1
|
Koruk H, Payne C, Cressey P, Thanou M, Pouliopoulos AN. Delivering Gd-Labeled IgG Antibodies Into the Mouse Brain Following Focused Ultrasound Treatment. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:1018-1027. [PMID: 40087107 DOI: 10.1016/j.ultrasmedbio.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/06/2025] [Accepted: 02/24/2025] [Indexed: 03/16/2025]
Abstract
OBJECTIVE Antibody-based therapy has emerged as a powerful tool for targeted treatment of neurological diseases, such as brain cancer and neurodegenerative disorders. However, direct, scalable, and safe confirmation of antibody delivery into the brain remains challenging. Antibodies can be effectively tracked when tagged with molecules that are detectable by medical imaging modalities, such as MRI, PET, or SPECT. In this study, we aimed to confirm gadolinium (Gd)-labeled IgG antibody delivery into the mouse brain using MRI, following exposure to focused ultrasound (FUS) and circulating microbubbles. METHODS We acquired MR images of the mouse brain to evaluate antibody delivery into the targeted brain region. First, we quantified the MR signal of Gd-labeled IgG antibodies in phantoms using preclinical 9.4 T and clinical 3 T MRI scanners. Then, we determined optimal ultrasound and MR imaging parameters to non-invasively and safely disrupt the blood-brain barrier in a localized and reversible manner and effectively monitor antibody delivery into the murine brain, respectively. RESULTS We confirmed that IgG antibodies can be reliably delivered into the murine brain using FUS and microbubble treatment and that we can track their biodistribution within the brain parenchyma using clinically relevant MR image sequences. The maximum detected volume of Gd-IgG antibody delivery (n = 4) was determined to be 0.12 ± 0.02 mm3 at t = 75.3 ± 17.3 minutes following treatment. CONCLUSION This work paves the way for a scalable and non-ionizing method for performing and evaluating antibody delivery into the brain.
Collapse
Affiliation(s)
- Hasan Koruk
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Chris Payne
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Paul Cressey
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Maya Thanou
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | | |
Collapse
|
2
|
Iguchi Y, Benton R, Kobayashi K. A chemogenetic technology using insect Ionotropic Receptors to stimulate target cell populations in the mammalian brain. Neurosci Res 2025; 214:56-61. [PMID: 39532176 DOI: 10.1016/j.neures.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Chemogenetics uses artificially-engineered proteins to modify the activity of cells, notably neurons, in response to small molecules. Although a common set of chemogenetic tools are the G protein-coupled receptor-based DREADDs, there has been great hope for ligand-gated, ion channel-type chemogenetic tools that directly impact neuronal excitability. We have devised such a technology by exploiting insect Ionotropic Receptors (IRs), a highly divergent subfamily of ionotropic glutamate receptors that evolved to detect diverse environmental chemicals. Here, we review a series of studies developing and applying this "IR-mediated neuronal activation" (IRNA) technology with the Drosophila melanogaster IR84a/IR8a complex, which detects phenyl-containing ligands. We also discuss how variants of IRNA could be produced by modifying the composition of the IR complex, using natural or engineered subunits, which would enable artificial activation of different cell populations in the brain in response to distinct chemicals.
Collapse
Affiliation(s)
- Yoshio Iguchi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Japan.
| |
Collapse
|
3
|
Burstow R, Andrés D, Jiménez N, Camarena F, Thanou M, Pouliopoulos AN. Acoustic holography in biomedical applications. Phys Med Biol 2025; 70:06TR01. [PMID: 39978080 DOI: 10.1088/1361-6560/adb89a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/20/2025] [Indexed: 02/22/2025]
Abstract
Acoustic holography can be used to construct an arbitrary wavefront at a desired 2D plane or 3D volume by beam shaping an emitted field and is a relatively new technique in the field of biomedical applications. Acoustic holography was first theorized in 1985 following Gabor's work in creating optical holograms in the 1940s. Recent developments in 3D printing have led to an easier and faster way to manufacture monolithic acoustic holographic lenses that can be attached to single-element transducers. As ultrasound passes through the lens material, a phase shift is applied to the waves, causing an interference pattern at the 2D image plane or 3D volume, which forms the desired pressure field. This technology has many applications already in use and has become of increasing interest for the biomedical community, particularly for treating regions that are notoriously difficult to operate on, such as the brain. Acoustic holograms could provide a non-invasive, precise, and patient specific way to deliver drugs, induce hyperthermia, or create tissue cell patterns. However, there are still limitations in acoustic holography, such as the difficulties in creating 3D holograms and the passivity of monolithic lenses. This review aims to outline the biomedical applications of acoustic holograms reported to date and discuss their current limitations and the future work that is needed for them to reach their full potential in the biomedical community.
Collapse
Affiliation(s)
- Rachel Burstow
- Department of Surgical & Interventional Engineering, School of Biomedical Engineering Imaging Sciences, King's College London, London, United Kingdom
| | - Diana Andrés
- Instituto de Instrumentación para Imagen Molecular (I3M), CSIC-Universitat Politècnica de València, Valencia, Spain
| | - Noé Jiménez
- Instituto de Instrumentación para Imagen Molecular (I3M), CSIC-Universitat Politècnica de València, Valencia, Spain
| | - Francisco Camarena
- Instituto de Instrumentación para Imagen Molecular (I3M), CSIC-Universitat Politècnica de València, Valencia, Spain
| | - Maya Thanou
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Antonios N Pouliopoulos
- Department of Surgical & Interventional Engineering, School of Biomedical Engineering Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
4
|
Tsitsos FN, Batts AJ, Jimenez DA, Li C, Ji R, Bae S, Theodorou A, Gorman SL, Konofagou EE. Characterization of Microbubble Cavitation in Theranostic Ultrasound-mediated Blood-Brain Barrier Opening and Gene Delivery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633644. [PMID: 39896565 PMCID: PMC11785052 DOI: 10.1101/2025.01.17.633644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Rationale The characterization of microbubble activity has proven critical in assessing the safety and efficacy of ultrasound-mediated blood-brain barrier (BBB) opening and drug and gene delivery. In this study, we build upon our previous work on theranostic ultrasound (ThUS)-mediated BBB opening (ThUS-BBBO) and conduct for the first time a comprehensive characterization of the role of microbubble cavitation in ThUS-BBBO, as well as its impact on gene delivery with adeno-associated viruses (AAV). Methods A repurposed imaging phased array was used throughout the study to generate focused transmits and record microbubble activity through high-resolution power cavitation imaging (PCI). The cavitation of microbubbles under ThUS pulses was first characterized in flow phantom using pulse lengths ranging from 1.5 to 20 cycles and under varying microbubble flow rates using a separate single-element transducer a passive cavitation detector (PCD). A comprehensive in vivo study in mice was then conducted to characterize the in vivo microbubble activity under ThUS and correlate the resulting cavitation with AAV-mediated transgene delivery and expression. The transcranial microbubble activity was first detected in two mice using a PCD, to confirm the findings of the flow phantom study. Next, three mouse studies were conducted to evaluate the relationship between cavitation and AAV delivery; one with three different microbubble size distributions using polydisperse and size-isolated microbubbles, one with variable burst length and burst repetition frequency, and one with different AAV serotypes and injection doses. Electronic beam steering was used to induce bilateral BBB opening with 1.5 cycle on the left and 10 cycles on the right hemisphere. Cavitation dose was correlated with BBB opening volume, AAV transgene expression was evaluated with immunofluorescence staining and histological safety was assessed with T2* imaging and Hematoxylin and Eosin staining. Results Frequency domain analysis in the phantoms revealed a broadband-cavitation dominance at the shorter pulse lengths, while harmonic cavitation components are significantly increased for longer pulses. The PCD was better at detecting higher frequency harmonics, while the signal received by the theranostic array was more broadband dominated. Analysis of signals in the time domain showed that the longer pulses induce higher microbubble collapse compared to short pulses. In the transcranial in vivo experiments, the PCD was able to detect increased harmonic cavitation for 10-cycle pulses. The microbubble study showed that 3-5 μm microbubbles resulted in the largest cavitation doses, BBBO volumes and AAV transgene expression compared to the smaller microbubble sizes. The burst sequence study revealed that the sequences with shorter bursts and faster burst repetition frequencies induce larger BBBO volumes and AAV transduction due to faster microbubble replenishment in the focal volume. Increased erythrocyte extravasation was observed on the hemisphere sonicated with 10-cycle pulses. Transgene expression was also increased with injection dose, without notable side effects during the three-week survival period. Finally, AAV9 was shown to be the serotype with the highest transduction efficiency compared to AAV2 and AAV5 at the same injected dose. Conclusions This is the first comprehensive study into the microbubble cavitation under theranostic ultrasound. The phantom and in vivo studies show that the mechanism of ThUS-BBBO is mainly transient cavitation dominant, as microbubble collapse increases with pulse length despite the increased harmonic frequency response. Increased cavitation dose resulted in larger BBBO volumes and transgene expression in vivo . While ThUS induced microhemorrhage for most of the studied conditions, it did not have an impact on the survival and behavior of the mice.
Collapse
|
5
|
Kielbinski M, Bernacka J. Fiber photometry in neuroscience research: principles, applications, and future directions. Pharmacol Rep 2024; 76:1242-1255. [PMID: 39235662 PMCID: PMC11582208 DOI: 10.1007/s43440-024-00646-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
In recent years, fluorescent sensors are enjoying a surge of popularity in the field of neuroscience. Through the development of novel genetically encoded sensors as well as improved methods of detection and analysis, fluorescent sensing has risen as a new major technique in neuroscience alongside molecular, electrophysiological, and imaging methods, opening up new avenues for research. Combined with multiphoton microscopy and fiber photometry, these sensors offer unique advantages in terms of cellular specificity, access to multiple targets - from calcium dynamics to neurotransmitter release to intracellular processes - as well as high capability for in vivo interrogation of neurobiological mechanisms underpinning behavior. Here, we provide a brief overview of the method, present examples of its integration with other tools in recent studies ranging from cellular to systems neuroscience, and discuss some of its principles and limitations, with the aim of introducing new potential users to this rapidly developing and potent technique.
Collapse
Affiliation(s)
- Michal Kielbinski
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.
| | - Joanna Bernacka
- Cancer Neurophysiology Group, Łukasiewicz - PORT, Polish Center for Technology Development, Stabłowicka 147, Wrocław, 54-066, Poland
| |
Collapse
|
6
|
O'Reilly MA. Exploiting the mechanical effects of ultrasound for noninvasive therapy. Science 2024; 385:eadp7206. [PMID: 39265013 DOI: 10.1126/science.adp7206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/07/2024] [Indexed: 09/14/2024]
Abstract
Focused ultrasound is a platform technology capable of eliciting a wide range of biological responses with high spatial precision deep within the body. Although focused ultrasound is already in clinical use for focal thermal ablation of tissue, there has been a recent growth in development and translation of ultrasound-mediated nonthermal therapies. These approaches exploit the physical forces of ultrasound to produce a range of biological responses dependent on exposure conditions. This review discusses recent advances in four application areas that have seen particular growth and have immense clinical potential: brain drug delivery, neuromodulation, focal tissue destruction, and endogenous immune system activation. Owing to the maturation of transcranial ultrasound technology, the brain is a major target organ; however, clinical indications outside the brain are also discussed.
Collapse
Affiliation(s)
- Meaghan A O'Reilly
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Toth J, Kurtin DL, Brosnan M, Arvaneh M. Opportunities and obstacles in non-invasive brain stimulation. Front Hum Neurosci 2024; 18:1385427. [PMID: 38562225 PMCID: PMC10982339 DOI: 10.3389/fnhum.2024.1385427] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Non-invasive brain stimulation (NIBS) is a complex and multifaceted approach to modulating brain activity and holds the potential for broad accessibility. This work discusses the mechanisms of the four distinct approaches to modulating brain activity non-invasively: electrical currents, magnetic fields, light, and ultrasound. We examine the dual stochastic and deterministic nature of brain activity and its implications for NIBS, highlighting the challenges posed by inter-individual variability, nebulous dose-response relationships, potential biases and neuroanatomical heterogeneity. Looking forward, we propose five areas of opportunity for future research: closed-loop stimulation, consistent stimulation of the intended target region, reducing bias, multimodal approaches, and strategies to address low sample sizes.
Collapse
Affiliation(s)
- Jake Toth
- Automatic Control and Systems Engineering, Neuroscience Institute, Insigneo Institute, University of Sheffield, Sheffield, United Kingdom
| | | | - Méadhbh Brosnan
- School of Psychology, University College Dublin, Dublin, Ireland
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Mahnaz Arvaneh
- Automatic Control and Systems Engineering, Neuroscience Institute, Insigneo Institute, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
8
|
Yang X, Chai C, Zuo H, Chen YH, Shi J, Ma C, Sawan M. Monte Carlo-Based Optical Simulation of Optical Distribution in Deep Brain Tissues Using Sixteen Optical Sources. Bioengineering (Basel) 2024; 11:260. [PMID: 38534534 DOI: 10.3390/bioengineering11030260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Optical-based imaging has improved from early single-location research to further sophisticated imaging in 2D topography and 3D tomography. These techniques have the benefit of high specificity and non-radiative safety for brain detection and therapy. However, their performance is limited by complex tissue structures. To overcome the difficulty in successful brain imaging applications, we conducted a simulation using 16 optical source types within a brain model that is based on the Monte Carlo method. In addition, we propose an evaluation method of the optical propagating depth and resolution, specifically one based on the optical distribution for brain applications. Based on the results, the best optical source types were determined in each layer. The maximum propagating depth and corresponding source were extracted. The optical source propagating field width was acquired in different depths. The maximum and minimum widths, as well as the corresponding source, were determined. This paper provides a reference for evaluating the optical propagating depth and resolution from an optical simulation aspect, and it has the potential to optimize the performance of optical-based techniques.
Collapse
Affiliation(s)
- Xi Yang
- College of Biomedical Engineering & Instrument Science, Zhejiang University, 38 Zheda Road, Hangzhou 310013, China
- CenBRAIN Neurotech Center of Excellence, School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Street, Xihu District, Hangzhou 310024, China
| | - Chengpeng Chai
- CenBRAIN Neurotech Center of Excellence, School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Street, Xihu District, Hangzhou 310024, China
| | - Hongzhi Zuo
- Beijing National Research Center for Information Science and Technology, Department of Electronic Engineering, Tsinghua University, 30, Shuangqing Road, Haidian District, Beijing 100084, China
| | - Yun-Hsuan Chen
- CenBRAIN Neurotech Center of Excellence, School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Street, Xihu District, Hangzhou 310024, China
| | - Junhui Shi
- Zhejiang Lab, 1 Kechuang Avenue, Yuhang District, Hangzhou 311100, China
| | - Cheng Ma
- Beijing National Research Center for Information Science and Technology, Department of Electronic Engineering, Tsinghua University, 30, Shuangqing Road, Haidian District, Beijing 100084, China
| | - Mohamad Sawan
- CenBRAIN Neurotech Center of Excellence, School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Street, Xihu District, Hangzhou 310024, China
| |
Collapse
|
9
|
Nouraein S, Lee S, Saenz VA, Del Mundo HC, Yiu J, Szablowski JO. Acoustically targeted noninvasive gene therapy in large brain volumes. Gene Ther 2024; 31:85-94. [PMID: 37696982 DOI: 10.1038/s41434-023-00421-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023]
Abstract
Focused Ultrasound Blood-Brain Barrier Opening (FUS-BBBO) can deliver adeno-associated viral vectors (AAVs) to treat genetic disorders of the brain. However, such disorders often affect large brain regions. Moreover, the applicability of FUS-BBBO in the treatment of brain-wide genetic disorders has not yet been evaluated. Herein, we evaluated the transduction efficiency and safety of opening up to 105 sites simultaneously. Increasing the number of targeted sites increased gene delivery efficiency at each site. We achieved transduction of up to 60% of brain cells with comparable efficiency in the majority of the brain regions. Furthermore, gene delivery with FUS-BBBO was safe even when all 105 sites were targeted simultaneously without negative effects on animal weight or neuronal loss. To evaluate the application of multi-site FUS-BBBO for gene therapy, we used it for gene editing using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system and found effective gene editing, but also a loss of neurons at the targeted sites. Overall, this study provides a brain-wide map of transduction efficiency, shows the synergistic effect of multi-site targeting on transduction efficiency, and is the first example of large brain volume gene editing after noninvasive gene delivery with FUS-BBBO.
Collapse
Affiliation(s)
- Shirin Nouraein
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
- Rice Neuroengineering Initiative, Rice University, Houston, TX, 77030, USA
- Synthetic, Systems, and Physical Biology Program, Rice University, Houston, TX, 77005, USA
| | - Sangsin Lee
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
- Rice Neuroengineering Initiative, Rice University, Houston, TX, 77030, USA
| | - Vidal A Saenz
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | | | - Joycelyn Yiu
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Jerzy O Szablowski
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA.
- Rice Neuroengineering Initiative, Rice University, Houston, TX, 77030, USA.
- Synthetic, Systems, and Physical Biology Program, Rice University, Houston, TX, 77005, USA.
- Applied Physics Program, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
10
|
Altahini S, Arnoux I, Stroh A. Optogenetics 2.0: challenges and solutions towards a quantitative probing of neural circuits. Biol Chem 2024; 405:43-54. [PMID: 37650383 DOI: 10.1515/hsz-2023-0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023]
Abstract
To exploit the full potential of optogenetics, we need to titrate and tailor optogenetic methods to emulate naturalistic circuit function. For that, the following prerequisites need to be met: first, we need to target opsin expression not only to genetically defined neurons per se, but to specifically target a functional node. Second, we need to assess the scope of optogenetic modulation, i.e. the fraction of optogenetically modulated neurons. Third, we need to integrate optogenetic control in a closed loop setting. Fourth, we need to further safe and stable gene expression and light delivery to bring optogenetics to the clinics. Here, we review these concepts for the human and rodent brain.
Collapse
Affiliation(s)
- Saleh Altahini
- Leibniz Institute for Resilience Research, D-55122 Mainz, Germany
| | - Isabelle Arnoux
- Cerebral Physiopathology Laboratory, Center for Interdisciplinary Research in Biology, College de France, Centre national de la recherche scientifique, Institut national de la santé et de la recherche médicale, Université PSL, F-75005 Paris, France
| | - Albrecht Stroh
- Leibniz Institute for Resilience Research, D-55122 Mainz, Germany
- Institute of Pathophysiology, University Medical Center Mainz, D-55128 Mainz, Germany
| |
Collapse
|
11
|
Prasad AA, Wallén-Mackenzie Å. Architecture of the subthalamic nucleus. Commun Biol 2024; 7:78. [PMID: 38200143 PMCID: PMC10782020 DOI: 10.1038/s42003-023-05691-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
The subthalamic nucleus (STN) is a major neuromodulation target for the alleviation of neurological and neuropsychiatric symptoms using deep brain stimulation (DBS). STN-DBS is today applied as treatment in Parkinson´s disease, dystonia, essential tremor, and obsessive-compulsive disorder (OCD). STN-DBS also shows promise as a treatment for refractory Tourette syndrome. However, the internal organization of the STN has remained elusive and challenges researchers and clinicians: How can this small brain structure engage in the multitude of functions that renders it a key hub for therapeutic intervention of a variety of brain disorders ranging from motor to affective to cognitive? Based on recent gene expression studies of the STN, a comprehensive view of the anatomical and cellular organization, including revelations of spatio-molecular heterogeneity, is now possible to outline. In this review, we focus attention to the neurobiological architecture of the STN with specific emphasis on molecular patterns discovered within this complex brain area. Studies from human, non-human primate, and rodent brains now reveal anatomically defined distribution of specific molecular markers. Together their spatial patterns indicate a heterogeneous molecular architecture within the STN. Considering the translational capacity of targeting the STN in severe brain disorders, the addition of molecular profiling of the STN will allow for advancement in precision of clinical STN-based interventions.
Collapse
Affiliation(s)
- Asheeta A Prasad
- University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, NSW, Australia.
| | | |
Collapse
|
12
|
Mim MS, Knight C, Zartman JJ. Quantitative insights in tissue growth and morphogenesis with optogenetics. Phys Biol 2023; 20:061001. [PMID: 37678266 PMCID: PMC10594237 DOI: 10.1088/1478-3975/acf7a1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 08/15/2023] [Accepted: 09/07/2023] [Indexed: 09/09/2023]
Abstract
Cells communicate with each other to jointly regulate cellular processes during cellular differentiation and tissue morphogenesis. This multiscale coordination arises through the spatiotemporal activity of morphogens to pattern cell signaling and transcriptional factor activity. This coded information controls cell mechanics, proliferation, and differentiation to shape the growth and morphogenesis of organs. While many of the molecular components and physical interactions have been identified in key model developmental systems, there are still many unresolved questions related to the dynamics involved due to challenges in precisely perturbing and quantitatively measuring signaling dynamics. Recently, a broad range of synthetic optogenetic tools have been developed and employed to quantitatively define relationships between signal transduction and downstream cellular responses. These optogenetic tools can control intracellular activities at the single cell or whole tissue scale to direct subsequent biological processes. In this brief review, we highlight a selected set of studies that develop and implement optogenetic tools to unravel quantitative biophysical mechanisms for tissue growth and morphogenesis across a broad range of biological systems through the manipulation of morphogens, signal transduction cascades, and cell mechanics. More generally, we discuss how optogenetic tools have emerged as a powerful platform for probing and controlling multicellular development.
Collapse
Affiliation(s)
- Mayesha Sahir Mim
- Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, United States of America
| | - Caroline Knight
- Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, United States of America
| | - Jeremiah J Zartman
- Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, United States of America
| |
Collapse
|
13
|
de Araujo AM, Braga I, Leme G, Singh A, McDougle M, Smith J, Vergara M, Yang M, Lin M, Khoshbouei H, Krause E, de Oliveira AG, de Lartigue G. Asymmetric control of food intake by left and right vagal sensory neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539627. [PMID: 37214924 PMCID: PMC10197596 DOI: 10.1101/2023.05.08.539627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We investigated the lateralization of gut-innervating vagal sensory neurons and their roles in feeding behavior. Using genetic, anatomical, and behavioral analyses, we discovered a subset of highly lateralized vagal sensory neurons with distinct sensory responses to intestinal stimuli. Our results demonstrated that left vagal sensory neurons (LNG) are crucial for distension-induced satiety, while right vagal sensory neurons (RNG) mediate preference for nutritive foods. Furthermore, these lateralized neurons engage different central circuits, with LNG neurons recruiting brain regions associated with energy balance and RNG neurons activating areas related to salience, memory, and reward. Altogether, our findings unveil the diverse roles of asymmetrical gut-vagal-brain circuits in feeding behavior, offering new insights for potential therapeutic interventions targeting vagal nerve stimulation in metabolic and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Alan Moreira de Araujo
- Monell Chemical Sense Center, Philadelphia, PA, USA
- Dept. Neuroscience, University of Pennsylvania, Philadelphia, USA
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| | - Isadora Braga
- Monell Chemical Sense Center, Philadelphia, PA, USA
- Dept. Neuroscience, University of Pennsylvania, Philadelphia, USA
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| | - Gabriel Leme
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| | - Arashdeep Singh
- Monell Chemical Sense Center, Philadelphia, PA, USA
- Dept. Neuroscience, University of Pennsylvania, Philadelphia, USA
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| | - Molly McDougle
- Monell Chemical Sense Center, Philadelphia, PA, USA
- Dept. Neuroscience, University of Pennsylvania, Philadelphia, USA
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| | - Justin Smith
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| | - Macarena Vergara
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| | - Mingxing Yang
- Monell Chemical Sense Center, Philadelphia, PA, USA
- Dept. Neuroscience, University of Pennsylvania, Philadelphia, USA
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| | - M Lin
- Dept of Neuroscience, University of Florida, Gainesville, USA
| | - H Khoshbouei
- Dept of Neuroscience, University of Florida, Gainesville, USA
| | - Eric Krause
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| | - Andre G de Oliveira
- Dept of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Guillaume de Lartigue
- Monell Chemical Sense Center, Philadelphia, PA, USA
- Dept. Neuroscience, University of Pennsylvania, Philadelphia, USA
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| |
Collapse
|
14
|
Rodrigues AF, Rebelo C, Reis T, Simões S, Bernardino L, Peça J, Ferreira L. Engineering optical tools for remotely controlled brain stimulation and regeneration. Biomater Sci 2023; 11:3034-3050. [PMID: 36947145 DOI: 10.1039/d2bm02059a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023]
Abstract
Neurological disorders are one of the world's leading medical and societal challenges due to the lack of efficacy of the first line treatment. Although pharmacological and non-pharmacological interventions have been employed with the aim of regulating neuronal activity and survival, they have failed to avoid symptom relapse and disease progression in the vast majority of patients. In the last 5 years, advanced drug delivery systems delivering bioactive molecules and neuromodulation strategies have been developed to promote tissue regeneration and remodel neuronal circuitry. However, both approaches still have limited spatial and temporal precision over the desired target regions. While external stimuli such as electromagnetic fields and ultrasound have been employed in the clinic for non-invasive neuromodulation, they do not have the capability of offering single-cell spatial resolution as light stimulation. Herein, we review the latest progress in this area of study and discuss the prospects of using light-responsive nanomaterials to achieve on-demand delivery of drugs and neuromodulation, with the aim of achieving brain stimulation and regeneration.
Collapse
Affiliation(s)
- Artur Filipe Rodrigues
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Catarina Rebelo
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
- Faculty of Medicine, Pólo das Ciências da Saúde, Unidade Central, University of Coimbra, 3000-354 Coimbra, Portugal.
| | - Tiago Reis
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
- Faculty of Medicine, Pólo das Ciências da Saúde, Unidade Central, University of Coimbra, 3000-354 Coimbra, Portugal.
| | - Susana Simões
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
- Faculty of Medicine, Pólo das Ciências da Saúde, Unidade Central, University of Coimbra, 3000-354 Coimbra, Portugal.
| | - Liliana Bernardino
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - João Peça
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
- Faculty of Medicine, Pólo das Ciências da Saúde, Unidade Central, University of Coimbra, 3000-354 Coimbra, Portugal.
| | - Lino Ferreira
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
- Faculty of Medicine, Pólo das Ciências da Saúde, Unidade Central, University of Coimbra, 3000-354 Coimbra, Portugal.
| |
Collapse
|
15
|
Blackmore DG, Razansky D, Götz J. Ultrasound as a versatile tool for short- and long-term improvement and monitoring of brain function. Neuron 2023; 111:1174-1190. [PMID: 36917978 DOI: 10.1016/j.neuron.2023.02.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/19/2023] [Accepted: 02/13/2023] [Indexed: 03/15/2023]
Abstract
Treating the brain with focused ultrasound (FUS) at low intensities elicits diverse responses in neurons, astroglia, and the extracellular matrix. In combination with intravenously injected microbubbles, FUS also opens the blood-brain barrier (BBB) and facilitates focal drug delivery. However, an incompletely understood cellular specificity and a wide parameter space currently limit the optimal application of FUS in preclinical and human studies. In this perspective, we discuss how different FUS modalities can be utilized to achieve short- and long-term improvements, thereby potentially treating brain disorders. We review the ongoing efforts to determine which parameters induce neuronal inhibition versus activation and how mechanoreceptors and signaling cascades are activated to induce long-term changes, including memory improvements. We suggest that optimal FUS treatments may require different FUS modalities and devices, depending on the targeted brain area or local pathology, and will be greatly enhanced by new techniques for monitoring FUS efficacy.
Collapse
Affiliation(s)
- Daniel G Blackmore
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Daniel Razansky
- Institute for Biomedical Engineering, Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, 8057 Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, 8093 Zurich, Switzerland
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
16
|
Aurup C, Pouliopoulos AN, Kwon N, Murillo MF, Konofagou EE. Evaluation of Non-invasive Optogenetic Stimulation with Transcranial Functional Ultrasound Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:908-917. [PMID: 36460567 PMCID: PMC10319350 DOI: 10.1016/j.ultrasmedbio.2022.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
Optogenetics employs engineered viruses to genetically modify cells to express specific light-sensitive ion channels. The standard method for gene delivery in the brain involves invasive craniotomies that expose the brain and direct injections of viruses that invariably damage neural tissue along the syringe tract. A recently proposed alternative in which non-invasive optogenetics is performed with focused ultrasound (FUS)-mediated blood-brain barrier (BBB) openings has been found to non-invasively facilitate gene delivery for optogenetics in mice. Although gene delivery can be performed non-invasively, validating successful viral transduction and expression of encoded ion channels in target tissue typically involves similar invasive techniques, such as craniotomies in longitudinal studies and/or postmortem histology. Functional ultrasound imaging (fUSi) is an emerging neuroimaging technique that can be used to transcranially detect changes in cerebral blood volume following introduction of a stimulus. In this study, we implemented a fully non-invasive combined FUS-fUSi technique for performing optogenetics in mice. FUS successfully delivered viruses encoding the red-shifted channelrhodopsin variant ChrimsonR in all treated subjects. fUSi successfully identified stimulus-evoked cerebral blood volume changes preferentially in brain regions expressing the light-sensitive ion channels. Improvements in cell-specific targeting of viral vectors and transcranial ultrasound imaging will make the combined technique a useful tool for neuroscience research in small animals.
Collapse
Affiliation(s)
- Christian Aurup
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | | | - Nancy Kwon
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Maria F Murillo
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Elisa E Konofagou
- Department of Biomedical Engineering, Columbia University, New York, New York, USA; Department of Radiology, Columbia University, New York, New York, USA.
| |
Collapse
|
17
|
Bauer J, Devinsky O, Rothermel M, Koch H. Autonomic dysfunction in epilepsy mouse models with implications for SUDEP research. Front Neurol 2023; 13:1040648. [PMID: 36686527 PMCID: PMC9853197 DOI: 10.3389/fneur.2022.1040648] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023] Open
Abstract
Epilepsy has a high prevalence and can severely impair quality of life and increase the risk of premature death. Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in drug-resistant epilepsy and most often results from respiratory and cardiac impairments due to brainstem dysfunction. Epileptic activity can spread widely, influencing neuronal activity in regions outside the epileptic network. The brainstem controls cardiorespiratory activity and arousal and reciprocally connects to cortical, diencephalic, and spinal cord areas. Epileptic activity can propagate trans-synaptically or via spreading depression (SD) to alter brainstem functions and cause cardiorespiratory dysfunction. The mechanisms by which seizures propagate to or otherwise impair brainstem function and trigger the cascading effects that cause SUDEP are poorly understood. We review insights from mouse models combined with new techniques to understand the pathophysiology of epilepsy and SUDEP. These techniques include in vivo, ex vivo, invasive and non-invasive methods in anesthetized and awake mice. Optogenetics combined with electrophysiological and optical manipulation and recording methods offer unique opportunities to study neuronal mechanisms under normal conditions, during and after non-fatal seizures, and in SUDEP. These combined approaches can advance our understanding of brainstem pathophysiology associated with seizures and SUDEP and may suggest strategies to prevent SUDEP.
Collapse
Affiliation(s)
- Jennifer Bauer
- Department of Epileptology and Neurology, RWTH Aachen University, Aachen, Germany,Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Orrin Devinsky
- Departments of Neurology, Neurosurgery and Psychiatry, NYU Langone School of Medicine, New York, NY, United States
| | - Markus Rothermel
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Henner Koch
- Department of Epileptology and Neurology, RWTH Aachen University, Aachen, Germany,*Correspondence: Henner Koch ✉
| |
Collapse
|
18
|
Conway CR, Sackeim HA. Interventional psychiatry: the revolution has arrived. REVISTA BRASILEIRA DE PSIQUIATRIA (SAO PAULO, BRAZIL : 1999) 2022; 44:570-571. [PMID: 36099314 PMCID: PMC9851766 DOI: 10.47626/1516-4446-2022-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 02/01/2023]
Affiliation(s)
- Charles R. Conway
- School of Medicine, Department of Psychiatry, Washington University, St. Louis, MO, USA,Correspondence: Charles R. Conway, Department of Psychiatry, School of Medicine, Washington University, MSC 8134-17-04, 660 South Euclid Ave, Saint Louis, MO 63110, USA. E-mail:
| | - Harold A. Sackeim
- Department of Psychiatry, Columbia University, New York, NY, USA,Department of Radiology, Columbia University, New York, NY, USA
| |
Collapse
|