1
|
Zwolschen JW, Tomassen MMM, Vos AP, Schols HA. Methyl-esterification, degree of polymerization and ∆4,5-unsaturation of galacturonic acid oligosaccharides as determinants of immunomodulation. Carbohydr Polym 2025; 350:123052. [PMID: 39647953 DOI: 10.1016/j.carbpol.2024.123052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/10/2024]
Abstract
In recent years, immunomodulation by pectin and pectin-derived galacturonic acid oligosaccharides has been the subject of wide-spread scientific research due to the potential of different pectin structures as bioactive biomolecules. Yet, gaps remain in understanding the structure-dependent immunomodulation of galacturonic acid. This study describes in vitro immunomodulatory effects of well-characterized galacturonic acid oligosaccharides. Both methyl-esterified and non-methyl-esterified galacturonic acid oligosaccharides with a saturated non-reducing end (degree of polymerization 1-10) significantly induced cytokine production by THP-1 macrophages and directly activated TLR2 and TLR4 in transfected HEK-293 cells, even when accounting for minor endotoxin contamination. In contrast, both methyl-esterified and non-methyl-esterified galacturonic acid oligosaccharides with a Δ4,5-unsaturated non-reducing end (degree of polymerization 1-7) did not activate TLR2 and TLR4 and led to significantly reduced cytokine production (p < 0.05), suggesting Δ4,5-(un)saturation as a pivotal factor for immunomodulation by galacturonic acid oligosaccharides. Exposure to non-methyl-esterified saturated galacturonic acid oligosaccharides resulted in significantly lower TNF-α production, IL-1β production and TLR4 activation (p < 0.05) compared to methyl-esterified saturated galacturonic acid oligosaccharides, while IL-10 production and TLR2 activation remained unchanged. These findings establish galacturonic acid oligosaccharides as versatile immunomodulators with TLR2 and TLR4 binding capacity, fit for different immunomodulatory applications depending on their structural characteristics.
Collapse
Affiliation(s)
- J W Zwolschen
- Wageningen University & Research, Laboratory of Food Chemistry, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - M M M Tomassen
- Wageningen Food & Biobased Research, Wageningen, the Netherlands
| | - A P Vos
- Wageningen Food & Biobased Research, Wageningen, the Netherlands
| | - H A Schols
- Wageningen University & Research, Laboratory of Food Chemistry, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| |
Collapse
|
2
|
Weyer R, Hellmann MJ, Hamer-Timmermann SN, Singh R, Moerschbacher BM. Customized chitooligosaccharide production-controlling their length via engineering of rhizobial chitin synthases and the choice of expression system. Front Bioeng Biotechnol 2022; 10:1073447. [PMID: 36588959 PMCID: PMC9795070 DOI: 10.3389/fbioe.2022.1073447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Chitooligosaccharides (COS) have attracted attention from industry and academia in various fields due to their diverse bioactivities. However, their conventional chemical production is environmentally unfriendly and in addition, defined and pure molecules are both scarce and expensive. A promising alternative is the in vivo synthesis of desired COS in microbial platforms with specific chitin synthases enabling a more sustainable production. Hence, we examined the whole cell factory approach with two well-established microorganisms-Escherichia coli and Corynebacterium glutamicum-to produce defined COS with the chitin synthase NodC from Rhizobium sp. GRH2. Moreover, based on an in silico model of the synthase, two amino acids potentially relevant for COS length were identified and mutated to direct the production. Experimental validation showed the influence of the expression system, the mutations, and their combination on COS length, steering the production from originally pentamers towards tetramers or hexamers, the latter virtually pure. Possible explanations are given by molecular dynamics simulations. These findings pave the way for a better understanding of chitin synthases, thus allowing a more targeted production of defined COS. This will, in turn, at first allow better research of COS' bioactivities, and subsequently enable sustainable large-scale production of oligomers.
Collapse
|
3
|
Marzuki I, Septiningsih E, Kaseng ES, Herlinah H, Sahrijanna A, Sahabuddin S, Asaf R, Athirah A, Isnawan BH, Samidjo GS, Rumagia F, Hamidah E, Santi IS, Nisaa K. Investigation of Global Trends of Pollutants in Marine Ecosystems around Barrang Caddi Island, Spermonde Archipelago Cluster: An Ecological Approach. TOXICS 2022; 10:301. [PMID: 35736909 PMCID: PMC9229392 DOI: 10.3390/toxics10060301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 12/24/2022]
Abstract
High-quality marine ecosystems are free from global trending pollutants' (GTP) contaminants. Accuracy and caution are needed during the exploitation of marine resources during marine tourism to prevent future ecological hazards that cause chain effects on aquatic ecosystems and humans. This article identifies exposure to GTP: microplastic (MP); polycyclic aromatic hydrocarbons (PAH); pesticide residue (PR); heavy metal (HM); and medical waste (MW), in marine ecosystems in the marine tourism area (MTA) area and Barrang Caddi Island (BCI) waters. A combination of qualitative and quantitative analysis methods were used with analytical instruments and mathematical formulas. The search results show the average total abundance of MPs in seawater (5.47 units/m3) and fish samples (7.03 units/m3), as well as in the sediment and sponge samples (8.18 units/m3) and (8.32 units/m3). Based on an analysis of the polymer structure, it was identified that the dominant light group was MPs: polyethylene (PE); polypropylene (PP); polystyrene (PS); followed by polyamide-nylon (PA); and polycarbonate (PC). Several PAH pollutants were identified in the samples. In particular, naphthalene (NL) types were the most common pollutants in all of the samples, followed by pyrene (PN), and azulene (AZ). Pb+2 and Cu+2 pollutants around BCI were successfully calculated, showing average concentrations in seawater of 0.164 ± 0.0002 mg/L and 0.293 ± 0.0007 mg/L, respectively, while in fish, the concentrations were 1.811 ± 0.0002 µg/g and 4.372 ± 0.0003 µg/g, respectively. Based on these findings, the BCI area is not recommended as a marine tourism destination.
Collapse
Affiliation(s)
- Ismail Marzuki
- Department of Chemical Engineering, Fajar University, Makassar 90231, South Sulawesi, Indonesia
| | - Early Septiningsih
- Research Institute for Coastal Aquaculture and Fisheries Extension, Maros 90512, South Sulawesi, Indonesia; (E.S.); (E.S.K.); (H.H.); (A.S.); (S.S.); (R.A.); (A.A.)
| | - Ernawati Syahruddin Kaseng
- Research Institute for Coastal Aquaculture and Fisheries Extension, Maros 90512, South Sulawesi, Indonesia; (E.S.); (E.S.K.); (H.H.); (A.S.); (S.S.); (R.A.); (A.A.)
| | - Herlinah Herlinah
- Research Institute for Coastal Aquaculture and Fisheries Extension, Maros 90512, South Sulawesi, Indonesia; (E.S.); (E.S.K.); (H.H.); (A.S.); (S.S.); (R.A.); (A.A.)
| | - Andi Sahrijanna
- Research Institute for Coastal Aquaculture and Fisheries Extension, Maros 90512, South Sulawesi, Indonesia; (E.S.); (E.S.K.); (H.H.); (A.S.); (S.S.); (R.A.); (A.A.)
| | - Sahabuddin Sahabuddin
- Research Institute for Coastal Aquaculture and Fisheries Extension, Maros 90512, South Sulawesi, Indonesia; (E.S.); (E.S.K.); (H.H.); (A.S.); (S.S.); (R.A.); (A.A.)
| | - Ruzkiah Asaf
- Research Institute for Coastal Aquaculture and Fisheries Extension, Maros 90512, South Sulawesi, Indonesia; (E.S.); (E.S.K.); (H.H.); (A.S.); (S.S.); (R.A.); (A.A.)
| | - Admi Athirah
- Research Institute for Coastal Aquaculture and Fisheries Extension, Maros 90512, South Sulawesi, Indonesia; (E.S.); (E.S.K.); (H.H.); (A.S.); (S.S.); (R.A.); (A.A.)
| | - Bambang Heri Isnawan
- Department of Agrotechnology, Universitas Muhammadiyah Yogyakarta, Bantul 55183, DI Yogyakarta, Indonesia; (B.H.I.); (G.S.S.)
| | - Gatot Supangkat Samidjo
- Department of Agrotechnology, Universitas Muhammadiyah Yogyakarta, Bantul 55183, DI Yogyakarta, Indonesia; (B.H.I.); (G.S.S.)
| | - Faizal Rumagia
- Study Program of Fisheries Resource Utilization, Faculty of Fisheries and Marine, Khairun University, Ternate 97719, North Maluku, Indonesia;
| | - Emmy Hamidah
- Department of Agrotechnology, Universitas Islam Darul ‘Ulum, Lamongan 62253, Jawa Timur, Indonesia;
| | - Idum Satia Santi
- Department of Agrotechnology, Institut Pertanian Stiper, Yogyakarta 55283, DI Yogyakarta, Indonesia;
| | - Khairun Nisaa
- National Research and Innovation Agency (BRIN), Jakarta 10340, DKI, Indonesia;
| |
Collapse
|
4
|
Shahraz A, Lin Y, Mbroh J, Winkler J, Liao H, Lackmann M, Bungartz A, Zipfel PF, Skerka C, Neumann H. Low molecular weight polysialic acid binds to properdin and reduces the activity of the alternative complement pathway. Sci Rep 2022; 12:5818. [PMID: 35388026 PMCID: PMC8987038 DOI: 10.1038/s41598-022-09407-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 03/21/2022] [Indexed: 11/09/2022] Open
Abstract
Sialic acids as the terminal caps of the cellular glycocalyx play an essential role in self-recognition and were shown to modulate complement processes via interaction between α2,3-linked sialic acids and complement factor H. Previously, it was suggested that low molecular weight α2,8-linked polysialic acid (polySia avDP20) interferes with complement activation, but the exact molecular mechanism is still unclear. Here, we show that soluble polySia avDP20 (molecular weight of ~ 6 kDa) reduced the binding of serum-derived alternative pathway complement activator properdin to the cell surface of lesioned Hepa-1c1c7 and PC-12 neuroblastoma cells. Furthermore, polySia avDP20 added to human serum blocked the alternative complement pathway triggered by plate-bound lipopolysaccharides. Interestingly, no inhibitory effect was observed with monosialic acid or oligosialic acid with a chain length of DP3 and DP5. In addition, polySia avDP20 directly bound properdin, but not complement factor H. These data show that soluble polySia avDP20 binds properdin and reduces the alternative complement pathway activity. Results strengthen the previously described concept of self-recognition of sialylation as check-point control of complement activation in innate immunity.
Collapse
Affiliation(s)
- Anahita Shahraz
- Neural Regeneration Unit, Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Yuchen Lin
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Joshua Mbroh
- Neural Regeneration Unit, Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Jonas Winkler
- Neural Regeneration Unit, Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Huan Liao
- Neural Regeneration Unit, Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Marie Lackmann
- Neural Regeneration Unit, Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Annemarie Bungartz
- Neural Regeneration Unit, Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany.,Infection Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Harald Neumann
- Neural Regeneration Unit, Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
5
|
Razdan S, Adler J, Barua D, Barua S. Multifunctional Biofilter to Effectively Remove Toxins. ACS APPLIED BIO MATERIALS 2021. [DOI: 10.1021/acsabm.0c01282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Bartling B, Brüchle NC, Rehfeld JS, Boßmann D, Fiebig T, Litschko C, Fohrer J, Gerardy-Schahn R, Scheper T, Beutel S. Accelerated production of α2,8- and α2,9-linked polysialic acid in recombinant Escherichia coli using high cell density cultivation. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 28:e00562. [PMID: 33304838 PMCID: PMC7711218 DOI: 10.1016/j.btre.2020.e00562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/05/2020] [Accepted: 11/17/2020] [Indexed: 11/29/2022]
Abstract
Polysialic acid (polySia) are α2,8- and/or α2,9-linked homopolymers with interesting properties for meningococcal vaccine development or the cure of human neurodegenerative disorders. With the goal to avoid large scale production of pathogenic bacteria, we compare in the current study the efficacy of conventional polySia production to recombinant approaches using the engineered laboratory safety strain E. coli BL21. High cell density cultivation (HCDC) experiments were performed in two different bioreactor systems. Increased cell densities of up to 11.3 (±0.4) g/L and polySia concentrations of up to 774 (±18) mg/L were reached in E. coli K1. However, cultivation of engineered E. coli BL21 strains delivered comparable cell densities but a maximum of only 133 mg/L polySia. Using established downstream procedures, host cell DNA and proteins were removed. All recombinant polySia products showed an identical degree of polymerization >90. Polymers with different glycosidic linkages could be successfully differentiated by nuclear magnetic resonance spectroscopy.
Collapse
Affiliation(s)
- Bastian Bartling
- Institute of Technical Chemistry, Leibniz University Hannover, D-30167 Hannover, Germany
| | - Nora C. Brüchle
- Institute of Technical Chemistry, Leibniz University Hannover, D-30167 Hannover, Germany
| | - Johanna S. Rehfeld
- Institute of Technical Chemistry, Leibniz University Hannover, D-30167 Hannover, Germany
| | - Daniel Boßmann
- Institute of Technical Chemistry, Leibniz University Hannover, D-30167 Hannover, Germany
| | - Timm Fiebig
- Institute of Clinical Biochemistry, Hannover Medical School, D-30625 Hannover, Germany
| | - Christa Litschko
- Institute of Clinical Biochemistry, Hannover Medical School, D-30625 Hannover, Germany
| | - Jörg Fohrer
- Institute of Organic Chemistry, Leibniz University Hannover, D-30167 Hannover, Germany
| | - Rita Gerardy-Schahn
- Institute of Clinical Biochemistry, Hannover Medical School, D-30625 Hannover, Germany
| | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University Hannover, D-30167 Hannover, Germany
| | - Sascha Beutel
- Institute of Technical Chemistry, Leibniz University Hannover, D-30167 Hannover, Germany
| |
Collapse
|
7
|
Liu L, Bilal M, Luo H, Zhao Y, Duan X. Studies on Biological Production of Isomaltulose Using Sucrose Isomerase: Current Status and Future Perspectives. Catal Letters 2020. [DOI: 10.1007/s10562-020-03439-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Bartling B, Rehfeld J, Boßmann D, Scheper T, Beutel S. Biotechnologische Produktion von niedermolekularer Polysialinsäure für pharmazeutische Applikationen. CHEM-ING-TECH 2020. [DOI: 10.1002/cite.202055084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- B. Bartling
- Leibniz Universität Hannover Institut für Technische Chemie Callinstr. 5 30167 Hannover Deutschland
| | - J. S. Rehfeld
- Leibniz Universität Hannover Institut für Technische Chemie Callinstr. 5 30167 Hannover Deutschland
| | - D. Boßmann
- Leibniz Universität Hannover Institut für Technische Chemie Callinstr. 5 30167 Hannover Deutschland
| | - T. Scheper
- Leibniz Universität Hannover Institut für Technische Chemie Callinstr. 5 30167 Hannover Deutschland
| | - S. Beutel
- Leibniz Universität Hannover Institut für Technische Chemie Callinstr. 5 30167 Hannover Deutschland
| |
Collapse
|
9
|
Schneier M, Razdan S, Miller AM, Briceno ME, Barua S. Current technologies to endotoxin detection and removal for biopharmaceutical purification. Biotechnol Bioeng 2020; 117:2588-2609. [PMID: 32333387 DOI: 10.1002/bit.27362] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/21/2022]
Abstract
Endotoxins are the major contributors to the pyrogenic response caused by contaminated pharmaceutical products, formulation ingredients, and medical devices. Recombinant biopharmaceutical products are manufactured using living organisms, including Gram-negative bacteria. Upon the death of a Gram-negative bacterium, endotoxins (also known as lipopolysaccharides) in the outer cell membrane are released into the lysate where they can interact with and form bonds with biomolecules, including target therapeutic compounds. Endotoxin contamination of biologic products may also occur through water, raw materials such as excipients, media, additives, sera, equipment, containers closure systems, and expression systems used in manufacturing. The manufacturing process is, therefore, in critical need of methods to reduce and remove endotoxins by monitoring raw materials and in-process intermediates at critical steps, in addition to final drug product release testing. This review paper highlights a discussion on three major topics about endotoxin detection techniques, upstream processes for the production of therapeutic molecules, and downstream processes to eliminate endotoxins during product purification. Finally, we have evaluated the effectiveness of endotoxin removal processes from a perspective of high purity and low cost.
Collapse
Affiliation(s)
- Mason Schneier
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri
| | - Sidharth Razdan
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri
| | - Allison M Miller
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri
| | - Maria E Briceno
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri
| | - Sutapa Barua
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri
| |
Collapse
|
10
|
Bartling B, Rehfeld JS, Boßmann D, de Vries I, Fohrer J, Lammers F, Scheper T, Beutel S. Determination of the Structural Integrity and Stability of Polysialic Acid during Alkaline and Thermal Treatment. Molecules 2019; 25:E165. [PMID: 31906121 PMCID: PMC6982714 DOI: 10.3390/molecules25010165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 11/16/2022] Open
Abstract
Polysialic acid (polySia) is a linear homopolymer of varying chain lengths that exists mostly on the outer cell membrane surface of certain bacteria, such as Escherichia coli (E. coli) K1. PolySia, with an average degree of polymerization of 20 (polySia avDP20), possesses material properties that can be used for therapeutic applications to treat inflammatory neurodegenerative diseases. The fermentation of E. coli K1 enables the large-scale production of endogenous long-chain polySia (DP ≈ 130) (LC polySia), from which polySia avDP20 can be manufactured using thermal hydrolysis. To ensure adequate biopharmaceutical quality of the product, the removal of byproducts and contaminants, such as endotoxins, is essential. Recent studies have revealed that the long-term incubation in alkaline sodium hydroxide (NaOH) solutions reduces the endotoxin content down to 3 EU (endotoxin units) per mg, which is in the range of pharmaceutical applications. In this study, we analyzed interferences in the intramolecular structure of polySia caused by harsh NaOH treatment or thermal hydrolysis. Nuclear magnetic resonance (NMR) spectroscopy revealed that neither the incubation in an alkaline solution nor the thermal hydrolysis induced any chemical modification. In addition, HPLC analysis with a preceding 1,2-diamino-4,5-methylenedioxybenzene (DMB) derivatization demonstrated that the alkaline treatment did not induce any hydrolytic effects to reduce the maximum polymer length and that the controlled thermal hydrolysis reduced the maximum chain length effectively, while cost-effective incubation in alkaline solutions had no adverse effects on LC polySia. Therefore, both methods guarantee the production of high-purity, low-molecular-weight polySia without alterations in the structure, which is a prerequisite for the submission of a marketing authorization application as a medicinal product. However, a specific synthesis of low-molecular-weight polySia with defined chain lengths is only possible to a limited extent.
Collapse
Affiliation(s)
- Bastian Bartling
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany; (B.B.); (J.S.R.); (D.B.); (I.d.V.); (T.S.)
| | - Johanna S. Rehfeld
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany; (B.B.); (J.S.R.); (D.B.); (I.d.V.); (T.S.)
| | - Daniel Boßmann
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany; (B.B.); (J.S.R.); (D.B.); (I.d.V.); (T.S.)
| | - Ingo de Vries
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany; (B.B.); (J.S.R.); (D.B.); (I.d.V.); (T.S.)
| | - Jörg Fohrer
- Institute of Organic Chemistry, Leibniz University Hannover, 30167 Hannover, Germany;
| | - Frank Lammers
- Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, 65929 Frankfurt am Main, Germany;
| | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany; (B.B.); (J.S.R.); (D.B.); (I.d.V.); (T.S.)
| | - Sascha Beutel
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany; (B.B.); (J.S.R.); (D.B.); (I.d.V.); (T.S.)
| |
Collapse
|
11
|
Charged aerosol detector HPLC as a characterization and quantification application of biopharmaceutically relevant polysialic acid from E. coli K1. J Chromatogr A 2019; 1599:85-94. [DOI: 10.1016/j.chroma.2019.03.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/28/2019] [Accepted: 03/31/2019] [Indexed: 11/18/2022]
|
12
|
Bioproduction, purification, and application of polysialic acid. Appl Microbiol Biotechnol 2018; 102:9403-9409. [DOI: 10.1007/s00253-018-9336-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 01/27/2023]
|
13
|
Boßmann D, de Vries I, Schreiber S, Beutel S, Scheper T. Auslegung eines biopharmazeutischen Produktionsprozesses zur Herstellung von Polysialinsäure mittels Single-Use-Technologie. CHEM-ING-TECH 2018. [DOI: 10.1002/cite.201855311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- D. Boßmann
- Leibniz Universität Hannover; Institut für Technische Chemie; Callinstraße 5 30167 Hannover Deutschland
| | - I. de Vries
- Leibniz Universität Hannover; Institut für Technische Chemie; Callinstraße 5 30167 Hannover Deutschland
| | - S. Schreiber
- Leibniz Universität Hannover; Institut für Technische Chemie; Callinstraße 5 30167 Hannover Deutschland
| | - S. Beutel
- Leibniz Universität Hannover; Institut für Technische Chemie; Callinstraße 5 30167 Hannover Deutschland
| | - T. Scheper
- Leibniz Universität Hannover; Institut für Technische Chemie; Callinstraße 5 30167 Hannover Deutschland
| |
Collapse
|
14
|
Broad application and optimization of a single wash-step for integrated endotoxin depletion during protein purification. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1091:101-107. [DOI: 10.1016/j.jchromb.2018.05.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 05/05/2018] [Accepted: 05/19/2018] [Indexed: 11/18/2022]
|