weeks to months to obtain; therefore, practical applications of VPL are limited. Strategies that enhance visual performance acquisition make great practical sense. Transcranial direct current stimulation (tDCS) could be beneficial to VPL, but thus far, the results are inconsistent. The current study had two objectives: (1) to investigate the effect of anodal tDCS on VPL and (2) to determine whether the timing sequence of anodal tDCS and training influences VPL. Anodal tDCS was applied on the left human middle temporal (hMT+) during training on a coherent motion discrimination task (online), anodal tDCS was also applied before training (offline) and sham tDCS was applied during training (sham). The coherent thresholds were measured without stimulation before, 2 days after and 1 month after training. All participants trained for five consecutive days. Anodal tDCS resulted in more performance improvement when applied during daily training but not when applied before training. Additionally, neither within-session improvement nor between-session improvement differed among the online, offline and sham tDCS conditions. These findings contribute to the development of efficient stimulation protocols and a deep understanding of the mechanisms underlying the effect of tDCS on VPL.
Collapse
Affiliation(s)
- Di Wu
- Department of Medical Psychology, Air Force Medical University, Xi'an, China
- Department of Neurobiology, Basic Medical School, Air Force Medical University, Xi'an, China
| | - Pan Zhang
- Department of Psychology, Hebei Normal University, Shijiazhuang, China
| | - Yifan Wang
- Department of Medical Psychology, Air Force Medical University, Xi'an, China
| | - Na Liu
- Department of Nursing, Air Force Medical University, Xi'an, China
| | - Kewei Sun
- Department of Medical Psychology, Air Force Medical University, Xi'an, China
| | - Panhui Wang
- Department of Medical Psychology, Air Force Medical University, Xi'an, China
| | - Wei Xiao
- Department of Medical Psychology, Air Force Medical University, Xi'an, China
| |
Collapse
|
12
|
Gong X, Wang Q, Fang F. Configuration perceptual learning and its relationship with element perceptual learning. J Vis 2022; 22:2. [DOI: 10.1167/jov.22.13.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Xizi Gong
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, People's Republic of China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, People's Republic of China
| | - Qian Wang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, People's Republic of China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, People's Republic of China
| | - Fang Fang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, People's Republic of China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, People's Republic of China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, People's Republic of China
- Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing, People's Republic of China
| |
Collapse
|
13
|
Wu D, Wang Y, Liu N, Wang P, Sun K, Xiao W. High-definition transcranial direct current stimulation of the left middle temporal complex does not affect visual motion perception learning. Front Neurosci 2022; 16:988590. [PMID: 36117616 PMCID: PMC9474993 DOI: 10.3389/fnins.2022.988590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Visual perceptual learning (VPL) refers to the improvement in visual perceptual abilities through training and has potential implications for clinical populations. However, improvements in perceptual learning often require hundreds or thousands of trials over weeks to months to attain, limiting its practical application. Transcranial direct current stimulation (tDCS) could potentially facilitate perceptual learning, but the results are inconsistent thus far. Thus, this research investigated the effect of tDCS over the left human middle temporal complex (hMT+) on learning to discriminate visual motion direction. Twenty-seven participants were randomly assigned to the anodal, cathodal and sham tDCS groups. Before and after training, the thresholds of motion direction discrimination were assessed in one trained condition and three untrained conditions. Participants were trained over 5 consecutive days while receiving 4 × 1 ring high-definition tDCS (HD-tDCS) over the left hMT+. The results showed that the threshold of motion direction discrimination significantly decreased after training. However, no obvious differences in the indicators of perceptual learning, such as the magnitude of improvement, transfer indexes, and learning curves, were noted among the three groups. The current study did not provide evidence of a beneficial effect of tDCS on VPL. Further research should explore the impact of the learning task characteristics, number of training sessions and the sequence of stimulation.
Collapse
Affiliation(s)
- Di Wu
- Department of Medical Psychology, Air Force Medical University, Xi’an, China
| | - Yifan Wang
- Department of Medical Psychology, Air Force Medical University, Xi’an, China
| | - Na Liu
- Department of Nursing, Air Force Medical University, Xi’an, China
| | - Panhui Wang
- Department of Medical Psychology, Air Force Medical University, Xi’an, China
| | - Kewei Sun
- Department of Medical Psychology, Air Force Medical University, Xi’an, China
| | - Wei Xiao
- Department of Medical Psychology, Air Force Medical University, Xi’an, China
- *Correspondence: Wei Xiao,
| |
Collapse
|
14
|
Nasimova M, Huang Y. Applications of open-source software ROAST in clinical studies: A review. Brain Stimul 2022; 15:1002-1010. [PMID: 35843597 PMCID: PMC9378654 DOI: 10.1016/j.brs.2022.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/09/2022] [Accepted: 07/10/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Transcranial electrical stimulation (TES) is broadly investigated as a therapeutic technique for a wide range of neurological disorders. The electric fields induced by TES in the brain can be estimated by computational models. A realistic and volumetric approach to simulate TES (ROAST) has been recently released as an open-source software package and has been widely used in TES research and its clinical applications. Rigor and reproducibility of TES studies have recently become a concern, especially in the context of computational modeling. METHODS Here we reviewed 94 clinical TES studies that leveraged ROAST for computational modeling. When reviewing each study, we pay attention to details related to the rigor and reproducibility as defined by the locations of stimulation electrodes and the dose of stimulating current. Specifically, we compared across studies the electrode montages, stimulated brain areas, achieved electric field strength, and the relations between modeled electric field and clinical outcomes. RESULTS We found that over 1800 individual heads have been modeled by ROAST for more than 30 different clinical applications. Similar electric field intensities were found to be reproducible by ROAST across different studies at the same brain area under same or similar stimulation montages. CONCLUSION This article reviews the use cases of ROAST and provides an overview of how ROAST has been leveraged to enhance the rigor and reproducibility of TES research and its applications.
Collapse
Affiliation(s)
- Mohigul Nasimova
- Department of Biomedical Engineering, City College of the City University of New York, New York, NY, 10031, USA
| | - Yu Huang
- Department of Biomedical Engineering, City College of the City University of New York, New York, NY, 10031, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
15
|
Perspectives on the Combined Use of Electric Brain Stimulation and Perceptual Learning in Vision. Vision (Basel) 2022; 6:vision6020033. [PMID: 35737420 PMCID: PMC9227313 DOI: 10.3390/vision6020033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022] Open
Abstract
A growing body of literature offers exciting perspectives on the use of brain stimulation to boost training-related perceptual improvements in humans. Recent studies suggest that combining visual perceptual learning (VPL) training with concomitant transcranial electric stimulation (tES) leads to learning rate and generalization effects larger than each technique used individually. Both VPL and tES have been used to induce neural plasticity in brain regions involved in visual perception, leading to long-lasting visual function improvements. Despite being more than a century old, only recently have these techniques been combined in the same paradigm to further improve visual performance in humans. Nonetheless, promising evidence in healthy participants and in clinical population suggests that the best could still be yet to come for the combined use of VPL and tES. In the first part of this perspective piece, we briefly discuss the history, the characteristics, the results and the possible mechanisms behind each technique and their combined effect. In the second part, we discuss relevant aspects concerning the use of these techniques and propose a perspective concerning the combined use of electric brain stimulation and perceptual learning in the visual system, closing with some open questions on the topic.
Collapse
|
16
|
He Q, Yang XY, Zhao D, Fang F. Enhancement of visual perception by combining transcranial electrical stimulation and visual perceptual training. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:271-284. [PMID: 37724187 PMCID: PMC10388778 DOI: 10.1515/mr-2022-0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/16/2022] [Indexed: 09/20/2023]
Abstract
The visual system remains highly malleable even after its maturity or impairment. Our visual function can be enhanced through many ways, such as transcranial electrical stimulation (tES) and visual perceptual learning (VPL). TES can change visual function rapidly, but its modulation effect is short-lived and unstable. By contrast, VPL can lead to a substantial and long-lasting improvement in visual function, but extensive training is typically required. Theoretically, visual function could be further improved in a shorter time frame by combining tES and VPL than by solely using tES or VPL. Vision enhancement by combining these two methods concurrently is both theoretically and practically significant. In this review, we firstly introduced the basic concept and possible mechanisms of VPL and tES; then we reviewed the current research progress of visual enhancement using the combination of two methods in both general and clinical population; finally, we discussed the limitations and future directions in this field. Our review provides a guide for future research and application of vision enhancement and restoration by combining VPL and tES.
Collapse
Affiliation(s)
- Qing He
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
- Key Laboratory of Machine Perception, Ministry of Education, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xin-Yue Yang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
- Key Laboratory of Machine Perception, Ministry of Education, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Daiqing Zhao
- Department of Psychology, The Pennsylvania State University, University Park, State College, PA, USA
| | - Fang Fang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
- Key Laboratory of Machine Perception, Ministry of Education, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|