1
|
Walayat N, Yurdunuseven-Yıldız A, Kumar M, Goksen G, Öztekin S, Lorenzo JM. Oxidative stability, quality, and bioactive compounds of oils obtained by ultrasound and microwave-assisted oil extraction. Crit Rev Food Sci Nutr 2023; 64:9974-9991. [PMID: 37272493 DOI: 10.1080/10408398.2023.2219452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Vegetable oils are extracted from oilseeds, fruits and other parts of plants. The method used in oil extraction is of great importance, as it affects both the quality of the final product and the environment. It is desirable that the extraction method be minimally costly, fast, environmentally friendly, and produce oil of high quality and quantity. Common oil extraction methods are mechanical pressing and solvent extraction, and these methods have advantages and disadvantages over each other. Mechanical extraction and solvent extraction are controversial due to poor product quality and high environmental impacts. This review presents applications where conventional oil extraction processes are assisted by microwave or ultrasound. It is necessary to evaluate the impact of ultrasound and microwave-assisted extraction on the quality of the extracted oil and also to compare the results with those of conventional extraction methods. For this purpose, this review discusses the effects of microwave and ultrasound-assisted extraction on the physicochemical, oxidation indices, bioactive compounds, and antioxidant properties of oil extracted from oil seeds and fruits. Furthermore, this review provides readers with in-depth information on the mechanisms involved, their use, and the impact of operating conditions. The yield and quality of the oil obtained by these processes can vary depending on parameters such as microwave power, ultrasound power, processing time, and temperature. Finally, the review also discusses the challenges and advantages of the industrial application of these technologies.
Collapse
Affiliation(s)
- Noman Walayat
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
| | | | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Turkey
| | - Sebahat Öztekin
- Department of Food Engineering, Faculty of Engineering, Bayburt University, Bayburt, Turkey
| | - José Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
| |
Collapse
|
2
|
Muñoz AM, Casimiro-Gonzales S, Gómez-Coca RB, Moreda W, Best I, Cajo-Pinche MI, Loja JF, Ibañez E, Cifuentes A, Ramos-Escudero F. Comparison of Four Oil Extraction Methods for Sinami Fruit ( Oenocarpus mapora H. Karst): Evaluating Quality, Polyphenol Content and Antioxidant Activity. Foods 2022; 11:1518. [PMID: 35627087 PMCID: PMC9141738 DOI: 10.3390/foods11101518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 01/26/2023] Open
Abstract
The sinami palm (Oenocarpus mapora H. Karst) is a plant from the South American Amazonia that has great potential for industrial applications in the development of functional foods, nutraceuticals and cosmeceuticals. In this manuscript, the physicochemical properties, total polyphenol content and antioxidant activity of sinami oil that was obtained using four extraction systems, namely expeller press extraction (EPE), cold press extraction (CPE), ultrasound-assisted extraction (UAE) and supercritical fluid extraction (SFE), were studied and compared. The oxidative stability (OSI) was statistically non-significant in EPE and SFE. The chromatic properties (CIELab) were influenced by the extraction methods and SFE presented high values of L* and a lower content of plant pigments. Ultrasound-assisted extraction showed a higher content of polyphenols and higher antioxidant activity. Different analyses for the evaluation of the physicochemical properties, the content of total polyphenols and antioxidant activity were used to classify sinami oil according to chemometrics using principal component analysis (PCA). For example, the sinami oil that was obtained using each extraction method was in a different part of the plot. In summary, sinami oil is an excellent resource for plant pigments. Additionally, the information that was obtained on the quality parameters in this study provided a good foundation for further studies on the characterization of major and minor compounds.
Collapse
Affiliation(s)
- Ana María Muñoz
- Instituto de Ciencias de Los Alimentos y Nutrición, Universidad San Ignacio de Loyola (ICAN-USIL), Campus Pachacamac, Sección B, Parcela 1, Fundo La Carolina, Pachacamac, Lima 15823, Peru; (A.M.M.); (S.C.-G.); (I.B.)
- Unidad de Investigación en Nutrición, Salud, Alimentos Funcionales y Nutraceúticos, Universidad San Ignacio de Loyola (UNUSAN-USIL), Av. La Fontana 750, Lima 15024, Peru
| | - Sandra Casimiro-Gonzales
- Instituto de Ciencias de Los Alimentos y Nutrición, Universidad San Ignacio de Loyola (ICAN-USIL), Campus Pachacamac, Sección B, Parcela 1, Fundo La Carolina, Pachacamac, Lima 15823, Peru; (A.M.M.); (S.C.-G.); (I.B.)
| | - Raquel B. Gómez-Coca
- Instituto de la Grasa, CSIC, Campus Universidad Pablo de Olavide, Building 46, Ctra. de Utrera km 1, 41013 Sevilla, Spain; (R.B.G.-C.); (W.M.)
| | - Wenceslao Moreda
- Instituto de la Grasa, CSIC, Campus Universidad Pablo de Olavide, Building 46, Ctra. de Utrera km 1, 41013 Sevilla, Spain; (R.B.G.-C.); (W.M.)
| | - Ivan Best
- Instituto de Ciencias de Los Alimentos y Nutrición, Universidad San Ignacio de Loyola (ICAN-USIL), Campus Pachacamac, Sección B, Parcela 1, Fundo La Carolina, Pachacamac, Lima 15823, Peru; (A.M.M.); (S.C.-G.); (I.B.)
- Unidad de Investigación en Nutrición, Salud, Alimentos Funcionales y Nutraceúticos, Universidad San Ignacio de Loyola (UNUSAN-USIL), Av. La Fontana 750, Lima 15024, Peru
| | - María Isabel Cajo-Pinche
- Carrera Profesional de Ingeniería Agroindustrial, Universidad Nacional Amazónica de Madre de Dios (UNAMAD), Jr. Jorge Chávez 1160, Puerto Maldonado 17001, Peru;
| | - Juan Francisco Loja
- Asociación para la Conservación de la Cuenca Amazónica (ACCA), Madre de Dios 17001, Peru;
| | - Elena Ibañez
- Foodomics Laboratory, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain; (E.I.); (A.C.)
| | - Alejandro Cifuentes
- Foodomics Laboratory, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain; (E.I.); (A.C.)
| | - Fernando Ramos-Escudero
- Unidad de Investigación en Nutrición, Salud, Alimentos Funcionales y Nutraceúticos, Universidad San Ignacio de Loyola (UNUSAN-USIL), Av. La Fontana 750, Lima 15024, Peru
- Facultad de Ciencias de la Salud, Universidad San Ignacio de Loyola, Av. La Fontana 750, Lima 15024, Peru
| |
Collapse
|
3
|
A Review on High-Power Ultrasound-Assisted Extraction of Olive Oils: Effect on Oil Yield, Quality, Chemical Composition and Consumer Perception. Foods 2021; 10:foods10112743. [PMID: 34829023 PMCID: PMC8623436 DOI: 10.3390/foods10112743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/27/2021] [Accepted: 11/04/2021] [Indexed: 01/03/2023] Open
Abstract
The objective of this review is to illustrate the state of the art in high-power ultrasound (HPU) application for olive oil extraction with the most recent studies about the effects of HPU treatment on oil yield, quality, chemical composition, as well as on the consumer's perception. All the examined works reported an increase in oil yield and extractability index through the use of HPU, which was ascribed to reduced paste viscosity and cavitation-driven cell disruption. Olive oil legal quality was generally not affected; on the other hand, results regarding oil chemical composition were conflicting with some studies reporting an increase of phenols, tocopherols, and volatile compounds, while others underlined no significant effects to even slight reductions after HPU treatment. Regarding the acceptability of oils extracted through HPU processing, consumer perception is not negatively affected, as long as the marketer effectively delivers information about the positive effects of ultrasound on oil quality and sensory aspect. However, only a few consumers were willing to pay more, and hence the cost of the innovative extraction must be carefully evaluated. Since most of the studies confirm the substantial potential of HPU to reduce processing times, improve process sustainability and produce oils with desired nutritional and sensory quality, this review points out the need for industrial scale-up of such innovative technology.
Collapse
|
4
|
Impact of Emerging Technologies on Virgin Olive Oil Processing, Consumer Acceptance, and the Valorization of Olive Mill Wastes. Antioxidants (Basel) 2021; 10:antiox10030417. [PMID: 33803305 PMCID: PMC8001921 DOI: 10.3390/antiox10030417] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/30/2022] Open
Abstract
There is a growing consumer preference for high quality extra virgin olive oil (EVOO) with health-promoting and sensory properties that are associated with a higher content of phenolic and volatile compounds. To meet this demand, several novel and emerging technologies are being under study to be applied in EVOO production. This review provides an update of the effect of emerging technologies (pulsed electric fields, high pressure, ultrasound, and microwave treatment), compared to traditional EVOO extraction, on yield, quality, and/or content of some minor compounds and bioactive components, including phenolic compounds, tocopherols, chlorophyll, and carotenoids. In addition, the consumer acceptability of EVOO is discussed. Finally, the application of these emerging technologies in the valorization of olive mill wastes, whose generation is of concern due to its environmental impact, is also addressed.
Collapse
|
5
|
Lammi C, Mulinacci N, Cecchi L, Bellumori M, Bollati C, Bartolomei M, Franchini C, Clodoveo ML, Corbo F, Arnoldi A. Virgin Olive Oil Extracts Reduce Oxidative Stress and Modulate Cholesterol Metabolism: Comparison between Oils Obtained with Traditional and Innovative Processes. Antioxidants (Basel) 2020; 9:antiox9090798. [PMID: 32867071 PMCID: PMC7555338 DOI: 10.3390/antiox9090798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 01/02/2023] Open
Abstract
This study was aimed at demonstrating the substantial equivalence of two extra virgin olive oil samples extracted from the same batch of Coratina olives with (OMU) or without (OMN) using ultrasound technology, by performing chemical, biochemical, and cellular investigations. The volatile organic compounds compositions and phenolic profiles were very similar, showing that, while increasing the extraction yields, the innovative process does not change these features. The antioxidant and hypocholesterolemic activities of the extra virgin olive oil (EVOO) phenol extracts were also preserved, since OMU and OMN had equivalent abilities to scavenge the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radicals in vitro and to protect HepG2 cells from oxidative stress induced by H2O2, reducing intracellular reactive oxygen species (ROS) and lipid peroxidation levels. In addition, by inhibiting 3-hydroxy-3-methylglutarylcoenzyme a reductase, both samples modulated the low-density lipoprotein receptor (LDLR) pathway leading to increased LDLR protein levels and activity.
Collapse
Affiliation(s)
- Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (C.B.); (M.B.); (A.A.)
- Correspondence: ; Tel.: +39-025-031-9372
| | - Nadia Mulinacci
- Department of Neuroscience, Psychology, Drug and Child Health, Pharmaceutical and Nutraceutical Section, University of Florence, 50019 Florence, Italy; (N.M.); (L.C.); (M.B.)
| | - Lorenzo Cecchi
- Department of Neuroscience, Psychology, Drug and Child Health, Pharmaceutical and Nutraceutical Section, University of Florence, 50019 Florence, Italy; (N.M.); (L.C.); (M.B.)
| | - Maria Bellumori
- Department of Neuroscience, Psychology, Drug and Child Health, Pharmaceutical and Nutraceutical Section, University of Florence, 50019 Florence, Italy; (N.M.); (L.C.); (M.B.)
| | - Carlotta Bollati
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (C.B.); (M.B.); (A.A.)
| | - Martina Bartolomei
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (C.B.); (M.B.); (A.A.)
| | - Carlo Franchini
- Department of Pharmacy-Pharmaceutical Sciences, University Aldo Moro Bari, 70125 Bari, Italy; (C.F.); (F.C.)
| | - Maria Lisa Clodoveo
- Interdisciplinary Department of Medicine, University Aldo Moro Bari, 70125 Bari, Italy;
| | - Filomena Corbo
- Department of Pharmacy-Pharmaceutical Sciences, University Aldo Moro Bari, 70125 Bari, Italy; (C.F.); (F.C.)
| | - Anna Arnoldi
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (C.B.); (M.B.); (A.A.)
| |
Collapse
|
6
|
Soares VP, Fagundes MB, Guerra DR, Leães YSV, Speroni CS, Robalo SS, Emanuelli T, Cichoski AJ, Wagner R, Barin JS, Bertuol DA, Ballus CA. Ultrasound assisted maceration for improving the aromatization of extra-virgin olive oil with rosemary and basil. Food Res Int 2020; 135:109305. [PMID: 32527490 DOI: 10.1016/j.foodres.2020.109305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 01/18/2023]
Abstract
Aromatization of extra-virgin olive oil (EVOO) with aromatic plants is commonly used to enrich the oil with aromatic and antioxidant compounds. Ultrasound can be an alternative to accelerate this process. The objective of this work was to determine if ultrasound is able to accelerate EVOO aromatization with rosemary and basil and how it affects the migration of volatile and other compounds, the oxidative stability and the antioxidant capacity of the aromatized products. Ultrasound parameters (amplitude, time, and temperature of extraction) were optimized for each herb with central composite designs. Free fatty acid, peroxide value, K232, K270, ΔK, fatty acid profile, total phenolics, antioxidant capacity, polar compounds, oxidative stability and volatile compounds profile were evaluated in all samples. Physical effects of ultrasound on the herbs were observed by scanning electron microscopy. In the optimization, variables related to the oxidative processes were minimized and compounds migration and oxidative stability were maximized. Results were 70.09% amplitude, 36.6 min and 35 °C for rosemary and 95.98% amplitude, 9.9 min and 30 °C for basil. These conditions were compared to 7 and 15 days of conventional maceration (CM). Aromatization of EVOO with rosemary, both by ultrasound assisted maceration (UAM) or CM, improved total phenolics, terpenes, esters, ketones, stability and induction times, as well as decreased the values for the quality parameters. The use of UAM accelerated the process to 37 min. However, aromatization with basil by CM increased the values for the quality parameters and reduced the total phenolics, the antioxidant capacity and the induction and stability times. UAM with basil reached better results than those observed for CM, in only 10 min. In conclusion, rosemary is more appropriate than basil for EVOO aromatization, and UAM was the best choice to accelerate the processes when compared to CM.
Collapse
Affiliation(s)
- Victória Perceval Soares
- Department of Food Science and Technology, Centre for Rural Sciences, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Brazil
| | - Mariane Bittencourt Fagundes
- Department of Food Science and Technology, Centre for Rural Sciences, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Brazil
| | - Daniela Rigo Guerra
- Department of Food Science and Technology, Centre for Rural Sciences, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Brazil
| | - Yasmim Sena Vaz Leães
- Department of Food Science and Technology, Centre for Rural Sciences, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Brazil
| | - Caroline Sefrin Speroni
- Department of Food Science and Technology, Centre for Rural Sciences, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Brazil
| | - Silvino Sasso Robalo
- Department of Food Science and Technology, Centre for Rural Sciences, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Brazil
| | - Tatiana Emanuelli
- Department of Food Science and Technology, Centre for Rural Sciences, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Brazil
| | - Alexandre José Cichoski
- Department of Food Science and Technology, Centre for Rural Sciences, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Brazil
| | - Roger Wagner
- Department of Food Science and Technology, Centre for Rural Sciences, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Brazil
| | - Juliano Smanioto Barin
- Department of Food Science and Technology, Centre for Rural Sciences, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Brazil
| | - Daniel Assumpção Bertuol
- Environmental Process Laboratory (LAPAM), Department of Chemical Engineering, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Brazil
| | - Cristiano Augusto Ballus
- Department of Food Science and Technology, Centre for Rural Sciences, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Brazil.
| |
Collapse
|