1
|
Yuan G, Ge Z, Zheng J, Yan X, Fu M, Li M, Yang X, Tang L. CNN-based diagnosis model of children's bladder compliance using a single intravesical pressure signal. Comput Methods Biomech Biomed Engin 2025; 28:698-709. [PMID: 38193146 DOI: 10.1080/10255842.2023.2301414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/29/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024]
Abstract
Bladder compliance assessment is crucial for diagnosing bladder functional disorders, with urodynamic study (UDS) being the principal evaluation method. However, the application of UDS is intricate and time-consuming in children. So it'S necessary to develop an efficient bladder compliance screen approach before UDS. In this study, We constructed a dataset based on UDS and designed a 1D-CNN model to optimize and train the network. Then applied the trained model to a dataset obtained solely through a proposed perfusion experiment. Our model outperformed other algorithms. The results demonstrate the potential of our model to alert abnormal bladder compliance accurately and efficiently.
Collapse
Affiliation(s)
- Gang Yuan
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Zicong Ge
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Jian Zheng
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Xiangming Yan
- Department of Surgery, Children's Hospital of Soochow University, Soochow University, Suzhou, China
| | - Mingcui Fu
- Department of Surgery, Children's Hospital of Soochow University, Soochow University, Suzhou, China
| | - Ming Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Xiaodong Yang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Liangfeng Tang
- Department of Pediatric Urology, Children's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Wan C, Nnamdi MC, Shi W, Smith B, Purnell C, Wang MD. Advancing Sleep Disorder Diagnostics: A Transformer-Based EEG Model for Sleep Stage Classification and OSA Prediction. IEEE J Biomed Health Inform 2025; 29:878-886. [PMID: 40030422 DOI: 10.1109/jbhi.2024.3512616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Sleep disorders, particularly Obstructive Sleep Apnea (OSA), have a considerable effect on an individual's health and quality of life. Accurate sleep stage classification and prediction of OSA are crucial for timely diagnosis and effective management of sleep disorders. In this study, we develop a sequential network that enhances sleep stage classification by incorporating self-attention mechanisms and Conditional Random Fields (CRF) into a deep learning model comprising multi-kernel Convolutional Neural Networks (CNNs) and Transformer-based encoders. The self-attention mechanism enables the model to focus on the most discriminative features extracted from single-channel electroencephalography (EEG) recordings, while the CRF module captures the temporal dependencies between sleep stages, improving the model's ability to learn more plausible sleep stage sequences. Moreover, we explore the relationship between sleep stages and OSA severity by utilizing the predicted sleep stage features to train various regression models for Apnea-Hypopnea Index (AHI) prediction. Our experiments demonstrate an improved sleep stage classification performance of 78.7%, particularly on datasets with diverse AHI values, and highlight the potential of leveraging sleep stage information for monitoring OSA. By employing advanced deep learning techniques, we thoroughly explore the intricate relationship between sleep stages and sleep apnea, laying the foundation for more precise and automated diagnostics of sleep disorders.
Collapse
|
3
|
Zaman A, Kumar S, Shatabda S, Dehzangi I, Sharma A. SleepBoost: a multi-level tree-based ensemble model for automatic sleep stage classification. Med Biol Eng Comput 2024; 62:2769-2783. [PMID: 38700613 DOI: 10.1007/s11517-024-03096-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/14/2024] [Indexed: 05/16/2024]
Abstract
Neurodegenerative diseases often exhibit a strong link with sleep disruption, highlighting the importance of effective sleep stage monitoring. In this light, automatic sleep stage classification (ASSC) plays a pivotal role, now more streamlined than ever due to the advancements in deep learning (DL). However, the opaque nature of DL models can be a barrier in their clinical adoption, due to trust concerns among medical practitioners. To bridge this gap, we introduce SleepBoost, a transparent multi-level tree-based ensemble model specifically designed for ASSC. Our approach includes a crafted feature engineering block (FEB) that extracts 41 time and frequency domain features, out of which 23 are selected based on their high mutual information score (> 0.23). Uniquely, SleepBoost integrates three fundamental linear models into a cohesive multi-level tree structure, further enhanced by a novel reward-based adaptive weight allocation mechanism. Tested on the Sleep-EDF-20 dataset, SleepBoost demonstrates superior performance with an accuracy of 86.3%, F1-score of 80.9%, and Cohen kappa score of 0.807, outperforming leading DL models in ASSC. An ablation study underscores the critical role of our selective feature extraction in enhancing model accuracy and interpretability, crucial for clinical settings. This innovative approach not only offers a more transparent alternative to traditional DL models but also extends potential implications for monitoring and understanding sleep patterns in the context of neurodegenerative disorders. The open-source availability of SleepBoost's implementation at https://github.com/akibzaman/SleepBoost can further facilitate its accessibility and potential for widespread clinical adoption.
Collapse
Affiliation(s)
- Akib Zaman
- Computer Science and Artificial Intelligence Laboratory (CSAIL), Electrical Engineering and Computer Science Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shiu Kumar
- School of Electrical & Electronics Engineering, Fiji National University, Suva, Fiji.
| | - Swakkhar Shatabda
- Centre for Artificial Intelligence and Robotics (CAIR), United International University, Dhaka, Bangladesh
| | - Iman Dehzangi
- Department of Computer Science, Rutgers University, Camden, NJ, USA
- Center for Computational and Integrative Biology, Rutgers University, Camden, USA
| | - Alok Sharma
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Institute for Integrated and Intelligent Systems, Griffith University, Nathan, Brisbane, QLD, Australia
| |
Collapse
|
4
|
Zhou W, Shen N, Zhou L, Liu M, Zhang Y, Fu C, Yu H, Shu F, Chen W, Chen C. PSEENet: A Pseudo-Siamese Neural Network Incorporating Electroencephalography and Electrooculography Characteristics for Heterogeneous Sleep Staging. IEEE J Biomed Health Inform 2024; 28:5189-5200. [PMID: 38771683 DOI: 10.1109/jbhi.2024.3403878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Sleep staging plays a critical role in evaluating the quality of sleep. Currently, most studies are either suffering from dramatic performance drops when coping with varying input modalities or unable to handle heterogeneous signals. To handle heterogeneous signals and guarantee favorable sleep staging performance when a single modality is available, a pseudo-siamese neural network (PSN) to incorporate electroencephalography (EEG), electrooculography (EOG) characteristics is proposed (PSEENet). PSEENet consists of two parts, spatial mapping modules (SMMs) and a weight-shared classifier. SMMs are used to extract high-dimensional features. Meanwhile, joint linkages among multi-modalities are provided by quantifying the similarity of features. Finally, with the cooperation of heterogeneous characteristics, associations within various sleep stages can be established by the classifier. The evaluation of the model is validated on two public datasets, namely, Montreal Archive of Sleep Studies (MASS) and SleepEDFX, and one clinical dataset from Huashan Hospital of Fudan University (HSFU). Experimental results show that the model can handle heterogeneous signals, provide superior results under multimodal signals and show good performance with single modality. PSEENet obtains accuracy of 79.1%, 82.1% with EEG, EEG and EOG on Sleep-EDFX, and significantly improves the accuracy with EOG from 73.7% to 76% by introducing similarity information.
Collapse
|
5
|
Satapathy SK, Brahma B, Panda B, Barsocchi P, Bhoi AK. Machine learning-empowered sleep staging classification using multi-modality signals. BMC Med Inform Decis Mak 2024; 24:119. [PMID: 38711099 DOI: 10.1186/s12911-024-02522-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
The goal is to enhance an automated sleep staging system's performance by leveraging the diverse signals captured through multi-modal polysomnography recordings. Three modalities of PSG signals, namely electroencephalogram (EEG), electrooculogram (EOG), and electromyogram (EMG), were considered to obtain the optimal fusions of the PSG signals, where 63 features were extracted. These include frequency-based, time-based, statistical-based, entropy-based, and non-linear-based features. We adopted the ReliefF (ReF) feature selection algorithms to find the suitable parts for each signal and superposition of PSG signals. Twelve top features were selected while correlated with the extracted feature sets' sleep stages. The selected features were fed into the AdaBoost with Random Forest (ADB + RF) classifier to validate the chosen segments and classify the sleep stages. This study's experiments were investigated by obtaining two testing schemes: epoch-wise testing and subject-wise testing. The suggested research was conducted using three publicly available datasets: ISRUC-Sleep subgroup1 (ISRUC-SG1), sleep-EDF(S-EDF), Physio bank CAP sleep database (PB-CAPSDB), and S-EDF-78 respectively. This work demonstrated that the proposed fusion strategy overestimates the common individual usage of PSG signals.
Collapse
Affiliation(s)
- Santosh Kumar Satapathy
- Department of Information and Communication Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, 382007, India.
| | - Biswajit Brahma
- McKesson Corporation, 1 Post St, San Francisco, CA, 94104, USA
| | - Baidyanath Panda
- LTIMindtree, 1 American Row, 3Rd Floor, Hartford, CT, 06103, USA
| | - Paolo Barsocchi
- Institute of Information Science and Technologies, National Research Council, 56124, Pisa, Italy.
| | - Akash Kumar Bhoi
- Directorate of Research, Sikkim Manipal University, Gangtok, 737102, Sikkim, India.
| |
Collapse
|
6
|
An P, Zhao J, Du B, Zhao W, Zhang T, Yuan Z. Amplitude-Time Dual-View Fused EEG Temporal Feature Learning for Automatic Sleep Staging. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:6492-6506. [PMID: 36215384 DOI: 10.1109/tnnls.2022.3210384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Electroencephalogram (EEG) plays an important role in studying brain function and human cognitive performance, and the recognition of EEG signals is vital to develop an automatic sleep staging system. However, due to the complex nonstationary characteristics and the individual difference between subjects, how to obtain the effective signal features of the EEG for practical application is still a challenging task. In this article, we investigate the EEG feature learning problem and propose a novel temporal feature learning method based on amplitude-time dual-view fusion for automatic sleep staging. First, we explore the feature extraction ability of convolutional neural networks for the EEG signal from the perspective of interpretability and construct two new representation signals for the raw EEG from the views of amplitude and time. Then, we extract the amplitude-time signal features that reflect the transformation between different sleep stages from the obtained representation signals by using conventional 1-D CNNs. Furthermore, a hybrid dilation convolution module is used to learn the long-term temporal dependency features of EEG signals, which can overcome the shortcoming that the small-scale convolution kernel can only learn the local signal variation information. Finally, we conduct attention-based feature fusion for the learned dual-view signal features to further improve sleep staging performance. To evaluate the performance of the proposed method, we test 30-s-epoch EEG signal samples for healthy subjects and subjects with mild sleep disorders. The experimental results from the most commonly used datasets show that the proposed method has better sleep staging performance and has the potential for the development and application of an EEG-based automatic sleep staging system.
Collapse
|
7
|
Wei Y, Zhu Y, Zhou Y, Yu X, Luo Y. Automatic Sleep Staging Based on Contextual Scalograms and Attention Convolution Neural Network Using Single-Channel EEG. IEEE J Biomed Health Inform 2024; 28:801-811. [PMID: 37955995 DOI: 10.1109/jbhi.2023.3332503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Single-channel EEG based sleep staging is of interest to researchers due to its broad application prospect in daily sleep monitoring recently. We proposed using contextual scalograms as input and developed a convolutional neural network with attention modules named Co-ScaleNet for sleep staging. The contextual scalograms were obtained by combining the same color channels of three original RGB scalograms from consecutive epochs, and a simple and efficient data augmentation was designed according to their various forms. The Co-ScaleNet consists of two main parts. Firstly, three parallel convolutional branches with attention modules correspondingly extract and fuse features from contextual scalograms at the top layers. The remaining part is a stack of lightweight blocks. We achieved an overall accuracy of 87.0% for healthy individuals, 84.7% for depressed patients. And we obtained comparable performance on the public Sleep-EDFx (82.8%), ISRUC (84.6%) and SHHS datasets (87.7%), including a high recall of N1. The contextual scalograms of R channel as input achieved the best performance, which conform to the features of interest in visual scoring. The attention modules improved the recall of N1 and N3. Overall, the contextual scalograms provided a novel scheme for both contextual information extraction and data augmentation. Our study successfully expanded its application to depression datasets, as well as patients with sleep apnea, demonstrating its wide applicability.
Collapse
|
8
|
Jain R, G RA. Modality-Specific Feature Selection, Data Augmentation and Temporal Context for Improved Performance in Sleep Staging. IEEE J Biomed Health Inform 2024; 28:1031-1042. [PMID: 38051608 DOI: 10.1109/jbhi.2023.3339713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
This work attempts to design an effective sleep staging system, making the best use of the available signals, strategies, and features in the literature. It must not only perform well on different datasets comprising healthy and clinical populations but also achieve good accuracy in cross-dataset experiments. Toward this end, we propose a model comprising multiple binary classifiers in a hierarchical fashion, where, at each level, one or more of EEG, EOG, and EMG are selected to best differentiate between two sleep stages. The best set of 100 features is chosen out of all the features derived from selected signals. The class imbalance in data is addressed by random undersampling and boosting techniques with decision trees as weak learners. Temporal context and data augmentation are used to improve the performance. We also evaluate the performance of our model by training and testing on different datasets. We compare the results of five approaches: using only EEG, EEG+EOG, EEG+EMG+EOG, EEG+EMG, and selective modality with a specific combination of EEG, EMG, and/or EOG at each level. The best results are obtained by considering features from EEG+EMG+EOG at each hierarchical level. The proposed model achieves average accuracies of 83.1%, 90.0%, 84.4%, 82.1%, 81.5%, 79.9%, and 73.7% on Sleep-EDF, Exp Sleep-EDF, ISRUC-S1, S2 and S3, DRMS-SUB, and DRMS-PAT datasets, respectively. For all the datasets except DRMS-SUB, the proposed method outperforms all the state-of-the-art approaches. Cross-dataset performance exceeds 80% for all datasets except DRMS-PAT; independent of whether the test data is from normal subjects or patients.
Collapse
|
9
|
Zhu H, Wu Y, Guo Y, Fu C, Shu F, Yu H, Chen W, Chen C. Towards Real-Time Sleep Stage Prediction and Online Calibration Based on Architecturally Switchable Deep Learning Models. IEEE J Biomed Health Inform 2024; 28:470-481. [PMID: 37878423 DOI: 10.1109/jbhi.2023.3327470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Despite the recent advances in automatic sleep staging, few studies have focused on real-time sleep staging to promote the regulation of sleep or the intervention of sleep disorders. In this paper, a novel network named SwSleepNet, that can handle both precisely offline sleep staging, and online sleep stages prediction and calibration is proposed. For offline analysis, the proposed network coordinates sequence broadening module (SBM), sequential CNN (SCNN), squeeze and excitation (SE) block, and sequence consolidation module (SCM) to balance the operational efficiency of the network and the comprehensive feature extraction. For online analysis, only SCNN and SE are involved in predicting the sleep stage within a short-time segment of the recordings. Once more than two successive segments have disparate predictions, the calibration mechanism will be triggered, and contextual information will be involved. In addition, to investigate the appropriate time of the segment that is suitable to predict a sleep stage, segments with five-second, three-second, and two-second data are analyzed. The performance of SwSleepNet is validated on two publicly available datasets Sleep-EDF Expanded and Montreal Archive of Sleep Studies (MASS), and one clinical dataset Huashan Hospital Fudan University (HSFU), with the offline accuracy of 84.5%, 86.7%, and 81.8%, respectively, which outperforms the state-of-the-art methods. Additionally, for the online sleep staging, the dedicated calibration mechanism allows SwSleepNet to achieve high accuracy over 80% on three datasets with the short-time segments, demonstrating the robustness and stability of SwSleepNet. This study presents a real-time sleep staging architecture, which is expected to pave the way for accurate sleep regulation and intervention.
Collapse
|
10
|
Liu Z, Qin M, Lu Y, Luo S, Zhang Q. DenSleepNet: DenseNet based model for sleep staging with two-frequency feature fusion and coordinate attention. Biomed Eng Lett 2023; 13:751-761. [PMID: 37872995 PMCID: PMC10590351 DOI: 10.1007/s13534-023-00301-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 10/25/2023] Open
Abstract
Sleep staging is often applied to assess the quality of sleep and also be used to prevent and monitor psychiatric disorders caused by sleep. However, it remains a challenge to extract the discriminative features of salient waveforms in sleep EEG and enable the network to effectively classify sleep stages by emphasizing these crucial features, thus achieving higher accuracy. In this study, an end-to-end deep learning model based on DenseNet for automatic sleep staging is designed and constructed. In the framework, two convolutional branches are devised to extract the underlying features (Two-Frequency Feature) at various frequencies, which are then fused and input into the DenseNet module to extract salient waveform features. After that, the Coordinate Attention mechanism is employed to enhance the localization of salient waveform features by emphasizing the position of salient waveforms and the spatial relationship across the entire frequency spectrum. Finally, the obtained features are accessed to the fully connected for sleep staging. The model was validated with a 20-fold cross-validation procedure on two public available datasets, and the overall accuracy, kappa coefficient, and MF1 score reached 92.9%, 78.7, 0.86 and 90.0%, 75.8, 0.80 on Sleep-EDF-20 and Sleep-EDFx, respectively. Experimental results show that the proposed model achieves competitive performance for sleep staging compared with the reported approaches under the identical conditions.
Collapse
Affiliation(s)
- Zhi Liu
- School of Artificial Intelligence, Chongqing University of Technology, Chongqing, China
| | - Meiqiao Qin
- School of Artificial Intelligence, Chongqing University of Technology, Chongqing, China
| | - Yunhua Lu
- School of Artificial Intelligence, Chongqing University of Technology, Chongqing, China
| | - Sixin Luo
- School of Artificial Intelligence, Chongqing University of Technology, Chongqing, China
| | - Qinhan Zhang
- School of Artificial Intelligence, Chongqing University of Technology, Chongqing, China
| |
Collapse
|
11
|
Hasan MN, Koo I. Mixed-Input Deep Learning Approach to Sleep/Wake State Classification by Using EEG Signals. Diagnostics (Basel) 2023; 13:2358. [PMID: 37510104 PMCID: PMC10378260 DOI: 10.3390/diagnostics13142358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/04/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Sleep stage classification plays a pivotal role in predicting and diagnosing numerous health issues from human sleep data. Manual sleep staging requires human expertise, which is occasionally prone to error and variation. In recent times, availability of polysomnography data has aided progress in automatic sleep-stage classification. In this paper, a hybrid deep learning model is proposed for classifying sleep and wake states based on a single-channel electroencephalogram (EEG) signal. The model combines an artificial neural network (ANN) and a convolutional neural network (CNN) trained using mixed-input features. The ANN makes use of statistical features calculated from EEG epochs, and the CNN operates on Hilbert spectrum images generated during each epoch. The proposed method is assessed using single-channel Pz-Oz EEG signals from the Sleep-EDF database Expanded. The classification performance on four randomly selected individuals shows that the proposed model can achieve accuracy of around 96% in classifying between sleep and wake states from EEG recordings.
Collapse
Affiliation(s)
- Md Nazmul Hasan
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Insoo Koo
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea
| |
Collapse
|
12
|
Zhu H, Fu C, Shu F, Yu H, Chen C, Chen W. The Effect of Coupled Electroencephalography Signals in Electrooculography Signals on Sleep Staging Based on Deep Learning Methods. Bioengineering (Basel) 2023; 10:573. [PMID: 37237643 PMCID: PMC10215192 DOI: 10.3390/bioengineering10050573] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The influence of the coupled electroencephalography (EEG) signal in electrooculography (EOG) on EOG-based automatic sleep staging has been ignored. Since the EOG and prefrontal EEG are collected at close range, it is not clear whether EEG couples in EOG or not, and whether or not the EOG signal can achieve good sleep staging results due to its intrinsic characteristics. In this paper, the effect of a coupled EEG signal in an EOG signal on automatic sleep staging is explored. The blind source separation algorithm was used to extract a clean prefrontal EEG signal. Then the raw EOG signal and clean prefrontal EEG signal were processed to obtain EOG signals coupled with different EEG signal contents. Afterwards, the coupled EOG signals were fed into a hierarchical neural network, including a convolutional neural network and recurrent neural network for automatic sleep staging. Finally, an exploration was performed using two public datasets and one clinical dataset. The results showed that using a coupled EOG signal could achieve an accuracy of 80.4%, 81.1%, and 78.9% for the three datasets, slightly better than the accuracy of sleep staging using the EOG signal without coupled EEG. Thus, an appropriate content of coupled EEG signal in an EOG signal improved the sleep staging results. This paper provides an experimental basis for sleep staging with EOG signals.
Collapse
Affiliation(s)
- Hangyu Zhu
- School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Cong Fu
- Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Feng Shu
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Huan Yu
- Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Chen Chen
- Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Wei Chen
- School of Information Science and Technology, Fudan University, Shanghai 200433, China
- Human Phenome Institute, Fudan University, Shanghai 201203, China
| |
Collapse
|
13
|
Deng Y, Ding S, Li W, Lai Q, Cao L. EEG-based visual stimuli classification via reusable LSTM. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
14
|
Aristimunha B, Bayerlein AJ, Cardoso MJ, Pinaya WHL, De Camargo RY. Sleep-Energy: An Energy Optimization Method to Sleep Stage Scoring. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2023; 11:34595-34602. [PMID: 38292346 PMCID: PMC10824396 DOI: 10.1109/access.2023.3263477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/17/2023] [Indexed: 02/01/2024]
Abstract
Sleep is essential for physical and mental health. Polysomnography (PSG) procedures are labour-intensive and time-consuming, making diagnosing sleep disorders difficult. Automatic sleep staging using Machine Learning (ML) - based methods has been studied extensively, but frequently provides noisier predictions incompatible with typical manually annotated hypnograms. We propose an energy optimization method to improve the quality of hypnograms generated by automatic sleep staging procedures. The method evaluates the system's total energy based on conditional probabilities for each epoch's stage and employs an energy minimisation procedure. It can be used as a meta-optimisation layer over the sleep stage sequences generated by any classifier that generates prediction probabilities. The method improved the accuracy of state-of-the-art Deep Learning models in the Sleep EDFx dataset by 4.0% and in the DRM-SUB dataset by 2.8%.
Collapse
Affiliation(s)
- Bruno Aristimunha
- Center for Mathematics, Computing and Cognition (CMCC)Federal University of ABC (UFABC)São Paulo09210-580Brazil
- Department of Biomedical EngineeringSchool of Biomedical Engineering and Imaging SciencesKing's College LondonWC2R 2LSLondonU.K
| | - Alexandre Janoni Bayerlein
- Center for Mathematics, Computing and Cognition (CMCC)Federal University of ABC (UFABC)São Paulo09210-580Brazil
| | - M. Jorge Cardoso
- Department of Biomedical EngineeringSchool of Biomedical Engineering and Imaging SciencesKing's College LondonWC2R 2LSLondonU.K
| | - Walter Hugo Lopez Pinaya
- Department of Biomedical EngineeringSchool of Biomedical Engineering and Imaging SciencesKing's College LondonWC2R 2LSLondonU.K
| | | |
Collapse
|
15
|
He Z, Tang M, Wang P, Du L, Chen X, Cheng G, Fang Z. Cross-scenario automatic sleep stage classification using transfer learning and single-channel EEG. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Fu G, Zhou Y, Gong P, Wang P, Shao W, Zhang D. A Temporal-Spectral Fused and Attention-Based Deep Model for Automatic Sleep Staging. IEEE Trans Neural Syst Rehabil Eng 2023; 31:1008-1018. [PMID: 37022069 DOI: 10.1109/tnsre.2023.3238852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Sleep staging is a vital process for evaluating sleep quality and diagnosing sleep-related diseases. Most of the existing automatic sleep staging methods focus on time-domain information and often ignore the transformation relationship between sleep stages. To deal with the above problems, we propose a Temporal-Spectral fused and Attention-based deep neural Network model (TSA-Net) for automatic sleep staging, using a single-channel electroencephalogram (EEG) signal. The TSA-Net is composed of a two-stream feature extractor, feature context learning, and conditional random field (CRF). Specifically, the two-stream feature extractor module can automatically extract and fuse EEG features from time and frequency domains, considering that both temporal and spectral features can provide abundant distinguishing information for sleep staging. Subsequently, the feature context learning module learns the dependencies between features using the multi-head self-attention mechanism and outputs a preliminary sleep stage. Finally, the CRF module further applies transition rules to improve classification performance. We evaluate our model on two public datasets, Sleep-EDF-20 and Sleep-EDF-78. In terms of accuracy, the TSA-Net achieves 86.64% and 82.21% on the Fpz-Cz channel, respectively. The experimental results illustrate that our TSA-Net can optimize the performance of sleep staging and achieve better staging performance than state-of-the-art methods.
Collapse
|
17
|
Zan H, Yildiz A. Local Pattern Transformation-Based convolutional neural network for sleep stage scoring. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Efe E, Ozsen S. CoSleepNet: Automated sleep staging using a hybrid CNN-LSTM network on imbalanced EEG-EOG datasets. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Fang Y, Xia Y, Chen P, Zhang J, Zhang Y. A dual-stream deep neural network integrated with adaptive boosting for sleep staging. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Dutt M, Redhu S, Goodwin M, Omlin CW. SleepXAI: An explainable deep learning approach for multi-class sleep stage identification. APPL INTELL 2022. [DOI: 10.1007/s10489-022-04357-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractExtensive research has been conducted on the automatic classification of sleep stages utilizing deep neural networks and other neurophysiological markers. However, for sleep specialists to employ models as an assistive solution, it is necessary to comprehend how the models arrive at a particular outcome, necessitating the explainability of these models. This work proposes an explainable unified CNN-CRF approach (SleepXAI) for multi-class sleep stage classification designed explicitly for univariate time-series signals using modified gradient-weighted class activation mapping (Grad-CAM). The proposed approach significantly increases the overall accuracy of sleep stage classification while demonstrating the explainability of the multi-class labeling of univariate EEG signals, highlighting the parts of the signals emphasized most in predicting sleep stages. We extensively evaluated our approach to the sleep-EDF dataset, and it demonstrates the highest overall accuracy of 86.8% in identifying five sleep stage classes. More importantly, we achieved the highest accuracy when classifying the crucial sleep stage N1 with the lowest number of instances, outperforming the state-of-the-art machine learning approaches by 16.3%. These results motivate us to adopt the proposed approach in clinical practice as an aid to sleep experts.
Collapse
|
21
|
Yu R, Zhou Z, Wu S, Gao X, Bin G. MRASleepNet: a multi-resolution attention network for sleep stage classification using single-channel EEG. J Neural Eng 2022; 19. [PMID: 36379059 DOI: 10.1088/1741-2552/aca2de] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/15/2022] [Indexed: 11/16/2022]
Abstract
Objective. Computerized classification of sleep stages based on single-lead electroencephalography (EEG) signals is important, but still challenging. In this paper, we proposed a deep neural network called MRASleepNet for automatic sleep stage classification using single-channel EEG signals.Approach. The proposed MRASleepNet model consisted of a feature extraction (FE) module, a multi-resolution attention (MRA) module, and a gated multilayer perceptron (gMLP) module, as well as a direct pathway for computing statistical features. The FE, MRA, and gMLP modules were used to extract features, establish feature attention, and obtain temporal relationships between features, respectively. EEG signals were normalized and cut into 30 s segments, and enhanced by incorporating contextual information from adjacent data segments. After data enhancement, the 40 s data segments were input to the MRASleepNet model. The model was evaluated on the SleepEDF and the cyclic alternating pattern (CAP) databases, using such metrics as the accuracy, Kappa, and macro-F1 (MF1).Main results.For the SleepEDF-20 database, the proposed model had an accuracy of 84.5%, an MF1 of 0.789, and a Kappa of 0.786. For the SleepEDF-78 database, the model had an accuracy of 81.4%, an MF1 of 0.754, and a Kappa of 0.743. For the CAP database, the model had an accuracy of 74.3%, an MF1 of 0.656, and a Kappa of 0.652. The proposed model achieved satisfactory performance in automatic sleep stage classification tasks.Significance. The time- and frequency-domain features extracted by the FE module and filtered by the MRA module, together with the temporal features extracted by the gMLP module and the statistical features extracted by the statistical highway, enabled the proposed model to obtain a satisfying performance in sleep staging. The proposed MRASleepNet model may be used as a new deep learning method for automatic sleep stage classification. The code of MRASleepNet will be made available publicly onhttps://github.com/YuRui8879/.
Collapse
Affiliation(s)
- Rui Yu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Zhuhuang Zhou
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Shuicai Wu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Xiaorong Gao
- Department of Biomedical Engineering, Tsinghua University, 100084 Beijing, People's Republic of China
| | - Guangyu Bin
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, People's Republic of China
| |
Collapse
|
22
|
L-Tetrolet Pattern-Based Sleep Stage Classification Model Using Balanced EEG Datasets. Diagnostics (Basel) 2022; 12:diagnostics12102510. [PMID: 36292199 PMCID: PMC9600064 DOI: 10.3390/diagnostics12102510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Sleep stage classification is a crucial process for the diagnosis of sleep or sleep-related diseases. Currently, this process is based on manual electroencephalogram (EEG) analysis, which is resource-intensive and error-prone. Various machine learning models have been recommended to standardize and automate the analysis process to address these problems. Materials and methods: The well-known cyclic alternating pattern (CAP) sleep dataset is used to train and test an L-tetrolet pattern-based sleep stage classification model in this research. By using this dataset, the following three cases are created, and they are: Insomnia, Normal, and Fused cases. For each of these cases, the machine learning model is tasked with identifying six sleep stages. The model is structured in terms of feature generation, feature selection, and classification. Feature generation is established with a new L-tetrolet (Tetris letter) function and multiple pooling decomposition for level creation. We fuse ReliefF and iterative neighborhood component analysis (INCA) feature selection using a threshold value. The hybrid and iterative feature selectors are named threshold selection-based ReliefF and INCA (TSRFINCA). The selected features are classified using a cubic support vector machine. Results: The presented L-tetrolet pattern and TSRFINCA-based sleep stage classification model yield 95.43%, 91.05%, and 92.31% accuracies for Insomnia, Normal dataset, and Fused cases, respectively. Conclusion: The recommended L-tetrolet pattern and TSRFINCA-based model push the envelope of current knowledge engineering by accurately classifying sleep stages even in the presence of sleep disorders.
Collapse
|
23
|
Single-channel EEG sleep staging based on data augmentation and cross-subject discrepancy alleviation. Comput Biol Med 2022; 149:106044. [PMID: 36084381 DOI: 10.1016/j.compbiomed.2022.106044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/30/2022] [Accepted: 08/20/2022] [Indexed: 11/20/2022]
Abstract
Automatic sleep stage classification is an effective technology compared to conventional artificial visual inspection in the field of sleep staging. Numerous algorithms based on machine learning and deep learning on single-channel electroencephalogram (EEG) have been proposed in recent years, however, category imbalance and cross-subject discrepancy are still the main factors restricting the accuracy of existing methods. This study proposed an innovative end-to-end neural network to solve these problems, specifically, four data augmentation methods were designed to eliminate category imbalance, and domain adaptation modules were designed for the alignment of marginal distribution, conditional distribution, and channel and spatial level distribution of feature maps, as well as the capture of transferable regions on the feature maps using a transfer attention mechanism. We conducted experiments on two publicly available datasets (Sleep-EDF Database Expanded, 2013 and 2018 version), Cohen's kappa coefficient (k) of 0.77 (Fpz-Cz) and 0.73 (Pz-Oz) were realized on the Sleep-EDF-2013 dataset, and a k of 0.75 (Fpz-Cz) and 0.68 (Pz-Oz) were realized on the Sleep-EDF-2018 dataset. An experiment was also conducted on the dataset drawn from the 2018 Physionet challenge, which containing people with sleep disorders, and a performance improvement was still found. Our comparative experiments with similar studies showed that our model was superior to most other studies, indicating our proposed EEG data augmentation and domain adaptation based cross-subject discrepancy alleviation approach is effective to improve the performance of automatic sleep staging.
Collapse
|
24
|
A Multilevel Temporal Context Network for Sleep Stage Classification. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:6104736. [PMID: 36188714 PMCID: PMC9522503 DOI: 10.1155/2022/6104736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/18/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022]
Abstract
Sleep stage classification is essential in diagnosing and treating sleep disorders. Many deep learning models have been proposed to classify sleep stages by automatic learning features and temporal context information. These temporal context features come from the intra-epoch temporal features, which represent the overall morphology of an epoch, and temporal features of adjacent epochs and long epochs, which represent the influence between epochs. However, most existing methods do not fully use the complementarity of the three-level temporal features, resulting in incomplete extracted temporal features. To solve this problem, we propose a multilevel temporal context network (MLTCN) to learn the temporal features from intra-epoch, adjacent epochs, and long epochs, which utilizes the complete temporal features to improve classification accuracy. We evaluate the performance of the proposed model on the Sleep-EDF datasets published in 2013 and 2018. The experimental results show that our MLTCN can achieve an overall accuracy of 84.2% and a kappa coefficient of 0.78 on the Sleep-EDF-2013 dataset. On the larger Sleep-EDF-2018 dataset, the overall accuracy is 81.0%, and a kappa coefficient is 0.74. Our model can better assist sleep experts in diagnosing sleep disorders.
Collapse
|
25
|
Li C, Qi Y, Ding X, Zhao J, Sang T, Lee M. A Deep Learning Method Approach for Sleep Stage Classification with EEG Spectrogram. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:6322. [PMID: 35627856 PMCID: PMC9141573 DOI: 10.3390/ijerph19106322] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022]
Abstract
The classification of sleep stages is an important process. However, this process is time-consuming, subjective, and error-prone. Many automated classification methods use electroencephalogram (EEG) signals for classification. These methods do not classify well enough and perform poorly in the N1 due to unbalanced data. In this paper, we propose a sleep stage classification method using EEG spectrogram. We have designed a deep learning model called EEGSNet based on multi-layer convolutional neural networks (CNNs) to extract time and frequency features from the EEG spectrogram, and two-layer bi-directional long short-term memory networks (Bi-LSTMs) to learn the transition rules between features from adjacent epochs and to perform the classification of sleep stages. In addition, to improve the generalization ability of the model, we have used Gaussian error linear units (GELUs) as the activation function of CNN. The proposed method was evaluated by four public databases, the Sleep-EDFX-8, Sleep-EDFX-20, Sleep-EDFX-78, and SHHS. The accuracy of the method is 94.17%, 86.82%, 83.02% and 85.12%, respectively, for the four datasets, the MF1 is 87.78%, 81.57%, 77.26% and 78.54%, respectively, and the Kappa is 0.91, 0.82, 0.77 and 0.79, respectively. In addition, our proposed method achieved better classification results on N1, with an F1-score of 70.16%, 52.41%, 50.03% and 47.26% for the four datasets.
Collapse
Affiliation(s)
- Chengfan Li
- School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China; (C.L.); (Y.Q.); (J.Z.); (T.S.)
| | - Yueyu Qi
- School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China; (C.L.); (Y.Q.); (J.Z.); (T.S.)
| | - Xuehai Ding
- School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China; (C.L.); (Y.Q.); (J.Z.); (T.S.)
| | - Junjuan Zhao
- School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China; (C.L.); (Y.Q.); (J.Z.); (T.S.)
| | - Tian Sang
- School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China; (C.L.); (Y.Q.); (J.Z.); (T.S.)
| | - Matthew Lee
- 12th Grade, The Bishop’s School, La Jolla, CA 92037, USA;
| |
Collapse
|
26
|
Li T, Zhang B, Lv H, Hu S, Xu Z, Tuergong Y. CAttSleepNet: Automatic End-to-End Sleep Staging Using Attention-Based Deep Neural Networks on Single-Channel EEG. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5199. [PMID: 35564593 PMCID: PMC9104971 DOI: 10.3390/ijerph19095199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/04/2022]
Abstract
Accurate sleep staging results can be used to measure sleep quality, providing a reliable basis for the prevention and diagnosis of sleep-related diseases. The key to sleep staging is the feature representation of EEG signals. Existing approaches rarely consider local features in feature extraction, and fail to distinguish the importance of critical and non-critical local features. We propose an innovative model for automatic sleep staging with single-channel EEG, named CAttSleepNet. We add an attention module to the convolutional neural network (CNN) that can learn the weights of local sequences of EEG signals by exploiting intra-epoch contextual information. Then, a two-layer bidirectional-Long Short-Term Memory (Bi-LSTM) is used to encode the global correlations of successive epochs. Therefore, the feature representations of EEG signals are enhanced by both local and global context correlation. Experimental results achieved on two real-world sleep datasets indicate that the CAttSleepNet model outperforms existing models. Moreover, ablation experiments demonstrate the validity of our proposed attention module.
Collapse
Affiliation(s)
- Tingting Li
- School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China; (T.L.); (H.L.); (S.H.); (Z.X.)
| | - Bofeng Zhang
- School of Computer and Communication Engineering, Shanghai Polytechnic University, Shanghai 201209, China
- School of Computer Science and Technology, Kashi University, Kashi 844008, China;
| | - Hehe Lv
- School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China; (T.L.); (H.L.); (S.H.); (Z.X.)
| | - Shengxiang Hu
- School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China; (T.L.); (H.L.); (S.H.); (Z.X.)
| | - Zhikang Xu
- School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China; (T.L.); (H.L.); (S.H.); (Z.X.)
| | - Yierxiati Tuergong
- School of Computer Science and Technology, Kashi University, Kashi 844008, China;
| |
Collapse
|
27
|
|
28
|
A novel approach for detection of consciousness level in comatose patients from EEG signals with 1-D convolutional neural network. Biocybern Biomed Eng 2022. [DOI: 10.1016/j.bbe.2021.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
29
|
Jain R, Ganesan RA. Reliable sleep staging of unseen subjects with fusion of multiple EEG features and RUSBoost. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.103061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
30
|
Single upper limb functional movements decoding from motor imagery EEG signals using wavelet neural network. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|