1
|
Aanjankumar S, Sathyamoorthy M, Dhanaraj RK, Surjit Kumar SR, Poonkuntran S, Khadidos AO, Selvarajan S. Prediction of malnutrition in kids by integrating ResNet-50-based deep learning technique using facial images. Sci Rep 2025; 15:7871. [PMID: 40050339 PMCID: PMC11885806 DOI: 10.1038/s41598-025-91825-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 02/24/2025] [Indexed: 03/09/2025] Open
Abstract
In recent times, severe acute malnutrition (SAM) in India is considered a serious issue as per UNICEF 2022 records. In that record, 35.5% of children under age 5 are stunted, 19.3% are wasted, and 32% are underweight. Malnutrition, defined as these three conditions, affects 5.7 million children globally. This research utilizes an artificial intelligence-based image segmentation technique to predict malnutrition in children. The primary goal of this research is to use a deep learning model to eliminate the need for multiple manual diagnostic tests and simplify the prediction of malnutrition in kids. The traditional model uses text-based data and takes more time with continuous monitoring of kids by analysing body mass index (BMI) over different periods. Children in rural areas often miss medical expert appointments, and a lack of knowledge among parents can lead to severe malnutrition. The aim of the proposed system is to eliminate the need for manual blood tests and regular visits to medical experts. This study uses the ResNet-50 deep learning model's built-in shortcut connection to solve the image-based vanishing gradient problem. This makes training more efficient for image segmentation tasks in predicting malnutrition. The model is 98.49% accurate in predicting the kids who are malnourished among the kids who are healthy. It is evident from the results that the proposed system serves better than other deep learning models, such as XG Boost (75.29% accuracy), VGG 16 (94% accuracy), Xception (95.41% accuracy), and MobileNet (92.42% accuracy). Hence, the proposed technique is effective in detecting malnutrition and diagnose it earlier, without using predictive analysis function or advice from the medical experts.
Collapse
Affiliation(s)
- S Aanjankumar
- School of Computing Science and Engineering, VIT Bhopal University, Bhopal-Indore Highway, Kothrikalan, 466114, Sehore, Madhya Pradesh, India
| | - Malathy Sathyamoorthy
- Department of Information Technology, KPR Institute of Engineering and Technology, Coimbatore, India
| | - Rajesh Kumar Dhanaraj
- Symbiosis Institute of Computer Studies and Research (SICSR), Symbiosis International (Deemed University), Pune, India
| | - S R Surjit Kumar
- School of Computing Science and Engineering, VIT Bhopal University, Bhopal-Indore Highway, Kothrikalan, 466114, Sehore, Madhya Pradesh, India
| | - S Poonkuntran
- School of Computing Science and Engineering, VIT Bhopal University, Bhopal-Indore Highway, Kothrikalan, 466114, Sehore, Madhya Pradesh, India
| | - Adil O Khadidos
- Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shitharth Selvarajan
- Department of Computer Science, Kebri Dehar University, Kebri Dehar, Ethiopia.
- Department of Computer Science and Engineering, Chennai Institute of Technology, Chennai, India.
- Centre for Research Impact & Outcome, Chitkara University, Punjab, India.
| |
Collapse
|
2
|
Zhang Y, Ma W, Huang Z, Liu K, Feng Z, Zhang L, Li D, Mo T, Liu Q. Research and application of omics and artificial intelligence in cancer. Phys Med Biol 2024; 69:21TR01. [PMID: 39079556 DOI: 10.1088/1361-6560/ad6951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/30/2024] [Indexed: 10/19/2024]
Abstract
Cancer has a high incidence and lethality rate, which is a significant threat to human health. With the development of high-throughput technologies, different types of cancer genomics data have been accumulated, including genomics, epigenomics, transcriptomics, proteomics, and metabolomics. A comprehensive analysis of various omics data is needed to understand the underlying mechanisms of tumor development. However, integrating such a massive amount of data is one of the main challenges today. Artificial intelligence (AI) techniques such as machine learning are now becoming practical tools for analyzing and understanding multi-omics data on diseases. Enabling great optimization of existing research paradigms for cancer screening, diagnosis, and treatment. In addition, intelligent healthcare has received widespread attention with the development of healthcare informatization. As an essential part of innovative healthcare, practical, intelligent prognosis analysis and personalized treatment for cancer patients are also necessary. This paper introduces the advanced multi-omics data analysis technology in recent years, presents the cases and advantages of the combination of both omics data and AI applied to cancer diseases, and finally briefly describes the challenges faced by multi-omics analysis and AI at the current stage, aiming to provide new perspectives for oncology research and the possibility of personalized cancer treatment.
Collapse
Affiliation(s)
- Ye Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Wenwen Ma
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Zhiqiang Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Kun Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Zhaoyi Feng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Lei Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Dezhi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Tianlu Mo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Qing Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| |
Collapse
|
3
|
Li X, Fu C, Xu S, Sham CW. Thyroid Ultrasound Image Database and Marker Mask Inpainting Method for Research and Development. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:509-519. [PMID: 38267314 DOI: 10.1016/j.ultrasmedbio.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 01/26/2024]
Abstract
OBJECTIVE The main objective of this study was to build a rich and high-quality thyroid ultrasound image database (TUD) for computer-aided diagnosis (CAD) systems to support accurate diagnosis and prognostic modeling of thyroid disorders. Because most of the raw thyroid ultrasound images contain artificial markers, which seriously affect the robustness of CAD systems because of their strong prior location information, we propose a marker mask inpainting (MMI) method to erase artificial markers and improve image quality. METHODS First, a set of thyroid ultrasound images were collected from the General Hospital of the Northern Theater Command. Then, two modules were designed in MMI, namely, the marker detection (MD) module and marker erasure (ME) module. The MD module detects all markers in the image and stores them in a binary mask. According to the binary mask, the ME module erases the markers and generates an unmarked image. Finally, a new TUD based on the marked images and unmarked images was built. The TUD is carefully annotated and statistically analyzed by professional physicians to ensure accuracy and consistency. Moreover, several normal thyroid gland images and some ancillary information on benign and malignant nodules are provided. RESULTS Several typical segmentation models were evaluated on the TUD. The experimental results revealed that our TUD can facilitate the development of more accurate CAD systems for the analysis of thyroid nodule-related lesions in ultrasound images. The effectiveness of our MMI method was determined in quantitative experiments. CONCLUSION The rich and high-quality resource TUD promotes the development of more effective diagnostic and treatment methods for thyroid diseases. Furthermore, MMI for erasing artificial markers and generating unmarked images is proposed to improve the quality of thyroid ultrasound images. Our TUD database is available at https://github.com/NEU-LX/TUD-Datebase.
Collapse
Affiliation(s)
- Xiang Li
- School of Computer Science and Engineering, Northeastern University, Shenyang, China
| | - Chong Fu
- School of Computer Science and Engineering, Northeastern University, Shenyang, China.
| | - Sen Xu
- General Hospital of Northern Theatre Command, Shenyang, China
| | - Chiu-Wing Sham
- School of Computer Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Sharma P, Nayak DR, Balabantaray BK, Tanveer M, Nayak R. A survey on cancer detection via convolutional neural networks: Current challenges and future directions. Neural Netw 2024; 169:637-659. [PMID: 37972509 DOI: 10.1016/j.neunet.2023.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/21/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
Cancer is a condition in which abnormal cells uncontrollably split and damage the body tissues. Hence, detecting cancer at an early stage is highly essential. Currently, medical images play an indispensable role in detecting various cancers; however, manual interpretation of these images by radiologists is observer-dependent, time-consuming, and tedious. An automatic decision-making process is thus an essential need for cancer detection and diagnosis. This paper presents a comprehensive survey on automated cancer detection in various human body organs, namely, the breast, lung, liver, prostate, brain, skin, and colon, using convolutional neural networks (CNN) and medical imaging techniques. It also includes a brief discussion about deep learning based on state-of-the-art cancer detection methods, their outcomes, and the possible medical imaging data used. Eventually, the description of the dataset used for cancer detection, the limitations of the existing solutions, future trends, and challenges in this domain are discussed. The utmost goal of this paper is to provide a piece of comprehensive and insightful information to researchers who have a keen interest in developing CNN-based models for cancer detection.
Collapse
Affiliation(s)
- Pallabi Sharma
- School of Computer Science, UPES, Dehradun, 248007, Uttarakhand, India.
| | - Deepak Ranjan Nayak
- Department of Computer Science and Engineering, Malaviya National Institute of Technology, Jaipur, 302017, Rajasthan, India.
| | - Bunil Kumar Balabantaray
- Computer Science and Engineering, National Institute of Technology Meghalaya, Shillong, 793003, Meghalaya, India.
| | - M Tanveer
- Department of Mathematics, Indian Institute of Technology Indore, Simrol, 453552, Indore, India.
| | - Rajashree Nayak
- School of Applied Sciences, Birla Global University, Bhubaneswar, 751029, Odisha, India.
| |
Collapse
|
5
|
Jiang Q, Yue X, Lei H, Mao W, Li Y, Chen X. Comparison of survival outcomes between clinical trial participants and non-participants of patients with advanced non-small cell lung cancer: A retrospective cohort study. Heliyon 2023; 9:e22660. [PMID: 38076123 PMCID: PMC10709500 DOI: 10.1016/j.heliyon.2023.e22660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Clinical trials for advanced non-small cell lung cancer (NSCLC) have been conducted extensively. However, the effect of participation in clinical trials on survival outcomes remains unclear. This study aimed to assess whether participation in clinical trials was an independent prognostic factor for survival in patients with advanced NSCLC. METHODS We analyzed the medical records of patients aged ≥18 years who were newly diagnosed with stage IIIB or IV NSCLC and received chemotherapy or immunotherapy from September 2016 to June 2020 in this retrospective cohort study. To reduce the impact of confounding factors, propensity score matching (PSM) was performed. The Kaplan-Meier method and log-rank test were used to calculate and compare the overall survival (OS) and progression-free survival (PFS) of the patients. Finally, Cox proportional hazards regression was employed to examine the correlation between clinical trial participation and survival outcomes. RESULTS The study enrolled 155 patients in total, of which 62 (40.0 %) patients participated in NSCLC clinical trials. PSM identified 50 pairs of patients in total. The median PFS and OS of clinical trial participants and non-participants were 17.2 vs. 13.9 months (p = 0.554) and 32.4 vs. 36.5 months (p = 0.968), respectively. According to the results of multivariate Cox proportional hazards regression analysis, clinical trial participation was not an independent prognostic factor for advanced NSCLC patients (HR: 0.89, 95 % CI: 0.50-1.61; p = 0.701). CONCLUSIONS The clinical trial participants with advanced NSCLC displayed similar survival outcomes compared with the non-participating patients in this cohort.
Collapse
Affiliation(s)
| | | | - Haike Lei
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Weiran Mao
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yongsheng Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Xia Chen
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| |
Collapse
|
6
|
Zheng S, Huang X, Chen J, Lyu Z, Zheng J, Huang J, Gao H, Liu S, Sun L. UR-Net: An Integrated ResUNet and Attention Based Image Enhancement and Classification Network for Stain-Free White Blood Cells. SENSORS (BASEL, SWITZERLAND) 2023; 23:7605. [PMID: 37688058 PMCID: PMC10490639 DOI: 10.3390/s23177605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/08/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
The differential count of white blood cells (WBCs) can effectively provide disease information for patients. Existing stained microscopic WBC classification usually requires complex sample-preparation steps, and is easily affected by external conditions such as illumination. In contrast, the inconspicuous nuclei of stain-free WBCs also bring great challenges to WBC classification. As such, image enhancement, as one of the preprocessing methods of image classification, is essential in improving the image qualities of stain-free WBCs. However, traditional or existing convolutional neural network (CNN)-based image enhancement techniques are typically designed as standalone modules aimed at improving the perceptual quality of humans, without considering their impact on advanced computer vision tasks of classification. Therefore, this work proposes a novel model, UR-Net, which consists of an image enhancement network framed by ResUNet with an attention mechanism and a ResNet classification network. The enhancement model is integrated into the classification model for joint training to improve the classification performance for stain-free WBCs. The experimental results demonstrate that compared to the models without image enhancement and previous enhancement and classification models, our proposed model achieved a best classification performance of 83.34% on our stain-free WBC dataset.
Collapse
Affiliation(s)
- Sikai Zheng
- Ministry of Education Key Laboratory of RF Circuits and Systems, Hangzhou Dianzi University, Hangzhou 310018, China; (S.Z.); (J.C.); (Z.L.); (J.Z.); (J.H.); (L.S.)
| | - Xiwei Huang
- Ministry of Education Key Laboratory of RF Circuits and Systems, Hangzhou Dianzi University, Hangzhou 310018, China; (S.Z.); (J.C.); (Z.L.); (J.Z.); (J.H.); (L.S.)
| | - Jin Chen
- Ministry of Education Key Laboratory of RF Circuits and Systems, Hangzhou Dianzi University, Hangzhou 310018, China; (S.Z.); (J.C.); (Z.L.); (J.Z.); (J.H.); (L.S.)
| | - Zefei Lyu
- Ministry of Education Key Laboratory of RF Circuits and Systems, Hangzhou Dianzi University, Hangzhou 310018, China; (S.Z.); (J.C.); (Z.L.); (J.Z.); (J.H.); (L.S.)
| | - Jingwen Zheng
- Ministry of Education Key Laboratory of RF Circuits and Systems, Hangzhou Dianzi University, Hangzhou 310018, China; (S.Z.); (J.C.); (Z.L.); (J.Z.); (J.H.); (L.S.)
| | - Jiye Huang
- Ministry of Education Key Laboratory of RF Circuits and Systems, Hangzhou Dianzi University, Hangzhou 310018, China; (S.Z.); (J.C.); (Z.L.); (J.Z.); (J.H.); (L.S.)
| | - Haijun Gao
- Ministry of Education Key Laboratory of RF Circuits and Systems, Hangzhou Dianzi University, Hangzhou 310018, China; (S.Z.); (J.C.); (Z.L.); (J.Z.); (J.H.); (L.S.)
| | - Shan Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China;
| | - Lingling Sun
- Ministry of Education Key Laboratory of RF Circuits and Systems, Hangzhou Dianzi University, Hangzhou 310018, China; (S.Z.); (J.C.); (Z.L.); (J.Z.); (J.H.); (L.S.)
| |
Collapse
|
7
|
Xiao H, Liu Q, Li L. MFMANet: Multi-feature Multi-attention Network for efficient subtype classification on non-small cell lung cancer CT images. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
8
|
A novel ensemble CNN model for COVID-19 classification in computerized tomography scans. RESULTS IN CONTROL AND OPTIMIZATION 2023; 11:100215. [PMCID: PMC9936787 DOI: 10.1016/j.rico.2023.100215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/26/2022] [Accepted: 02/10/2023] [Indexed: 11/30/2024]
Abstract
COVID-19 is a rapidly spread infectious disease caused by a severe acute respiratory syndrome that can lead to death in just a few days. Thus, early disease detection can provide more time for successful treatment or action, even though an efficient treatment is unknown so far. In this context, this work proposes and investigates four ensemble CNNs using transfer learning and compares them with state-of-art CNN architectures. To select which models to use we tested 11 state-of-art CNN architectures: DenseNet121, DenseNet169, DenseNet201, VGG16, VGG19, Xception, ResNet50, ResNet50v2, InceptionV3, MobileNet, and MobileNetv2. We used a public dataset comprised of 2477 computerized tomography images divided into two classes: patients diagnosed with COVID-19 and patients with a negative diagnosis. Then three architectures were selected: DenseNet169, VGG16, and Xception. Finally, the ensemble models were tested in all possible combinations. The results showed that the ensemble models tend to present the best results. Moreover, the best ensemble CNN, called EnsenbleDVX, comprising all the three CNNs, provides the best results achieving an average accuracy of 97.7%, an average precision of 97.7%, an average recall of 97.8%, and an F1 average score of 97.7%
Collapse
|
9
|
Li X, Li M, Yan P, Li G, Jiang Y, Luo H, Yin S. Deep Learning Attention Mechanism in Medical Image Analysis: Basics and Beyonds. INTERNATIONAL JOURNAL OF NETWORK DYNAMICS AND INTELLIGENCE 2023:93-116. [DOI: 10.53941/ijndi0201006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2025]
Abstract
Survey/review study Deep Learning Attention Mechanism in Medical Image Analysis: Basics and Beyonds Xiang Li 1, Minglei Li 1, Pengfei Yan 1, Guanyi Li 1, Yuchen Jiang 1, Hao Luo 1,*, and Shen Yin 2 1 Department of Control Science and Engineering, Harbin Institute of Technology, Harbin 150001, China 2 Department of Mechanical and Industrial Engineering, Faculty of Engineering, Norwegian University of Science and Technology, Trondheim 7034, Norway * Correspondence: hao.luo@hit.edu.cn Received: 16 October 2022 Accepted: 25 November 2022 Published: 27 March 2023 Abstract: With the improvement of hardware computing power and the development of deep learning algorithms, a revolution of "artificial intelligence (AI) + medical image" is taking place. Benefiting from diversified modern medical measurement equipment, a large number of medical images will be produced in the clinical process. These images improve the diagnostic accuracy of doctors, but also increase the labor burden of doctors. Deep learning technology is expected to realize an auxiliary diagnosis and improve diagnostic efficiency. At present, the method of deep learning technology combined with attention mechanism is a research hotspot and has achieved state-of-the-art results in many medical image tasks. This paper reviews the deep learning attention methods in medical image analysis. A comprehensive literature survey is first conducted to analyze the keywords and literature. Then, we introduce the development and technical characteristics of the attention mechanism. For its application in medical image analysis, we summarize the related methods in medical image classification, segmentation, detection, and enhancement. The remaining challenges, potential solutions, and future research directions are also discussed.
Collapse
|
10
|
Pandiyan S, Wang L. A comprehensive review on recent approaches for cancer drug discovery associated with artificial intelligence. Comput Biol Med 2022; 150:106140. [PMID: 36179510 DOI: 10.1016/j.compbiomed.2022.106140] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/20/2022] [Accepted: 09/18/2022] [Indexed: 11/03/2022]
Abstract
Through the revolutionization of artificial intelligence (AI) technologies in clinical research, significant improvement is observed in diagnosis of cancer. Utilization of these AI technologies, such as machine and deep learning, is imperative for the discovery of novel anticancer drugs and improves existing/ongoing cancer therapeutics. However, building a model for complicated cancers and their types remains a challenge due to lack of effective therapeutics that hinder the establishment of effective computational tools. In this review, we exploit recent approaches and state-of-the-art in implementing AI methods for anticancer drug discovery, and discussed how advances in these applications need to be considered in the current cancer therapeutics. Considering the immense potential of AI, we explore molecular docking and their interactions to recognize metabolic activities that support drug design. Finally, we highlight corresponding strategies in applying machine and deep learning methods to various types of cancer with their pros and cons.
Collapse
Affiliation(s)
- Sanjeevi Pandiyan
- Research Center for Intelligent Information Technology, Nantong University, Nantong, China; School of Information Science and Technology, Nantong University, Nantong, China; Nantong Research Institute for Advanced Communication Technologies, Nantong, China
| | - Li Wang
- Research Center for Intelligent Information Technology, Nantong University, Nantong, China; School of Information Science and Technology, Nantong University, Nantong, China; Nantong Research Institute for Advanced Communication Technologies, Nantong, China.
| |
Collapse
|