1
|
Jasrotia H, Singh C, Kaur S. EfficientNet-Based Attention Residual U-Net With Guided Loss for Breast Tumor Segmentation in Ultrasound Images. ULTRASOUND IN MEDICINE & BIOLOGY 2025:S0301-5629(25)00088-2. [PMID: 40263094 DOI: 10.1016/j.ultrasmedbio.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/12/2025] [Accepted: 03/18/2025] [Indexed: 04/24/2025]
Abstract
OBJECTIVE Breast cancer poses a major health concern for women globally. Effective segmentation of breast tumors for ultrasound images is crucial for early diagnosis and treatment. Conventional convolutional neural networks have shown promising results in this domain but face challenges due to image complexities and are computationally expensive, limiting their practical application in real-time clinical settings. METHODS We propose Eff-AResUNet-GL, a segmentation model using EfficienetNet-B3 as the encoder. This design integrates attention gates in skip connections to focus on significant features and residual blocks in the decoder to retain details and reduce gradient loss. Additionally, guided loss functions are applied at each decoder layer to generate better features, subsequently improving segmentation accuracy. RESULTS Experimental results on BUSIS and Dataset B demonstrate that Eff-AResUNet-GL achieves superior performance and computational efficiency compared to state-of-the-art models, showing robustness in handling complex breast ultrasound images. CONCLUSION Eff-AResUNet-GL offers a practical, high-performing solution for breast tumor segmentation, demonstrating potential clinical through improved segmentation accuracy and efficiency.
Collapse
Affiliation(s)
- Heena Jasrotia
- Department of Computer Science, Punjabi University, Patiala, India.
| | - Chandan Singh
- Department of Computer Science, Punjabi University, Patiala, India
| | - Sukhjeet Kaur
- Department of Computer Science, Punjabi University, Patiala, India
| |
Collapse
|
2
|
Pan L, Tang M, Chen X, Du Z, Huang D, Yang M, Chen Y. M 2UNet: Multi-Scale Feature Acquisition and Multi-Input Edge Supplement Based on UNet for Efficient Segmentation of Breast Tumor in Ultrasound Images. Diagnostics (Basel) 2025; 15:944. [PMID: 40310342 PMCID: PMC12025914 DOI: 10.3390/diagnostics15080944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/03/2025] [Accepted: 04/05/2025] [Indexed: 05/02/2025] Open
Abstract
Background/Objectives: The morphological characteristics of breast tumors play a crucial role in the preliminary diagnosis of breast cancer. However, malignant tumors often exhibit rough, irregular edges and unclear, boundaries in ultrasound images. Additionally, variations in tumor size, location, and shape further complicate the accurate segmentation of breast tumors from ultrasound images. Methods: For these difficulties, this paper introduces a breast ultrasound tumor segmentation network comprising a multi-scale feature acquisition (MFA) module and a multi-input edge supplement (MES) module. The MFA module effectively incorporates dilated convolutions of various sizes in a serial-parallel fashion to capture tumor features at diverse scales. Then, the MES module is employed to enhance the output of each decoder layer by supplementing edge information. This process aims to improve the overall integrity of tumor boundaries, contributing to more refined segmentation results. Results: The mean Dice (mDice), Pixel Accuracy (PA), Intersection over Union (IoU), Recall, and Hausdorff Distance (HD) of this method for the publicly available breast ultrasound image (BUSI) dataset were 79.43%, 96.84%, 83.00%, 87.17%, and 19.71 mm, respectively, and for the dataset of Fujian Cancer Hospital, 90.45%, 97.55%, 90.08%, 93.72%, and 11.02 mm, respectively. In the BUSI dataset, compared to the original UNet, the Dice for malignant tumors increased by 14.59%, and the HD decreased by 17.13 mm. Conclusions: Our method is capable of accurately segmenting breast tumor ultrasound images, which provides very valuable edge information for subsequent diagnosis of breast cancer. The experimental results show that our method has made substantial progress in improving accuracy.
Collapse
Affiliation(s)
- Lin Pan
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China; (L.P.); (M.T.); (X.C.)
| | - Mengshi Tang
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China; (L.P.); (M.T.); (X.C.)
| | - Xin Chen
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China; (L.P.); (M.T.); (X.C.)
| | - Zhongshi Du
- Department of Ultrasound, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China; (Z.D.); (D.H.)
| | - Danfeng Huang
- Department of Ultrasound, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China; (Z.D.); (D.H.)
| | - Mingjing Yang
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China; (L.P.); (M.T.); (X.C.)
| | - Yijie Chen
- Department of Ultrasound, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China; (Z.D.); (D.H.)
| |
Collapse
|
3
|
Ding X, Qian K, Zhang Q, Jiang X, Dong L. Dual-channel compression mapping network with fused attention mechanism for medical image segmentation. Sci Rep 2025; 15:8906. [PMID: 40087522 PMCID: PMC11909205 DOI: 10.1038/s41598-025-93494-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 03/07/2025] [Indexed: 03/17/2025] Open
Abstract
Accurate image segmentation is the key to quantitative analysis and recognition of pathological tissues in medical imaging technology, which can provide important technical support for medical diagnosis and treatment. However, the task of lesion segmentation is particularly challenging due to the difficulty in identifying edges, the complexity of different tissues, and the variability in their shapes. To address these challenges, we propose a dual-channel compression mapping network (DCM-Net) with fused attention mechanism for medical image segmentation. Firstly, a dual-channel compression mapping module is added to U-Net's standard convolution blocks to capture inter-channel information. Secondly, we replace the traditional skip path with a fusion attention mechanism that can better present context information in high-level features. Finally, the combination of squeeze-and-excitation module and residual connection in the decoder part can improve the adaptive ability of the network. Through extensive experiments on various medical image datasets, DCM-Net has demonstrated superior performance compared to other models. For instance, on the ISIC database, our network achieved an Accuracy of 91.42%, True Positive Rate (TPR) of 88.93%, Dice of 86.09%, and Jaccard of 76.02%. Additionally, on the pituitary adenoma dataset from Quzhou People's Hospital, DCM-Net reached an Accuracy of 97.07%, TPR of 93.09%, Dice of 92.29%, and Jaccard of 87.73%. These results demonstrate the effectiveness of DCM-Net in providing accurate and reliable segmentation, and it shows valuable potential in the field of medical imaging technology.
Collapse
Affiliation(s)
- Xiaokang Ding
- College of Mechanical Engineering, Quzhou University, Quzhou, 324000, China
| | - Ke'er Qian
- College of Mechanical Engineering, Quzhou University, Quzhou, 324000, China.
| | - Qile Zhang
- Department of Rehabilitation, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China.
| | - Xiaoliang Jiang
- College of Mechanical Engineering, Quzhou University, Quzhou, 324000, China
| | - Ling Dong
- College of Mechanical Engineering, Quzhou University, Quzhou, 324000, China
| |
Collapse
|
4
|
Ejiyi CJ, Qin Z, Agbesi VK, Ejiyi MB, Chikwendu IA, Bamisile OF, Onyekwere FE, Bamisile OO. ATEDU-NET: An Attention-Embedded Deep Unet for multi-disease diagnosis in chest X-ray images, breast ultrasound, and retina fundus. Comput Biol Med 2025; 186:109708. [PMID: 39842240 DOI: 10.1016/j.compbiomed.2025.109708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
In image segmentation for medical image analysis, effective upsampling is crucial for recovering spatial information lost during downsampling. This challenge becomes more pronounced when dealing with diverse medical image modalities, which can significantly impact model performance. Plain and standard skip connections, widely used in most models, often fall short of maintaining high segmentation accuracy across different modalities, because essential spatial information transferred from the encoder to the decoder is lost. Inspired by these limitations, the Attention-Embedded Deep UNet (ATEDU-Net) is presented here, an innovative framework designed and tested on diverse medical image modalities, including X-ray, breast ultrasound, and retinal fundus images. ATEDU-Net features a unique architecture that combines progressive context refinement modules (PCRM) and global context modules (GCM) within a U-shaped network structure with Convgroup blocks which facilitate the integration of convolutional operations. This allows ATEDU-Net to autonomously capture rich spatial details and crucial contextual information from input images. The GCM captures essential contextual information for informed decision-making, while the PCRM enhances feature attention, resulting in precise and robust segmentation. The experimentation and analysis demonstrate that ATEDU-Net promises to be a powerful tool for medical professionals, aiding in the early detection of chest-related diseases, accurate localization of breast tumors, and early identification of eye diseases. This, in turn, contributes significantly to the formulation of optimal therapeutic strategies, enhancing patient care and outcomes. The versatility of ATEDU-Net is further highlighted by its ability to analyze medical images across various modalities, making it well-suited for the complex task of medical image analysis in diverse clinical scenarios.
Collapse
Affiliation(s)
- Chukwuebuka Joseph Ejiyi
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Sichuan, 610059, PR China; Network and Data Security Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China.
| | - Zhen Qin
- Network and Data Security Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China.
| | - Victor K Agbesi
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, PR China.
| | | | - Ijeoma A Chikwendu
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, PR China.
| | - Oluwatoyosi F Bamisile
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Sichuan, 610059, PR China.
| | | | - Olusola O Bamisile
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Sichuan, 610059, PR China.
| |
Collapse
|
5
|
Zhao G, Zhu X, Wang X, Yan F, Guo M. Syn-Net: A Synchronous Frequency-Perception Fusion Network for Breast Tumor Segmentation in Ultrasound Images. IEEE J Biomed Health Inform 2025; 29:2113-2124. [PMID: 40030423 DOI: 10.1109/jbhi.2024.3514134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Accurate breast tumor segmentation in ultrasound images is a crucial step in medical diagnosis and locating the tumor region. However, segmentation faces numerous challenges due to the complexity of ultrasound images, similar intensity distributions, variable tumor morphology, and speckle noise. To address these challenges and achieve precise segmentation of breast tumors in complex ultrasound images, we propose a Synchronous Frequency-perception Fusion Network (Syn-Net). Initially, we design a synchronous dual-branch encoder to extract local and global feature information simultaneously from complex ultrasound images. Secondly, we introduce a novel Frequency- perception Cross-Feature Fusion (FrCFusion) Block, which utilizes Discrete Cosine Transform (DCT) to learn all-frequency features and effectively fuse local and global features while mitigating issues arising from similar intensity distributions. In addition, we develop a Full-Scale Deep Supervision method that not only corrects the influence of speckle noise on segmentation but also effectively guides decoder features towards the ground truth. We conduct extensive experiments on three publicly available ultrasound breast tumor datasets. Comparison with 14 state-of-the-art deep learning segmentation methods demonstrates that our approach exhibits superior sensitivity to different ultrasound images, variations in tumor size and shape, speckle noise, and similarity in intensity distribution between surrounding tissues and tumors. On the BUSI and Dataset B datasets, our method achieves better Dice scores compared to state-of-the-art methods, indicating superior performance in ultrasound breast tumor segmentation.
Collapse
|
6
|
Xie Z, Han J, Ji N, Xu L, Ma J. RFImageNet framework for segmentation of ultrasound images with spectra-augmented radiofrequency signals. ULTRASONICS 2025; 146:107498. [PMID: 39486316 DOI: 10.1016/j.ultras.2024.107498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
Computer-aided segmentation of medical ultrasound images assists in medical diagnosis, promoting accuracy and reducing the burden of sonographers. However, the existing ultrasonic intelligent segmentation models are mainly based on B-mode grayscale images, which lack sufficient clarity and contrast compared to natural images. Previous research has indicated that ultrasound radiofrequency (RF) signals contain rich spectral information that could be beneficial for tissue recognition but is lost in grayscale images. In this paper, we introduce an image segmentation framework, RFImageNet, that leverages spectral and amplitude information from RF signals to segment ultrasound image. Firstly, the positive and negative values in the RF signal are separated into the red and green channels respectively in the proposed RF image, ensuring the preservation of frequency information. Secondly, we developed a deep learning model, RFNet, tailored to the specific input image size requirements. Thirdly, RFNet was trained using RF images with spectral data augmentation and tested against other models. The proposed method achieved a mean intersection over union (mIoU) of 54.99% and a dice score of 63.89% in the segmentation of rat abdominal tissues, as well as a mIoU of 63.28% and a dice score of 68.92% in distinguishing between benign and malignant breast tumors. These results highlight the potential of combining RF signals with deep learning algorithms for enhanced diagnostic capabilities.
Collapse
Affiliation(s)
- Zhun Xie
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China
| | - Jiaqi Han
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China
| | - Nan Ji
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Lijun Xu
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China
| | - Jianguo Ma
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China.
| |
Collapse
|
7
|
Xin J, Yu Y, Shen Q, Zhang S, Su N, Wang Z. BCT-Net: semantic-guided breast cancer segmentation on BUS. Med Biol Eng Comput 2025:10.1007/s11517-025-03304-2. [PMID: 39883373 DOI: 10.1007/s11517-025-03304-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 01/17/2025] [Indexed: 01/31/2025]
Abstract
Accurately and swiftly segmenting breast tumors is significant for cancer diagnosis and treatment. Ultrasound imaging stands as one of the widely employed methods in clinical practice. However, due to challenges such as low contrast, blurred boundaries, and prevalent shadows in ultrasound images, tumor segmentation remains a daunting task. In this study, we propose BCT-Net, a network amalgamating CNN and transformer components for breast tumor segmentation. BCT-Net integrates a dual-level attention mechanism to capture more features and redefines the skip connection module. We introduce the utilization of a classification task as an auxiliary task to impart additional semantic information to the segmentation network, employing supervised contrastive learning. A hybrid objective loss function is proposed, which combines pixel-wise cross-entropy, binary cross-entropy, and supervised contrastive learning loss. Experimental results demonstrate that BCT-Net achieves high precision, with Pre and DSC indices of 86.12% and 88.70%, respectively. Experiments conducted on the BUSI dataset of breast ultrasound images manifest that this approach exhibits high accuracy in breast tumor segmentation.
Collapse
Affiliation(s)
- Junchang Xin
- School of Computer Science and Engineering, Northeastern University, Shenyang, 110169, China
| | - Yaqi Yu
- School of Computer Science and Engineering, Northeastern University, Shenyang, 110169, China
| | - Qi Shen
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
| | - Shudi Zhang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
| | - Na Su
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
| | - Zhiqiong Wang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China.
| |
Collapse
|
8
|
Wang T, Liu J, Tang J. A Cross-scale Attention-Based U-Net for Breast Ultrasound Image Segmentation. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2025:10.1007/s10278-025-01392-y. [PMID: 39838227 DOI: 10.1007/s10278-025-01392-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/06/2024] [Accepted: 12/23/2024] [Indexed: 01/23/2025]
Abstract
Breast cancer remains a significant global health concern and is a leading cause of mortality among women. The accuracy of breast cancer diagnosis can be greatly improved with the assistance of automatic segmentation of breast ultrasound images. Research has demonstrated the effectiveness of convolutional neural networks (CNNs) and transformers in segmenting these images. Some studies combine transformers and CNNs, using the transformer's ability to exploit long-distance dependencies to address the limitations inherent in convolutional neural networks. Many of these studies face limitations due to the forced integration of transformer blocks into CNN architectures. This approach often leads to inconsistencies in the feature extraction process, ultimately resulting in suboptimal performance for the complex task of medical image segmentation. This paper presents CSAU-Net, a cross-scale attention-guided U-Net, which is a combined CNN-transformer structure that leverages the local detail depiction of CNNs and the ability of transformers to handle long-distance dependencies. To integrate global context data, we propose a cross-scale cross-attention transformer block that is embedded within the skip connections of the U-shaped architectural network. To further enhance the effectiveness of the segmentation process, we incorporated a gated dilated convolution (GDC) module and a lightweight channel self-attention transformer (LCAT) on the encoder side. Extensive experiments conducted on three open-source datasets demonstrate that our CSAU-Net surpasses state-of-the-art techniques in segmenting ultrasound breast lesions.
Collapse
Affiliation(s)
- Teng Wang
- School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan, 430081, China
- China & Hubei Province Key Laboratory of Intelligent Information Processing and Real-Time Industrial System, Wuhan, 430065, China
| | - Jun Liu
- School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan, 430081, China.
- China & Hubei Province Key Laboratory of Intelligent Information Processing and Real-Time Industrial System, Wuhan, 430065, China.
| | - Jinshan Tang
- Health Informatics, College of Public Health, George Mason University, Fairfax, VA, 22030, USA.
| |
Collapse
|
9
|
Omega Boro L, Nandi G. CBAM-RIUnet: Breast Tumor Segmentation With Enhanced Breast Ultrasound and Test-Time Augmentation. ULTRASONIC IMAGING 2025; 47:24-36. [PMID: 39283069 DOI: 10.1177/01617346241276411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
This study addresses the challenge of precise breast tumor segmentation in ultrasound images, crucial for effective Computer-Aided Diagnosis (CAD) in breast cancer. We introduce CBAM-RIUnet, a deep learning (DL) model for automated breast tumor segmentation in breast ultrasound (BUS) images. The model, featuring an efficient convolutional block attention module residual inception Unet, outperforms existing models, particularly excelling in Dice and IoU scores. CBAM-RIUnet follows the Unet structure with a residual inception depth-wise separable convolution, and incorporates a convolutional block attention module (CBAM) to eliminate irrelevant features and focus on the region of interest. Evaluation under three scenarios, including enhanced breast ultrasound (EBUS) and test-time augmentation (TTA), demonstrates impressive results. CBAM-RIUnet achieves Dice and IoU scores of 89.38% and 88.71%, respectively, showcasing significant improvements compared to state-of-the-art DL techniques. In conclusion, CBAM-RIUnet presents a highly effective and simplified DL model for breast tumor segmentation in BUS imaging.
Collapse
Affiliation(s)
- Lal Omega Boro
- Department of Computer Applications, Assam Don Bosco University, Guwahati, India
| | - Gypsy Nandi
- Department of Computer Applications, Assam Don Bosco University, Guwahati, India
| |
Collapse
|
10
|
Zhang Y, Zeng B, Li J, Zheng Y, Chen X. A Multi-Task Transformer With Local-Global Feature Interaction and Multiple Tumoral Region Guidance for Breast Cancer Diagnosis. IEEE J Biomed Health Inform 2024; 28:6840-6853. [PMID: 39226204 DOI: 10.1109/jbhi.2024.3454000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Breast cancer, as a malignant tumor disease, has maintained high incidence and mortality rates over the years. Ultrasonography is one of the primary methods for diagnosing early-stage breast cancer. However, correctly interpreting breast ultrasound images requires massive time from physicians with specialized knowledge and extensive experience. Recently, deep learning-based method have made significant advancements in breast tumor segmentation and classification due to their powerful fitting capabilities. However, most existing methods focus on performing one of these tasks separately, and often failing to effectively leverage information from specific tumor-related areas that hold considerable diagnostic value. In this study, we propose a multi-task network with local-global feature interaction and multiple tumoral region guidance for breast ultrasound-based tumor segmentation and classification. Specifically, we construct a dual-stream encoder, paralleling CNN and Transformer, to facilitate hierarchical interaction and fusion of local and global features. This architecture enables each stream to capitalize on the strengths of the other while preserving its unique characteristics. Moreover, we design a multi-tumoral region guidance module to explicitly learn long-range non-local dependencies within intra-tumoral and peri-tumoral regions from spatial domain, thus providing interpretable cues beneficial for classification. Experimental results on two breast ultrasound datasets show that our network outperforms state-of-the-art methods in tumor segmentation and classification tasks. Compared with the second-best competitive method, our network improves the diagnosis accuracy from 73.64% to 80.21% on a large external validation dataset, which demonstrates its superior generalization capability.
Collapse
|
11
|
Xu Y, Quan R, Xu W, Huang Y, Chen X, Liu F. Advances in Medical Image Segmentation: A Comprehensive Review of Traditional, Deep Learning and Hybrid Approaches. Bioengineering (Basel) 2024; 11:1034. [PMID: 39451409 PMCID: PMC11505408 DOI: 10.3390/bioengineering11101034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Medical image segmentation plays a critical role in accurate diagnosis and treatment planning, enabling precise analysis across a wide range of clinical tasks. This review begins by offering a comprehensive overview of traditional segmentation techniques, including thresholding, edge-based methods, region-based approaches, clustering, and graph-based segmentation. While these methods are computationally efficient and interpretable, they often face significant challenges when applied to complex, noisy, or variable medical images. The central focus of this review is the transformative impact of deep learning on medical image segmentation. We delve into prominent deep learning architectures such as Convolutional Neural Networks (CNNs), Fully Convolutional Networks (FCNs), U-Net, Recurrent Neural Networks (RNNs), Adversarial Networks (GANs), and Autoencoders (AEs). Each architecture is analyzed in terms of its structural foundation and specific application to medical image segmentation, illustrating how these models have enhanced segmentation accuracy across various clinical contexts. Finally, the review examines the integration of deep learning with traditional segmentation methods, addressing the limitations of both approaches. These hybrid strategies offer improved segmentation performance, particularly in challenging scenarios involving weak edges, noise, or inconsistent intensities. By synthesizing recent advancements, this review provides a detailed resource for researchers and practitioners, offering valuable insights into the current landscape and future directions of medical image segmentation.
Collapse
Affiliation(s)
- Yan Xu
- School of Electrical, Electronic and Mechanical Engineering, University of Bristol, Bristol BS8 1QU, UK; (Y.X.); (R.Q.); (W.X.)
| | - Rixiang Quan
- School of Electrical, Electronic and Mechanical Engineering, University of Bristol, Bristol BS8 1QU, UK; (Y.X.); (R.Q.); (W.X.)
| | - Weiting Xu
- School of Electrical, Electronic and Mechanical Engineering, University of Bristol, Bristol BS8 1QU, UK; (Y.X.); (R.Q.); (W.X.)
| | - Yi Huang
- Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK;
| | - Xiaolong Chen
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Fengyuan Liu
- School of Electrical, Electronic and Mechanical Engineering, University of Bristol, Bristol BS8 1QU, UK; (Y.X.); (R.Q.); (W.X.)
| |
Collapse
|
12
|
Karthiga R, Narasimhan K, V T, M H, Amirtharajan R. Review of AI & XAI-based breast cancer diagnosis methods using various imaging modalities. MULTIMEDIA TOOLS AND APPLICATIONS 2024. [DOI: 10.1007/s11042-024-20271-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 01/02/2025]
|
13
|
Sulaiman A, Anand V, Gupta S, Rajab A, Alshahrani H, Al Reshan MS, Shaikh A, Hamdi M. Attention based UNet model for breast cancer segmentation using BUSI dataset. Sci Rep 2024; 14:22422. [PMID: 39341859 PMCID: PMC11439015 DOI: 10.1038/s41598-024-72712-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
Breast cancer, a prevalent and life-threatening disease, necessitates early detection for the effective intervention and the improved patient health outcomes. This paper focuses on the critical problem of identifying breast cancer using a model called Attention U-Net. The model is utilized on the Breast Ultrasound Image Dataset (BUSI), comprising 780 breast images. The images are categorized into three distinct groups: 437 cases classified as benign, 210 cases classified as malignant, and 133 cases classified as normal. The proposed model leverages the attention-driven U-Net's encoder blocks to capture hierarchical features effectively. The model comprises four decoder blocks which is a pivotal component in the U-Net architecture, responsible for expanding the encoded feature representation obtained from the encoder block and for reconstructing spatial information. Four attention gates are incorporated strategically to enhance feature localization during decoding, showcasing a sophisticated design that facilitates accurate segmentation of breast tumors in ultrasound images. It displays its efficacy in accurately delineating and segregating tumor borders. The experimental findings demonstrate outstanding performance, achieving an overall accuracy of 0.98, precision of 0.97, recall of 0.90, and a dice score of 0.92. It demonstrates its effectiveness in precisely defining and separating tumor boundaries. This research aims to make automated breast cancer segmentation algorithms by emphasizing the importance of early detection in boosting diagnostic capabilities and enabling prompt and targeted medical interventions.
Collapse
Affiliation(s)
- Adel Sulaiman
- Department of Computer Science, College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia
- Emerging Technologies Research Lab (ETRL), College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia
| | - Vatsala Anand
- Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | - Sheifali Gupta
- Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | - Adel Rajab
- Department of Computer Science, College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia
| | - Hani Alshahrani
- Department of Computer Science, College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia
- Emerging Technologies Research Lab (ETRL), College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia
| | - Mana Saleh Al Reshan
- Emerging Technologies Research Lab (ETRL), College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia
- Department of Information System, College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia
| | - Asadullah Shaikh
- Emerging Technologies Research Lab (ETRL), College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia.
- Department of Information System, College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia.
| | - Mohammed Hamdi
- Department of Computer Science, College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia
- Emerging Technologies Research Lab (ETRL), College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia
| |
Collapse
|
14
|
Guo J, Chen B, Cao H, Dai Q, Qin L, Zhang J, Zhang Y, Zhang H, Sui Y, Chen T, Yang D, Gong X, Li D. Cross-modal deep learning model for predicting pathologic complete response to neoadjuvant chemotherapy in breast cancer. NPJ Precis Oncol 2024; 8:189. [PMID: 39237596 PMCID: PMC11377584 DOI: 10.1038/s41698-024-00678-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024] Open
Abstract
Pathological complete response (pCR) serves as a critical measure of the success of neoadjuvant chemotherapy (NAC) in breast cancer, directly influencing subsequent therapeutic decisions. With the continuous advancement of artificial intelligence, methods for early and accurate prediction of pCR are being extensively explored. In this study, we propose a cross-modal multi-pathway automated prediction model that integrates temporal and spatial information. This model fuses digital pathology images from biopsy specimens and multi-temporal ultrasound (US) images to predict pCR status early in NAC. The model demonstrates exceptional predictive efficacy. Our findings lay the foundation for developing personalized treatment paradigms based on individual responses. This approach has the potential to become a critical auxiliary tool for the early prediction of NAC response in breast cancer patients.
Collapse
Affiliation(s)
- Jianming Guo
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150000, Harbin, China
| | - Baihui Chen
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150000, Harbin, China
| | - Hongda Cao
- School of Computer, Beihang University, 100191, Beijing, China
| | - Quan Dai
- Medicine & Laboratory of Translational Research in Ultrasound Theranostics, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China
- Department of Ultrasound, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, 610041, Chengdu, China
| | - Ling Qin
- Department of Pathology, Harbin Medical University Cancer Hospital, 150000, Harbin, China
| | - Jinfeng Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150000, Harbin, China
| | - Youxue Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150000, Harbin, China
| | - Huanyu Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150000, Harbin, China
| | - Yuan Sui
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150000, Harbin, China
| | - Tianyu Chen
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150000, Harbin, China
| | - Dongxu Yang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150000, Harbin, China
| | - Xue Gong
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150000, Harbin, China
| | - Dalin Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150000, Harbin, China.
| |
Collapse
|
15
|
Islam R, Tarique M. Artificial Intelligence (AI) and Nuclear Features from the Fine Needle Aspirated (FNA) Tissue Samples to Recognize Breast Cancer. J Imaging 2024; 10:201. [PMID: 39194990 DOI: 10.3390/jimaging10080201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
Breast cancer is one of the paramount causes of new cancer cases worldwide annually. It is a malignant neoplasm that develops in the breast cells. The early screening of this disease is essential to prevent its metastasis. A mammogram X-ray image is the most common screening tool practiced currently when this disease is suspected; all the breast lesions identified are not malignant. The invasive fine needle aspiration (FNA) of a breast mass sample is the secondary screening tool to clinically examine cancerous lesions. The visual image analysis of the stained aspirated sample imposes a challenge for the cytologist to identify the malignant cells accurately. The formulation of an artificial intelligence-based objective technique on top of the introspective assessment is essential to avoid misdiagnosis. This paper addresses several artificial intelligence (AI)-based techniques to diagnose breast cancer from the nuclear features of FNA samples. The Wisconsin Breast Cancer dataset (WBCD) from the UCI machine learning repository is applied for this investigation. Significant statistical parameters are measured to evaluate the performance of the proposed techniques. The best detection accuracy of 98.10% is achieved with a two-layer feed-forward neural network (FFNN). Finally, the developed algorithm's performance is compared with some state-of-the-art works in the literature.
Collapse
Affiliation(s)
- Rumana Islam
- Department of Electrical and Computer Engineering, University of Science and Technology of Fujairah (USTF), Fujairah P.O. Box 2202, United Arab Emirates
- Department of Electrical and Computer Engineering, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Mohammed Tarique
- Department of Electrical and Computer Engineering, University of Science and Technology of Fujairah (USTF), Fujairah P.O. Box 2202, United Arab Emirates
| |
Collapse
|
16
|
Ding X, Jiang X, Zheng H, Shi H, Wang B, Chan S. MARes-Net: multi-scale attention residual network for jaw cyst image segmentation. Front Bioeng Biotechnol 2024; 12:1454728. [PMID: 39161348 PMCID: PMC11330813 DOI: 10.3389/fbioe.2024.1454728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Jaw cyst is a fluid-containing cystic lesion that can occur in any part of the jaw and cause facial swelling, dental lesions, jaw fractures, and other associated issues. Due to the diversity and complexity of jaw images, existing deep-learning methods still have challenges in segmentation. To this end, we propose MARes-Net, an innovative multi-scale attentional residual network architecture. Firstly, the residual connection is used to optimize the encoder-decoder process, which effectively solves the gradient disappearance problem and improves the training efficiency and optimization ability. Secondly, the scale-aware feature extraction module (SFEM) significantly enhances the network's perceptual abilities by extending its receptive field across various scales, spaces, and channel dimensions. Thirdly, the multi-scale compression excitation module (MCEM) compresses and excites the feature map, and combines it with contextual information to obtain better model performance capabilities. Furthermore, the introduction of the attention gate module marks a significant advancement in refining the feature map output. Finally, rigorous experimentation conducted on the original jaw cyst dataset provided by Quzhou People's Hospital to verify the validity of MARes-Net architecture. The experimental data showed that precision, recall, IoU and F1-score of MARes-Net reached 93.84%, 93.70%, 86.17%, and 93.21%, respectively. Compared with existing models, our MARes-Net shows its unparalleled capabilities in accurately delineating and localizing anatomical structures in the jaw cyst image segmentation.
Collapse
Affiliation(s)
- Xiaokang Ding
- College of Mechanical Engineering, Quzhou University, Quzhou, China
| | - Xiaoliang Jiang
- College of Mechanical Engineering, Quzhou University, Quzhou, China
| | - Huixia Zheng
- Department of Stomatology, Quzhou People’s Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Hualuo Shi
- College of Mechanical Engineering, Quzhou University, Quzhou, China
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Ban Wang
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Sixian Chan
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
17
|
Cao W, Guo J, You X, Liu Y, Li L, Cui W, Cao Y, Chen X, Zheng J. NeighborNet: Learning Intra- and Inter-Image Pixel Neighbor Representation for Breast Lesion Segmentation. IEEE J Biomed Health Inform 2024; 28:4761-4771. [PMID: 38743530 DOI: 10.1109/jbhi.2024.3400802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Breast lesion segmentation from ultrasound images is essential in computer-aided breast cancer diagnosis. To alleviate the problems of blurry lesion boundaries and irregular morphologies, common practices combine CNN and attention to integrate global and local information. However, previous methods use two independent modules to extract global and local features separately, such feature-wise inflexible integration ignores the semantic gap between them, resulting in representation redundancy/insufficiency and undesirable restrictions in clinic practices. Moreover, medical images are highly similar to each other due to the imaging methods and human tissues, but the captured global information by transformer-based methods in the medical domain is limited within images, the semantic relations and common knowledge across images are largely ignored. To alleviate the above problems, in the neighbor view, this paper develops a pixel neighbor representation learning method (NeighborNet) to flexibly integrate global and local context within and across images for lesion morphology and boundary modeling. Concretely, we design two neighbor layers to investigate two properties (i.e., number and distribution) of neighbors. The neighbor number for each pixel is not fixed but determined by itself. The neighbor distribution is extended from one image to all images in the datasets. With the two properties, for each pixel at each feature level, the proposed NeighborNet can evolve into the transformer or degenerate into the CNN for adaptive context representation learning to cope with the irregular lesion morphologies and blurry boundaries. The state-of-the-art performances on three ultrasound datasets prove the effectiveness of the proposed NeighborNet.
Collapse
|
18
|
Cai F, Wen J, He F, Xia Y, Xu W, Zhang Y, Jiang L, Li J. SC-Unext: A Lightweight Image Segmentation Model with Cellular Mechanism for Breast Ultrasound Tumor Diagnosis. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:1505-1515. [PMID: 38424276 PMCID: PMC11300774 DOI: 10.1007/s10278-024-01042-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/13/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
Automatic breast ultrasound image segmentation plays an important role in medical image processing. However, current methods for breast ultrasound segmentation suffer from high computational complexity and large model parameters, particularly when dealing with complex images. In this paper, we take the Unext network as a basis and utilize its encoder-decoder features. And taking inspiration from the mechanisms of cellular apoptosis and division, we design apoptosis and division algorithms to improve model performance. We propose a novel segmentation model which integrates the division and apoptosis algorithms and introduces spatial and channel convolution blocks into the model. Our proposed model not only improves the segmentation performance of breast ultrasound tumors, but also reduces the model parameters and computational resource consumption time. The model was evaluated on the breast ultrasound image dataset and our collected dataset. The experiments show that the SC-Unext model achieved Dice scores of 75.29% and accuracy of 97.09% on the BUSI dataset, and on the collected dataset, it reached Dice scores of 90.62% and accuracy of 98.37%. Meanwhile, we conducted a comparison of the model's inference speed on CPUs to verify its efficiency in resource-constrained environments. The results indicated that the SC-Unext model achieved an inference speed of 92.72 ms per instance on devices equipped only with CPUs. The model's number of parameters and computational resource consumption are 1.46M and 2.13 GFlops, respectively, which are lower compared to other network models. Due to its lightweight nature, the model holds significant value for various practical applications in the medical field.
Collapse
Affiliation(s)
- Fenglin Cai
- Department of Intelligent Technology and Engineering, Chongqing University of Science and Technology, Chongqing, 401331, People's Republic of China
| | - Jiaying Wen
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Fangzhou He
- Department of Intelligent Technology and Engineering, Chongqing University of Science and Technology, Chongqing, 401331, People's Republic of China
| | - Yulong Xia
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Weijun Xu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yong Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Li Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Jie Li
- Department of Intelligent Technology and Engineering, Chongqing University of Science and Technology, Chongqing, 401331, People's Republic of China.
| |
Collapse
|
19
|
Li W, Ye X, Chen X, Jiang X, Yang Y. A deep learning-based method for the detection and segmentation of breast masses in ultrasound images. Phys Med Biol 2024; 69:155027. [PMID: 38986480 DOI: 10.1088/1361-6560/ad61b6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Objective.Automated detection and segmentation of breast masses in ultrasound images are critical for breast cancer diagnosis, but remain challenging due to limited image quality and complex breast tissues. This study aims to develop a deep learning-based method that enables accurate breast mass detection and segmentation in ultrasound images.Approach.A novel convolutional neural network-based framework that combines the You Only Look Once (YOLO) v5 network and the Global-Local (GOLO) strategy was developed. First, YOLOv5 was applied to locate the mass regions of interest (ROIs). Second, a Global Local-Connected Multi-Scale Selection (GOLO-CMSS) network was developed to segment the masses. The GOLO-CMSS operated on both the entire images globally and mass ROIs locally, and then integrated the two branches for a final segmentation output. Particularly, in global branch, CMSS applied Multi-Scale Selection (MSS) modules to automatically adjust the receptive fields, and Multi-Input (MLI) modules to enable fusion of shallow and deep features at different resolutions. The USTC dataset containing 28 477 breast ultrasound images was collected for training and test. The proposed method was also tested on three public datasets, UDIAT, BUSI and TUH. The segmentation performance of GOLO-CMSS was compared with other networks and three experienced radiologists.Main results.YOLOv5 outperformed other detection models with average precisions of 99.41%, 95.15%, 93.69% and 96.42% on the USTC, UDIAT, BUSI and TUH datasets, respectively. The proposed GOLO-CMSS showed superior segmentation performance over other state-of-the-art networks, with Dice similarity coefficients (DSCs) of 93.19%, 88.56%, 87.58% and 90.37% on the USTC, UDIAT, BUSI and TUH datasets, respectively. The mean DSC between GOLO-CMSS and each radiologist was significantly better than that between radiologists (p< 0.001).Significance.Our proposed method can accurately detect and segment breast masses with a decent performance comparable to radiologists, highlighting its great potential for clinical implementation in breast ultrasound examination.
Collapse
Affiliation(s)
- Wanqing Li
- Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Xianjun Ye
- Department of Ultrasound Medicine, The First Affiliate Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, People's Republic of China
| | - Xuemin Chen
- Health Management Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, People's Republic of China
| | - Xianxian Jiang
- Graduate School of Bengbu Medical College, Bengbu, Anhui 233030, People's Republic of China
| | - Yidong Yang
- Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Ion Medical Research Institute, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, People's Republic of China
| |
Collapse
|
20
|
Wang J, Tang Y, Xiao Y, Zhou JT, Fang Z, Yang F. GREnet: Gradually REcurrent Network With Curriculum Learning for 2-D Medical Image Segmentation. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:10018-10032. [PMID: 37022080 DOI: 10.1109/tnnls.2023.3238381] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Medical image segmentation is a vital stage in medical image analysis. Numerous deep-learning methods are booming to improve the performance of 2-D medical image segmentation, owing to the fast growth of the convolutional neural network. Generally, the manually defined ground truth is utilized directly to supervise models in the training phase. However, direct supervision of the ground truth often results in ambiguity and distractors as complex challenges appear simultaneously. To alleviate this issue, we propose a gradually recurrent network with curriculum learning, which is supervised by gradual information of the ground truth. The whole model is composed of two independent networks. One is the segmentation network denoted as GREnet, which formulates 2-D medical image segmentation as a temporal task supervised by pixel-level gradual curricula in the training phase. The other is a curriculum-mining network. To a certain degree, the curriculum-mining network provides curricula with an increasing difficulty in the ground truth of the training set by progressively uncovering hard-to-segmentation pixels via a data-driven manner. Given that segmentation is a pixel-level dense-prediction challenge, to the best of our knowledge, this is the first work to function 2-D medical image segmentation as a temporal task with pixel-level curriculum learning. In GREnet, the naive UNet is adopted as the backbone, while ConvLSTM is used to establish the temporal link between gradual curricula. In the curriculum-mining network, UNet++ supplemented by transformer is designed to deliver curricula through the outputs of the modified UNet++ at different layers. Experimental results have demonstrated the effectiveness of GREnet on seven datasets, i.e., three lesion segmentation datasets in dermoscopic images, an optic disc and cup segmentation dataset and a blood vessel segmentation dataset in retinal images, a breast lesion segmentation dataset in ultrasound images, and a lung segmentation dataset in computed tomography (CT).
Collapse
|
21
|
Ling S, Yan L, Mao R, Li J, Xi H, Wang F, Li X, He M. A Coarse-Fine Collaborative Learning Model for Three Vessel Segmentation in Fetal Cardiac Ultrasound Images. IEEE J Biomed Health Inform 2024; 28:4036-4047. [PMID: 38635389 DOI: 10.1109/jbhi.2024.3390688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Congenital heart disease (CHD) is the most frequent birth defect and a leading cause of infant mortality, emphasizing the crucial need for its early diagnosis. Ultrasound is the primary imaging modality for prenatal CHD screening. As a complement to the four-chamber view, the three-vessel view (3VV) plays a vital role in detecting anomalies in the great vessels. However, the interpretation of fetal cardiac ultrasound images is subjective and relies heavily on operator experience, leading to variability in CHD detection rates, particularly in resource-constrained regions. In this study, we propose an automated method for segmenting the pulmonary artery, ascending aorta, and superior vena cava in the 3VV using a novel deep learning network named CoFi-Net. Our network incorporates a coarse-fine collaborative strategy with two parallel branches dedicated to simultaneous global localization and fine segmentation of the vessels. The coarse branch employs a partial decoder to leverage high-level semantic features, enabling global localization of objects and suppression of irrelevant structures. The fine branch utilizes attention-parameterized skip connections to improve feature representations and improve boundary information. The outputs of the two branches are fused to generate accurate vessel segmentations. Extensive experiments conducted on a collected dataset demonstrate the superiority of CoFi-Net compared to state-of-the-art segmentation models for 3VV segmentation, indicating its great potential for enhancing CHD diagnostic efficiency in clinical practice. Furthermore, CoFi-Net outperforms other deep learning models in breast lesion segmentation on a public breast ultrasound dataset, despite not being specifically designed for this task, demonstrating its potential and robustness for various segmentation tasks.
Collapse
|
22
|
Pramanik P, Roy A, Cuevas E, Perez-Cisneros M, Sarkar R. DAU-Net: Dual attention-aided U-Net for segmenting tumor in breast ultrasound images. PLoS One 2024; 19:e0303670. [PMID: 38820462 PMCID: PMC11142567 DOI: 10.1371/journal.pone.0303670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/29/2024] [Indexed: 06/02/2024] Open
Abstract
Breast cancer remains a critical global concern, underscoring the urgent need for early detection and accurate diagnosis to improve survival rates among women. Recent developments in deep learning have shown promising potential for computer-aided detection (CAD) systems to address this challenge. In this study, a novel segmentation method based on deep learning is designed to detect tumors in breast ultrasound images. Our proposed approach combines two powerful attention mechanisms: the novel Positional Convolutional Block Attention Module (PCBAM) and Shifted Window Attention (SWA), integrated into a Residual U-Net model. The PCBAM enhances the Convolutional Block Attention Module (CBAM) by incorporating the Positional Attention Module (PAM), thereby improving the contextual information captured by CBAM and enhancing the model's ability to capture spatial relationships within local features. Additionally, we employ SWA within the bottleneck layer of the Residual U-Net to further enhance the model's performance. To evaluate our approach, we perform experiments using two widely used datasets of breast ultrasound images and the obtained results demonstrate its capability in accurately detecting tumors. Our approach achieves state-of-the-art performance with dice score of 74.23% and 78.58% on BUSI and UDIAT datasets, respectively in segmenting the breast tumor region, showcasing its potential to help with precise tumor detection. By leveraging the power of deep learning and integrating innovative attention mechanisms, our study contributes to the ongoing efforts to improve breast cancer detection and ultimately enhance women's survival rates. The source code of our work can be found here: https://github.com/AyushRoy2001/DAUNet.
Collapse
Affiliation(s)
- Payel Pramanik
- Department of Computer Science and Engineering, Jadavpur University, Kolkata, India
| | - Ayush Roy
- Department of Electrical Engineering, Jadavpur University, Kolkata, India
| | - Erik Cuevas
- Departamento de Electrónica, Universidad de Guadalajara, Guadalajara, Mexico
| | - Marco Perez-Cisneros
- División de Tecnologías Para La Integración Ciber-Humana, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ram Sarkar
- Department of Computer Science and Engineering, Jadavpur University, Kolkata, India
| |
Collapse
|
23
|
Huang Z, Zhao Y, Yu Z, Qin P, Han X, Wang M, Liu M, Gregersen H. BiU-net: A dual-branch structure based on two-stage fusion strategy for biomedical image segmentation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 252:108235. [PMID: 38776830 DOI: 10.1016/j.cmpb.2024.108235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 04/28/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND AND OBJECTIVE Computer-based biomedical image segmentation plays a crucial role in planning of assisted diagnostics and therapy. However, due to the variable size and irregular shape of the segmentation target, it is still a challenge to construct an effective medical image segmentation structure. Recently, hybrid architectures based on convolutional neural networks (CNNs) and transformers were proposed. However, most current backbones directly replace one or all convolutional layers with transformer blocks, regardless of the semantic gap between features. Thus, how to sufficiently and effectively eliminate the semantic gap as well as combine the global and local information is a critical challenge. METHODS To address the challenge, we propose a novel structure, called BiU-Net, which integrates CNNs and transformers with a two-stage fusion strategy. In the first fusion stage, called Single-Scale Fusion (SSF) stage, the encoding layers of the CNNs and transformers are coupled, with both having the same feature map size. The SSF stage aims to reconstruct local features based on CNNs and long-range information based on transformers in each encoding block. In the second stage, Multi-Scale Fusion (MSF), BiU-Net interacts with multi-scale features from various encoding layers to eliminate the semantic gap between deep and shallow layers. Furthermore, a Context-Aware Block (CAB) is embedded in the bottleneck to reinforce multi-scale features in the decoder. RESULTS Experiments on four public datasets were conducted. On the BUSI dataset, our BiU-Net achieved 85.50 % on Dice coefficient (Dice), 76.73 % on intersection over union (IoU), and 97.23 % on accuracy (ACC). Compared to the state-of-the-art method, BiU-Net improves Dice by 1.17 %. For the Monuseg dataset, the proposed method attained the highest scores, reaching 80.27 % and 67.22 % for Dice and IoU. The BiU-Net achieves 95.33 % and 81.22 % Dice on the PH2 and DRIVE datasets. CONCLUSIONS The results of our experiments showed that BiU-Net transcends existing state-of-the-art methods on four publicly available biomedical datasets. Due to the powerful multi-scale feature extraction ability, our proposed BiU-Net is a versatile medical image segmentation framework for various types of medical images. The source code is released on (https://github.com/ZYLandy/BiU-Net).
Collapse
Affiliation(s)
- Zhiyong Huang
- School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China.
| | - Yunlan Zhao
- School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China
| | - Zhi Yu
- School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China
| | - Pinzhong Qin
- School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China
| | - Xiao Han
- School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China
| | - Mengyao Wang
- School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China
| | - Man Liu
- School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China
| | - Hans Gregersen
- California Medical Innovations Institute, San Diego 92121, California
| |
Collapse
|
24
|
Al-Karawi D, Al-Zaidi S, Helael KA, Obeidat N, Mouhsen AM, Ajam T, Alshalabi BA, Salman M, Ahmed MH. A Review of Artificial Intelligence in Breast Imaging. Tomography 2024; 10:705-726. [PMID: 38787015 PMCID: PMC11125819 DOI: 10.3390/tomography10050055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/14/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
With the increasing dominance of artificial intelligence (AI) techniques, the important prospects for their application have extended to various medical fields, including domains such as in vitro diagnosis, intelligent rehabilitation, medical imaging, and prognosis. Breast cancer is a common malignancy that critically affects women's physical and mental health. Early breast cancer screening-through mammography, ultrasound, or magnetic resonance imaging (MRI)-can substantially improve the prognosis for breast cancer patients. AI applications have shown excellent performance in various image recognition tasks, and their use in breast cancer screening has been explored in numerous studies. This paper introduces relevant AI techniques and their applications in the field of medical imaging of the breast (mammography and ultrasound), specifically in terms of identifying, segmenting, and classifying lesions; assessing breast cancer risk; and improving image quality. Focusing on medical imaging for breast cancer, this paper also reviews related challenges and prospects for AI.
Collapse
Affiliation(s)
- Dhurgham Al-Karawi
- Medical Analytica Ltd., 26a Castle Park Industrial Park, Flint CH6 5XA, UK;
| | - Shakir Al-Zaidi
- Medical Analytica Ltd., 26a Castle Park Industrial Park, Flint CH6 5XA, UK;
| | - Khaled Ahmad Helael
- Royal Medical Services, King Hussein Medical Hospital, King Abdullah II Ben Al-Hussein Street, Amman 11855, Jordan;
| | - Naser Obeidat
- Department of Diagnostic Radiology and Nuclear Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (N.O.); (A.M.M.); (T.A.); (B.A.A.); (M.S.)
| | - Abdulmajeed Mounzer Mouhsen
- Department of Diagnostic Radiology and Nuclear Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (N.O.); (A.M.M.); (T.A.); (B.A.A.); (M.S.)
| | - Tarek Ajam
- Department of Diagnostic Radiology and Nuclear Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (N.O.); (A.M.M.); (T.A.); (B.A.A.); (M.S.)
| | - Bashar A. Alshalabi
- Department of Diagnostic Radiology and Nuclear Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (N.O.); (A.M.M.); (T.A.); (B.A.A.); (M.S.)
| | - Mohamed Salman
- Department of Diagnostic Radiology and Nuclear Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (N.O.); (A.M.M.); (T.A.); (B.A.A.); (M.S.)
| | - Mohammed H. Ahmed
- School of Computing, Coventry University, 3 Gulson Road, Coventry CV1 5FB, UK;
| |
Collapse
|
25
|
He Q, Yang Q, Su H, Wang Y. Multi-task learning for segmentation and classification of breast tumors from ultrasound images. Comput Biol Med 2024; 173:108319. [PMID: 38513394 DOI: 10.1016/j.compbiomed.2024.108319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 03/03/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
Segmentation and classification of breast tumors are critical components of breast ultrasound (BUS) computer-aided diagnosis (CAD), which significantly improves the diagnostic accuracy of breast cancer. However, the characteristics of tumor regions in BUS images, such as non-uniform intensity distributions, ambiguous or missing boundaries, and varying tumor shapes and sizes, pose significant challenges to automated segmentation and classification solutions. Many previous studies have proposed multi-task learning methods to jointly tackle tumor segmentation and classification by sharing the features extracted by the encoder. Unfortunately, this often introduces redundant or misleading information, which hinders effective feature exploitation and adversely affects performance. To address this issue, we present ACSNet, a novel multi-task learning network designed to optimize tumor segmentation and classification in BUS images. The segmentation network incorporates a novel gate unit to allow optimal transfer of valuable contextual information from the encoder to the decoder. In addition, we develop the Deformable Spatial Attention Module (DSAModule) to improve segmentation accuracy by overcoming the limitations of conventional convolution in dealing with morphological variations of tumors. In the classification branch, multi-scale feature extraction and channel attention mechanisms are integrated to discriminate between benign and malignant breast tumors. Experiments on two publicly available BUS datasets demonstrate that ACSNet not only outperforms mainstream multi-task learning methods for both breast tumor segmentation and classification tasks, but also achieves state-of-the-art results for BUS tumor segmentation. Code and models are available at https://github.com/qqhe-frank/BUS-segmentation-and-classification.git.
Collapse
Affiliation(s)
- Qiqi He
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China; School of Life Science and Technology, Xidian University, Xi'an, China
| | - Qiuju Yang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China.
| | - Hang Su
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Yixuan Wang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
26
|
Saini M, Afrin H, Sotoudehnia S, Fatemi M, Alizad A. DMAeEDNet: Dense Multiplicative Attention Enhanced Encoder Decoder Network for Ultrasound-Based Automated Breast Lesion Segmentation. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2024; 12:60541-60555. [PMID: 39553390 PMCID: PMC11566434 DOI: 10.1109/access.2024.3394808] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Automated and precise segmentation of breast lesions can facilitate early diagnosis of breast cancer. Recent research studies employ deep learning for automatic segmentation of breast lesions using ultrasound imaging. Numerous studies introduce somewhat complex modifications to the well adapted segmentation network, U-Net for improved segmentation, however, at the expense of increased computational time. Towards this aspect, this study presents a low complex deep learning network, i.e., dense multiplicative attention enhanced encoder decoder network, for effective breast lesion segmentation in the ultrasound images. For the first time in this context, two dense multiplicative attention components are utilized in the encoding layer and the output layer of an encoder-decoder network with depthwise separable convolutions, to selectively enhance the relevant features. A rigorous performance evaluation using two public datasets demonstrates that the proposed network achieves dice coefficients of 0.83 and 0.86 respectively with an average segmentation latency of 19ms. Further, a noise robustness study using an in-clinic recorded dataset without pre-processing indicates that the proposed network achieves dice coefficient of 0.72. Exhaustive comparison with some commonly used networks indicate its adeptness with low time and computational complexity demonstrating feasibility in real time.
Collapse
Affiliation(s)
- Manali Saini
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Humayra Afrin
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Setayesh Sotoudehnia
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| |
Collapse
|
27
|
Karunanayake N, Makhanov SS. When deep learning is not enough: artificial life as a supplementary tool for segmentation of ultrasound images of breast cancer. Med Biol Eng Comput 2024:10.1007/s11517-024-03026-x. [PMID: 38498125 DOI: 10.1007/s11517-024-03026-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/16/2024] [Indexed: 03/20/2024]
Abstract
Segmentation of tumors in ultrasound (US) images of the breast is a critical issue in medical imaging. Due to the poor quality of US images and the varying specifications of US machines, segmentation and classification of abnormalities present difficulties even for trained radiologists. The paper aims to introduce a novel AI-based hybrid model for US segmentation that offers high accuracy, requires relatively smaller datasets, and is capable of handling previously unseen data. The software can be used for diagnostics and the US-guided biopsies. A unique and robust hybrid approach that combines deep learning (DL) and multi-agent artificial life (AL) has been introduced. The algorithms are verified on three US datasets. The method outperforms 14 selected state-of-the-art algorithms applied to US images characterized by complex geometry and high level of noise. The paper offers an original classification of the images and tests to analyze the limits of the DL. The model has been trained and verified on 1264 ultrasound images. The images are in the JPEG and PNG formats. The age of the patients ranges from 22 to 73 years. The 14 benchmark algorithms include deformable shapes, edge linking, superpixels, machine learning, and DL methods. The tests use eight-region shape- and contour-based evaluation metrics. The proposed method (DL-AL) produces excellent results in terms of the dice coefficient (region) and the relative Hausdorff distance H3 (contour-based) as follows: the easiest image complexity level, Dice = 0.96 and H3 = 0.26; the medium complexity level, Dice = 0.91 and H3 = 0.82; and the hardest complexity level, Dice = 0.90 and H3 = 0.84. All other metrics follow the same pattern. The DL-AL outperforms the second best (Unet-based) method by 10-20%. The method has been also tested by a series of unconventional tests. The model was trained on low complexity images and applied to the entire set of images. These results are summarized below. (1) Only the low complexity images have been used for training (68% unknown images): Dice = 0.80 and H3 = 2.01. (2) The low and the medium complexity images have been used for training (51% unknown images): Dice = 0.86 and H3 = 1.32. (3) The low, medium, and hard complexity images have been used for training (35% unknown images): Dice = 0.92 and H3 = 0.76. These tests show a significant advantage of DL-AL over 30%. A video demo illustrating the algorithm is at http://tinyurl.com/mr4ah687 .
Collapse
Affiliation(s)
- Nalan Karunanayake
- Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani, Thailand
| | - Stanislav S Makhanov
- Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani, Thailand.
| |
Collapse
|
28
|
Khaledyan D, Marini TJ, M. Baran T, O’Connell A, Parker K. Enhancing breast ultrasound segmentation through fine-tuning and optimization techniques: Sharp attention UNet. PLoS One 2023; 18:e0289195. [PMID: 38091358 PMCID: PMC10718429 DOI: 10.1371/journal.pone.0289195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/03/2023] [Indexed: 12/18/2023] Open
Abstract
Segmentation of breast ultrasound images is a crucial and challenging task in computer-aided diagnosis systems. Accurately segmenting masses in benign and malignant cases and identifying regions with no mass is a primary objective in breast ultrasound image segmentation. Deep learning (DL) has emerged as a powerful tool in medical image segmentation, revolutionizing how medical professionals analyze and interpret complex imaging data. The UNet architecture is a highly regarded and widely used DL model in medical image segmentation. Its distinctive architectural design and exceptional performance have made it popular among researchers. With the increase in data and model complexity, optimization and fine-tuning models play a vital and more challenging role than before. This paper presents a comparative study evaluating the effect of image preprocessing and different optimization techniques and the importance of fine-tuning different UNet segmentation models for breast ultrasound images. Optimization and fine-tuning techniques have been applied to enhance the performance of UNet, Sharp UNet, and Attention UNet. Building upon this progress, we designed a novel approach by combining Sharp UNet and Attention UNet, known as Sharp Attention UNet. Our analysis yielded the following quantitative evaluation metrics for the Sharp Attention UNet: the Dice coefficient, specificity, sensitivity, and F1 score values obtained were 0.93, 0.99, 0.94, and 0.94, respectively. In addition, McNemar's statistical test was applied to assess significant differences between the approaches. Across a number of measures, our proposed model outperformed all other models, resulting in improved breast lesion segmentation.
Collapse
Affiliation(s)
- Donya Khaledyan
- Department of Electrical and Electronics Engineering, University of Rochester, Rochester, NY, United States of America
| | - Thomas J. Marini
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Timothy M. Baran
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Avice O’Connell
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Kevin Parker
- Department of Electrical and Electronics Engineering, University of Rochester, Rochester, NY, United States of America
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, United States of America
| |
Collapse
|
29
|
Karunanayake N, Moodleah S, Makhanov SS. Edge-Driven Multi-Agent Reinforcement Learning: A Novel Approach to Ultrasound Breast Tumor Segmentation. Diagnostics (Basel) 2023; 13:3611. [PMID: 38132195 PMCID: PMC10742763 DOI: 10.3390/diagnostics13243611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/05/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
A segmentation model of the ultrasound (US) images of breast tumors based on virtual agents trained using reinforcement learning (RL) is proposed. The agents, living in the edge map, are able to avoid false boundaries, connect broken parts, and finally, accurately delineate the contour of the tumor. The agents move similarly to robots navigating in the unknown environment with the goal of maximizing the rewards. The individual agent does not know the goal of the entire population. However, since the robots communicate, the model is able to understand the global information and fit the irregular boundaries of complicated objects. Combining the RL with a neural network makes it possible to automatically learn and select the local features. In particular, the agents handle the edge leaks and artifacts typical for the US images. The proposed model outperforms 13 state-of-the-art algorithms, including selected deep learning models and their modifications.
Collapse
Affiliation(s)
- Nalan Karunanayake
- Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani 12120, Thailand;
| | - Samart Moodleah
- King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand;
| | - Stanislav S. Makhanov
- Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani 12120, Thailand;
| |
Collapse
|
30
|
Qi W, Wu HC, Chan SC. MDF-Net: A Multi-Scale Dynamic Fusion Network for Breast Tumor Segmentation of Ultrasound Images. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2023; 32:4842-4855. [PMID: 37639409 DOI: 10.1109/tip.2023.3304518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Breast tumor segmentation of ultrasound images provides valuable information of tumors for early detection and diagnosis. Accurate segmentation is challenging due to low image contrast between areas of interest; speckle noises, and large inter-subject variations in tumor shape and size. This paper proposes a novel Multi-scale Dynamic Fusion Network (MDF-Net) for breast ultrasound tumor segmentation. It employs a two-stage end-to-end architecture with a trunk sub-network for multiscale feature selection and a structurally optimized refinement sub-network for mitigating impairments such as noise and inter-subject variation via better feature exploration and fusion. The trunk network is extended from UNet++ with a simplified skip pathway structure to connect the features between adjacent scales. Moreover, deep supervision at all scales, instead of at the finest scale in UNet++, is proposed to extract more discriminative features and mitigate errors from speckle noise via a hybrid loss function. Unlike previous works, the first stage is linked to a loss function of the second stage so that both the preliminary segmentations and refinement subnetworks can be refined together at training. The refinement sub-network utilizes a structurally optimized MDF mechanism to integrate preliminary segmentation information (capturing general tumor shape and size) at coarse scales and explores inter-subject variation information at finer scales. Experimental results from two public datasets show that the proposed method achieves better Dice and other scores over state-of-the-art methods. Qualitative analysis also indicates that our proposed network is more robust to tumor size/shapes, speckle noise and heavy posterior shadows along tumor boundaries. An optional post-processing step is also proposed to facilitate users in mitigating segmentation artifacts. The efficiency of the proposed network is also illustrated on the "Electron Microscopy neural structures segmentation dataset". It outperforms a state-of-the-art algorithm based on UNet-2022 with simpler settings. This indicates the advantages of our MDF-Nets in other challenging image segmentation tasks with small to medium data sizes.
Collapse
|
31
|
Zhang Q, Cheng J, Zhou C, Jiang X, Zhang Y, Zeng J, Liu L. PDC-Net: parallel dilated convolutional network with channel attention mechanism for pituitary adenoma segmentation. Front Physiol 2023; 14:1259877. [PMID: 37711463 PMCID: PMC10498772 DOI: 10.3389/fphys.2023.1259877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023] Open
Abstract
Accurate segmentation of the medical image is the basis and premise of intelligent diagnosis and treatment, which has a wide range of clinical application value. However, the robustness and effectiveness of medical image segmentation algorithms remains a challenging subject due to the unbalanced categories, blurred boundaries, highly variable anatomical structures and lack of training samples. For this reason, we present a parallel dilated convolutional network (PDC-Net) to address the pituitary adenoma segmentation in magnetic resonance imaging images. Firstly, the standard convolution block in U-Net is replaced by a basic convolution operation and a parallel dilated convolutional module (PDCM), to extract the multi-level feature information of different dilations. Furthermore, the channel attention mechanism (CAM) is integrated to enhance the ability of the network to distinguish between lesions and non-lesions in pituitary adenoma. Then, we introduce residual connections at each layer of the encoder-decoder, which can solve the problem of gradient disappearance and network performance degradation caused by network deepening. Finally, we employ the dice loss to deal with the class imbalance problem in samples. By testing on the self-established patient dataset from Quzhou People's Hospital, the experiment achieves 90.92% of Sensitivity, 99.68% of Specificity, 88.45% of Dice value and 79.43% of Intersection over Union (IoU).
Collapse
Affiliation(s)
- Qile Zhang
- Department of Rehabilitation, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Jianzhen Cheng
- Department of Rehabilitation, Quzhou Third Hospital, Quzhou, China
| | - Chun Zhou
- Department of Rehabilitation, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Xiaoliang Jiang
- College of Mechanical Engineering, Quzhou University, Quzhou, China
| | - Yuanxiang Zhang
- College of Mechanical Engineering, Quzhou University, Quzhou, China
| | - Jiantao Zeng
- College of Mechanical Engineering, Quzhou University, Quzhou, China
| | - Li Liu
- Department of Thyroid and Breast Surgery, Kecheng District People’s Hospital, Quzhou, China
| |
Collapse
|
32
|
Chen G, Li L, Dai Y, Zhang J, Yap MH. AAU-Net: An Adaptive Attention U-Net for Breast Lesions Segmentation in Ultrasound Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:1289-1300. [PMID: 36455083 DOI: 10.1109/tmi.2022.3226268] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Various deep learning methods have been proposed to segment breast lesions from ultrasound images. However, similar intensity distributions, variable tumor morphologies and blurred boundaries present challenges for breast lesions segmentation, especially for malignant tumors with irregular shapes. Considering the complexity of ultrasound images, we develop an adaptive attention U-net (AAU-net) to segment breast lesions automatically and stably from ultrasound images. Specifically, we introduce a hybrid adaptive attention module (HAAM), which mainly consists of a channel self-attention block and a spatial self-attention block, to replace the traditional convolution operation. Compared with the conventional convolution operation, the design of the hybrid adaptive attention module can help us capture more features under different receptive fields. Different from existing attention mechanisms, the HAAM module can guide the network to adaptively select more robust representation in channel and space dimensions to cope with more complex breast lesions segmentation. Extensive experiments with several state-of-the-art deep learning segmentation methods on three public breast ultrasound datasets show that our method has better performance on breast lesions segmentation. Furthermore, robustness analysis and external experiments demonstrate that our proposed AAU-net has better generalization performance in the breast lesion segmentation. Moreover, the HAAM module can be flexibly applied to existing network frameworks. The source code is available on https://github.com/CGPxy/AAU-net.
Collapse
|
33
|
Alhussan AA, Eid MM, Towfek SK, Khafaga DS. Breast Cancer Classification Depends on the Dynamic Dipper Throated Optimization Algorithm. Biomimetics (Basel) 2023; 8:163. [PMID: 37092415 PMCID: PMC10123690 DOI: 10.3390/biomimetics8020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/25/2023] Open
Abstract
According to the American Cancer Society, breast cancer is the second largest cause of mortality among women after lung cancer. Women's death rates can be decreased if breast cancer is diagnosed and treated early. Due to the lengthy duration of manual breast cancer diagnosis, an automated approach is necessary for early cancer identification. This research proposes a novel framework integrating metaheuristic optimization with deep learning and feature selection for robustly classifying breast cancer from ultrasound images. The structure of the proposed methodology consists of five stages, namely, data augmentation to improve the learning of convolutional neural network (CNN) models, transfer learning using GoogleNet deep network for feature extraction, selection of the best set of features using a novel optimization algorithm based on a hybrid of dipper throated and particle swarm optimization algorithms, and classification of the selected features using CNN optimized using the proposed optimization algorithm. To prove the effectiveness of the proposed approach, a set of experiments were conducted on a breast cancer dataset, freely available on Kaggle, to evaluate the performance of the proposed feature selection method and the performance of the optimized CNN. In addition, statistical tests were established to study the stability and difference of the proposed approach compared to state-of-the-art approaches. The achieved results confirmed the superiority of the proposed approach with a classification accuracy of 98.1%, which is better than the other approaches considered in the conducted experiments.
Collapse
Affiliation(s)
- Amel Ali Alhussan
- Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Marwa M. Eid
- Faculty of Artificial Intelligence, Delta University for Science and Technology, Mansoura 35712, Egypt
| | - S. K. Towfek
- Delta Higher Institute for Engineering and Technology, Mansoura 35111, Egypt
- Computer Science and Intelligent Systems Research Center, Blacksburg, VA 24060, USA
| | - Doaa Sami Khafaga
- Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
34
|
Zhu Y, Li C, Hu K, Luo H, Zhou M, Li X, Gao X. A new two-stream network based on feature separation and complementation for ultrasound image segmentation. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
Zhang J, Chen Y, Zeng P, Liu Y, Diao Y, Liu P. Ultra-Attention: Automatic Recognition of Liver Ultrasound Standard Sections Based on Visual Attention Perception Structures. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1007-1017. [PMID: 36681610 DOI: 10.1016/j.ultrasmedbio.2022.12.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/12/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Acquisition of a standard section is a prerequisite for ultrasound diagnosis. For a long time, there has been a lack of clear definitions of standard liver views because of physician experience. The accurate automated scanning of standard liver sections, however, remains one of ultrasonography medicine's most important issues. In this article, we enrich and expand the classification criteria of liver ultrasound standard sections from clinical practice and propose an Ultra-Attention structured perception strategy to automate the recognition of these sections. Inspired by the attention mechanism in natural language processing, the standard liver ultrasound views will participate in the global attention algorithm as modular local images in computer vision of ultrasound images, which will significantly amplify small features that would otherwise go unnoticed. In addition to using the dropout mechanism, we also use a Part-Transfer Learning training approach to fine-tune the model's rate of convergence to increase its robustness. The proposed Ultra-Attention model outperforms various traditional convolutional neural network-based techniques, achieving the best known performance in the field with a classification accuracy of 93.2%. As part of the feature extraction procedure, we also illustrate and compare the convolutional structure and the Ultra-Attention approach. This analysis provides a reasonable view for future research on local modular feature capture in ultrasound images. By developing a standard scan guideline for liver ultrasound-based illness diagnosis, this work will advance the research on automated disease diagnosis that is directed by standard sections of liver ultrasound.
Collapse
Affiliation(s)
- Jiansong Zhang
- College of Medicine, Huaqiao University, Quanzhou, Fujian Province, China
| | - Yongjian Chen
- Department of Ultrasound, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Pan Zeng
- College of Medicine, Huaqiao University, Quanzhou, Fujian Province, China
| | - Yao Liu
- College of Science and Engineering, National Quemoy University, Kinmen, Taiwan
| | - Yong Diao
- College of Medicine, Huaqiao University, Quanzhou, Fujian Province, China
| | - Peizhong Liu
- College of Medicine, Huaqiao University, Quanzhou, Fujian Province, China; College of Engineering, Huaqiao University, Quanzhou, Fujian Province, China.
| |
Collapse
|
36
|
Cui W, Meng D, Lu K, Wu Y, Pan Z, Li X, Sun S. Automatic segmentation of ultrasound images using SegNet and local Nakagami distribution fitting model. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Zhong S, Tu C, Dong X, Feng Q, Chen W, Zhang Y. MsGoF: Breast lesion classification on ultrasound images by multi-scale gradational-order fusion framework. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 230:107346. [PMID: 36716637 DOI: 10.1016/j.cmpb.2023.107346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 12/05/2022] [Accepted: 01/08/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND OBJECTIVE Predicting the malignant potential of breast lesions based on breast ultrasound (BUS) images is a crucial component of computer-aided diagnosis system for breast cancers. However, since breast lesions in BUS images generally have various shapes with relatively low contrast and present complex textures, it still remains challenging to accurately identify the malignant potential of breast lesions. METHODS In this paper, we propose a multi-scale gradational-order fusion framework to make full advantages of multi-scale representations incorporating with gradational-order characteristics of BUS images for breast lesions classification. Specifically, we first construct a spatial context aggregation module to generate multi-scale context representations from the original BUS images. Subsequently, multi-scale representations are efficiently fused in feature fusion block that is armed with special fusion strategies to comprehensively capture morphological characteristics of breast lesions. To better characterize complex textures and enhance non-linear modeling capability, we further propose isotropous gradational-order feature module in the feature fusion block to learn and combine multi-order representations. Finally, these multi-scale gradational-order representations are utilized to perform prediction for the malignant potential of breast lesions. RESULTS The proposed model was evaluated on three open datasets by using 5-fold cross-validation. The experimental results (Accuracy: 85.32%, Sensitivity: 85.24%, Specificity: 88.57%, AUC: 90.63% on dataset A; Accuracy: 76.48%, Sensitivity: 72.45%, Specificity: 80.42%, AUC: 78.98% on dataset B) demonstrate that the proposed method achieves the promising performance when compared with other deep learning-based methods in BUS classification task. CONCLUSIONS The proposed method has demonstrated a promising potential to predict malignant potential of breast lesion using ultrasound image in an end-to-end manner.
Collapse
Affiliation(s)
- Shengzhou Zhong
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China.
| | - Chao Tu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China.
| | - Xiuyu Dong
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China.
| | - Qianjin Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China.
| | - Wufan Chen
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China.
| | - Yu Zhang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
38
|
Farooq MU, Ullah Z, Gwak J. Residual attention based uncertainty-guided mean teacher model for semi-supervised breast masses segmentation in 2D ultrasonography. Comput Med Imaging Graph 2023; 104:102173. [PMID: 36641970 DOI: 10.1016/j.compmedimag.2022.102173] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/12/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023]
Abstract
Breast tumor is the second deadliest disease among women around the world. Earlier tumor diagnosis is extremely important for improving the survival rate. Recent deep-learning techniques proved helpful in the timely diagnosis of various tumors. However, in the case of breast tumors, the characteristics of the tumors, i.e., low visual contrast, unclear boundary, and diversity in shape and size of breast lesions, make it more challenging to design a highly efficient detection system. Additionally, the scarcity of publicly available labeled data is also a major hurdle in the development of highly accurate and robust deep-learning models for breast tumor detection. To overcome these issues, we propose residual-attention-based uncertainty-guided mean teacher framework which incorporates the residual and attention blocks. The residual for optimizing the deep network by enabling the flow of high-level features and attention modules improves the focus of the model by optimizing its weights during the learning process. We further explore the potential of utilizing unlabeled data during the training process by employing the semi-supervised learning (SSL) method. Particularly, the uncertainty-guided mean-teacher student architecture is exploited to demonstrate the potential of incorporating the unlabeled samples during the training of residual attention U-Net model. The proposed SSL framework has been rigorously evaluated on two publicly available labeled datasets, i.e., BUSI and UDIAT datasets. The quantitative as well as qualitative results demonstrate that the proposed framework achieved competitive performance with respect to the previous state-of-the-art techniques and outperform the existing breast ultrasound masses segmentation techniques. Most importantly, the study demonstrates the potential of incorporating the additional unlabeled data for improving the performance of breast tumor segmentation.
Collapse
Affiliation(s)
- Muhammad Umar Farooq
- Department of IT Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, South Korea.
| | - Zahid Ullah
- Department of Software, Korea National University of Transportation, Chungju 27469, South Korea.
| | - Jeonghwan Gwak
- Department of IT Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, South Korea; Department of Biomedical Engineering, Korea National University of Transportation, Chungju 27469, South Korea; Department of AI Robotics Engineering, Korea National University of Transportation, Chungju 27469, South Korea.
| |
Collapse
|
39
|
AMS-PAN: Breast ultrasound image segmentation model combining attention mechanism and multi-scale features. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
40
|
A hybrid attentional guidance network for tumors segmentation of breast ultrasound images. Int J Comput Assist Radiol Surg 2023:10.1007/s11548-023-02849-7. [PMID: 36853584 DOI: 10.1007/s11548-023-02849-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/31/2023] [Indexed: 03/01/2023]
Abstract
PURPOSE In recent years, breast cancer has become the greatest threat to women. There are many studies dedicated to the precise segmentation of breast tumors, which is indispensable in computer-aided diagnosis. Deep neural networks have achieved accurate segmentation of images. However, convolutional layers are biased to extract local features and tend to lose global and location information as the network deepens, which leads to a decrease in breast tumors segmentation accuracy. For this reason, we propose a hybrid attention-guided network (HAG-Net). We believe that this method will improve the detection rate and segmentation of tumors in breast ultrasound images. METHODS The method is equipped with multi-scale guidance block (MSG) for guiding the extraction of low-resolution location information. Short multi-head self-attention (S-MHSA) and convolutional block attention module are used to capture global features and long-range dependencies. Finally, the segmentation results are obtained by fusing multi-scale contextual information. RESULTS We compare with 7 state-of-the-art methods on two publicly available datasets through five random fivefold cross-validations. The highest dice coefficient, Jaccard Index and detect rate ([Formula: see text]%, [Formula: see text]%, [Formula: see text]% and [Formula: see text]%, [Formula: see text]%, [Formula: see text]%, separately) obtained on two publicly available datasets(BUSI and OASUBD), prove the superiority of our method. CONCLUSION HAG-Net can better utilize multi-resolution features to localize the breast tumors. Demonstrating excellent generalizability and applicability for breast tumors segmentation compare to other state-of-the-art methods.
Collapse
|
41
|
Al-Battal AF, Lerman IR, Nguyen TQ. Multi-path decoder U-Net: A weakly trained real-time segmentation network for object detection and localization in ultrasound scans. Comput Med Imaging Graph 2023; 107:102205. [PMID: 37030216 DOI: 10.1016/j.compmedimag.2023.102205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/19/2023] [Accepted: 02/19/2023] [Indexed: 04/10/2023]
Abstract
Detecting and localizing an anatomical structure of interest within the field of view of an ultrasound scan is an essential step in many diagnostic and therapeutic procedures. However, ultrasound scans suffer from high levels of variabilities across sonographers and patients, making it challenging for sonographers to accurately identify and locate these structures without extensive experience. Segmentation-based convolutional neural networks (CNNs) have been proposed as a solution to assist sonographers in this task. Despite their accuracy, these networks require pixel-wise annotations for training; an expensive and labor-intensive operation that requires the expertise of an experienced practitioner to identify the precise outline of the structures of interest. This complicates, delays, and increases the cost of network training and deployment. To address this problem, we propose a multi-path decoder U-Net architecture that is trained on bounding box segmentation maps; not requiring pixel-wise annotations. We show that the network can be trained on small training sets, which is the case in medical imaging datasets; reducing the cost and time needed for deployment and use in clinical settings. The multi-path decoder design allows for better training of deeper layers and earlier attention to the target anatomical structures of interest. This architecture offers up to a 7% relative improvement compared to the U-Net architecture in localization and detection performance, with an increase of only 0.75% in the number of parameters. Its performance is on par with, or slightly better than, the more computationally expensive U-Net++, which has 20% more parameters; making the proposed architecture a more computationally efficient alternative for real-time object detection and localization in ultrasound scans.
Collapse
Affiliation(s)
- Abdullah F Al-Battal
- Electrical and Computer Engineering Department, University of California, San Diego, CA 92093, USA; Electrical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.
| | - Imanuel R Lerman
- Electrical and Computer Engineering Department, University of California, San Diego, CA 92093, USA; UC San Diego Health, University of California, San Diego, CA 92093, USA
| | - Truong Q Nguyen
- Electrical and Computer Engineering Department, University of California, San Diego, CA 92093, USA
| |
Collapse
|
42
|
Thomas C, Byra M, Marti R, Yap MH, Zwiggelaar R. BUS-Set: A benchmark for quantitative evaluation of breast ultrasound segmentation networks with public datasets. Med Phys 2023; 50:3223-3243. [PMID: 36794706 DOI: 10.1002/mp.16287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 02/17/2023] Open
Abstract
PURPOSE BUS-Set is a reproducible benchmark for breast ultrasound (BUS) lesion segmentation, comprising of publicly available images with the aim of improving future comparisons between machine learning models within the field of BUS. METHOD Four publicly available datasets were compiled creating an overall set of 1154 BUS images, from five different scanner types. Full dataset details have been provided, which include clinical labels and detailed annotations. Furthermore, nine state-of-the-art deep learning architectures were selected to form the initial benchmark segmentation result, tested using five-fold cross-validation and MANOVA/ANOVA with Tukey statistical significance test with a threshold of 0.01. Additional evaluation of these architectures was conducted, exploring possible training bias, and lesion size and type effects. RESULTS Of the nine state-of-the-art benchmarked architectures, Mask R-CNN obtained the highest overall results, with the following mean metric scores: Dice score of 0.851, intersection over union of 0.786 and pixel accuracy of 0.975. MANOVA/ANOVA and Tukey test results showed Mask R-CNN to be statistically significant better compared to all other benchmarked models with a p-value >0.01. Moreover, Mask R-CNN achieved the highest mean Dice score of 0.839 on an additional 16 image dataset, that contained multiple lesions per image. Further analysis on regions of interest was conducted, assessing Hamming distance, depth-to-width ratio (DWR), circularity, and elongation, which showed that the Mask R-CNN's segmentations maintained the most morphological features with correlation coefficients of 0.888, 0.532, 0.876 for DWR, circularity, and elongation, respectively. Based on the correlation coefficients, statistical test indicated that Mask R-CNN was only significantly different to Sk-U-Net. CONCLUSIONS BUS-Set is a fully reproducible benchmark for BUS lesion segmentation obtained through the use of public datasets and GitHub. Of the state-of-the-art convolution neural network (CNN)-based architectures, Mask R-CNN achieved the highest performance overall, further analysis indicated that a training bias may have occurred due to the lesion size variation in the dataset. All dataset and architecture details are available at GitHub: https://github.com/corcor27/BUS-Set, which allows for a fully reproducible benchmark.
Collapse
Affiliation(s)
- Cory Thomas
- Department of Computer Science, Aberystwyth University, Aberystwyth, UK
| | - Michal Byra
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland.,Department of Radiology, University of California, San Diego, California, USA
| | - Robert Marti
- Computer Vision and Robotics Institute, University of Girona, Girona, Spain
| | - Moi Hoon Yap
- Department of Computing and Mathematics, Manchester Metropolitan University, Manchester, UK
| | - Reyer Zwiggelaar
- Department of Computer Science, Aberystwyth University, Aberystwyth, UK
| |
Collapse
|
43
|
Iqbal A, Sharif M. BTS-ST: Swin transformer network for segmentation and classification of multimodality breast cancer images. Knowl Based Syst 2023. [DOI: 10.1016/j.knosys.2023.110393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
44
|
Ma Z, Qi Y, Xu C, Zhao W, Lou M, Wang Y, Ma Y. ATFE-Net: Axial Transformer and Feature Enhancement-based CNN for ultrasound breast mass segmentation. Comput Biol Med 2023; 153:106533. [PMID: 36638617 DOI: 10.1016/j.compbiomed.2022.106533] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/25/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023]
Abstract
Breast mass is one of the main clinical symptoms of breast cancer. Recently, many CNN-based methods for breast mass segmentation have been proposed. However, these methods have difficulties in capturing long-range dependencies, causing poor segmentation of large-scale breast masses. In this paper, we propose an axial Transformer and feature enhancement-based CNN (ATFE-Net) for ultrasound breast mass segmentation. Specially, an axial Transformer (Axial-Trans) module and a Transformer-based feature enhancement (Trans-FE) module are proposed to capture long-range dependencies. Axial-Trans module only calculates self-attention in width and height directions of input feature maps, which reduces the complexity of self-attention significantly from O(n2) to O(n). In addition, Trans-FE module can enhance feature representation by capturing dependencies between different feature layers, since deeper feature layers have richer semantic information and shallower feature layers have more detailed information. The experimental results show that our ATFE-Net achieved better performance than several state-of-the-art methods on two publicly available breast ultrasound datasets, with Dice coefficient of 82.46% for BUSI and 86.78% for UDIAT, respectively.
Collapse
Affiliation(s)
- Zhou Ma
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Yunliang Qi
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Chunbo Xu
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Wei Zhao
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Meng Lou
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Yiming Wang
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Yide Ma
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
45
|
Mújica-Vargas D, Matuz-Cruz M, García-Aquino C, Ramos-Palencia C. Efficient System for Delimitation of Benign and Malignant Breast Masses. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1775. [PMID: 36554180 PMCID: PMC9777637 DOI: 10.3390/e24121775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 06/01/2023]
Abstract
In this study, a high-performing scheme is introduced to delimit benign and malignant masses in breast ultrasound images. The proposal is built upon by the Nonlocal Means filter for image quality improvement, an Intuitionistic Fuzzy C-Means local clustering algorithm for superpixel generation with high adherence to the edges, and the DBSCAN algorithm for the global clustering of those superpixels in order to delimit masses' regions. The empirical study was performed using two datasets, both with benign and malignant breast tumors. The quantitative results with respect to the BUSI dataset were JSC≥0.907, DM≥0.913, HD≥7.025, and MCR≤6.431 for benign masses and JSC≥0.897, DM≥0.900, HD≥8.666, and MCR≤8.016 for malignant ones, while the MID dataset resulted in JSC≥0.890, DM≥0.905, HD≥8.370, and MCR≤7.241 along with JSC≥0.881, DM≥0.898, HD≥8.865, and MCR≤7.808 for benign and malignant masses, respectively. These numerical results revealed that our proposal outperformed all the evaluated comparative state-of-the-art methods in mass delimitation. This is confirmed by the visual results since the segmented regions had a better edge delimitation.
Collapse
Affiliation(s)
- Dante Mújica-Vargas
- Departamento de Ciencias Computacionales, Tecnológico Nacional de México, Centro Nacional de Investigación y Desarrollo Tecnológico, Cuernavaca 62490, Morelos, Mexico
| | - Manuel Matuz-Cruz
- Tecnológico Nacional de México, Instituto Tecnológico de Tapachula, Tapachula 30700, Chiapas, Mexico
| | - Christian García-Aquino
- Departamento de Ciencias Computacionales, Tecnológico Nacional de México, Centro Nacional de Investigación y Desarrollo Tecnológico, Cuernavaca 62490, Morelos, Mexico
| | - Celia Ramos-Palencia
- Departamento de Ciencias Computacionales, Tecnológico Nacional de México, Centro Nacional de Investigación y Desarrollo Tecnológico, Cuernavaca 62490, Morelos, Mexico
| |
Collapse
|
46
|
Madani M, Behzadi MM, Nabavi S. The Role of Deep Learning in Advancing Breast Cancer Detection Using Different Imaging Modalities: A Systematic Review. Cancers (Basel) 2022; 14:5334. [PMID: 36358753 PMCID: PMC9655692 DOI: 10.3390/cancers14215334] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 12/02/2022] Open
Abstract
Breast cancer is among the most common and fatal diseases for women, and no permanent treatment has been discovered. Thus, early detection is a crucial step to control and cure breast cancer that can save the lives of millions of women. For example, in 2020, more than 65% of breast cancer patients were diagnosed in an early stage of cancer, from which all survived. Although early detection is the most effective approach for cancer treatment, breast cancer screening conducted by radiologists is very expensive and time-consuming. More importantly, conventional methods of analyzing breast cancer images suffer from high false-detection rates. Different breast cancer imaging modalities are used to extract and analyze the key features affecting the diagnosis and treatment of breast cancer. These imaging modalities can be divided into subgroups such as mammograms, ultrasound, magnetic resonance imaging, histopathological images, or any combination of them. Radiologists or pathologists analyze images produced by these methods manually, which leads to an increase in the risk of wrong decisions for cancer detection. Thus, the utilization of new automatic methods to analyze all kinds of breast screening images to assist radiologists to interpret images is required. Recently, artificial intelligence (AI) has been widely utilized to automatically improve the early detection and treatment of different types of cancer, specifically breast cancer, thereby enhancing the survival chance of patients. Advances in AI algorithms, such as deep learning, and the availability of datasets obtained from various imaging modalities have opened an opportunity to surpass the limitations of current breast cancer analysis methods. In this article, we first review breast cancer imaging modalities, and their strengths and limitations. Then, we explore and summarize the most recent studies that employed AI in breast cancer detection using various breast imaging modalities. In addition, we report available datasets on the breast-cancer imaging modalities which are important in developing AI-based algorithms and training deep learning models. In conclusion, this review paper tries to provide a comprehensive resource to help researchers working in breast cancer imaging analysis.
Collapse
Affiliation(s)
- Mohammad Madani
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Mohammad Mahdi Behzadi
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Sheida Nabavi
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
47
|
Woon Cho S, Rae Baek N, Ryoung Park K. Deep Learning-based Multi-stage Segmentation Method Using Ultrasound Images for Breast Cancer Diagnosis. JOURNAL OF KING SAUD UNIVERSITY - COMPUTER AND INFORMATION SCIENCES 2022. [DOI: 10.1016/j.jksuci.2022.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
48
|
Breast MRI Tumor Automatic Segmentation and Triple-Negative Breast Cancer Discrimination Algorithm Based on Deep Learning. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2541358. [PMID: 36092784 PMCID: PMC9453096 DOI: 10.1155/2022/2541358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/19/2022] [Accepted: 08/20/2022] [Indexed: 01/23/2023]
Abstract
Background Breast cancer is a kind of cancer that starts in the epithelial tissue of the breast. Breast cancer has been on the rise in recent years, with a younger generation developing the disease. Magnetic resonance imaging (MRI) plays an important role in breast tumor detection and treatment planning in today's clinical practice. As manual segmentation grows more time-consuming and the observed topic becomes more diversified, automated segmentation becomes more appealing. Methodology. For MRI breast tumor segmentation, we propose a CNN-SVM network. The labels from the trained convolutional neural network are output using a support vector machine in this technique. During the testing phase, the convolutional neural network's labeled output, as well as the test grayscale picture, is passed to the SVM classifier for accurate segmentation. Results We tested on the collected breast tumor dataset and found that our proposed combined CNN-SVM network achieved 0.93, 0.95, and 0.92 on DSC coefficient, PPV, and sensitivity index, respectively. We also compare with the segmentation frameworks of other papers, and the comparison results prove that our CNN-SVM network performs better and can accurately segment breast tumors. Conclusion Our proposed CNN-SVM combined network achieves good segmentation results on the breast tumor dataset. The method can adapt to the differences in breast tumors and segment breast tumors accurately and efficiently. It is of great significance for identifying triple-negative breast cancer in the future.
Collapse
|
49
|
Uçar M. Automatic segmentation of COVID-19 from computed tomography images using modified U-Net model-based majority voting approach. Neural Comput Appl 2022; 34:21927-21938. [PMID: 35968248 PMCID: PMC9362439 DOI: 10.1007/s00521-022-07653-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/18/2022] [Indexed: 12/03/2022]
Abstract
The coronavirus disease (COVID-19) is an important public health problem that has spread rapidly around the world and has caused the death of millions of people. Therefore, studies to determine the factors affecting the disease, to perform preventive actions and to find an effective treatment are at the forefront. In this study, a deep learning and segmentation-based approach is proposed for the detection of COVID-19 disease from computed tomography images. The proposed model was created by modifying the encoder part of the U-Net segmentation model. In the encoder part, VGG16, ResNet101, DenseNet121, InceptionV3 and EfficientNetB5 deep learning models were used, respectively. Then, the results obtained with each modified U-Net model were combined with the majority vote principle and a final result was reached. As a result of the experimental tests, the proposed model obtained 85.03% Dice score, 89.13% sensitivity and 99.38% specificity on the COVID-19 segmentation test dataset. The results obtained in the study show that the proposed model will especially benefit clinicians in terms of time and cost.
Collapse
Affiliation(s)
- Murat Uçar
- Department of Management Information Systems, Faculty of Business and Management Sciences, İskenderun Technical University, 31200 İskenderun, Hatay Turkey
| |
Collapse
|
50
|
Iqbal A, Sharif M, Khan MA, Nisar W, Alhaisoni M. FF-UNet: a U-Shaped Deep Convolutional Neural Network for Multimodal Biomedical Image Segmentation. Cognit Comput 2022; 14:1287-1302. [DOI: 10.1007/s12559-022-10038-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 06/20/2022] [Indexed: 01/10/2023]
|