1
|
Reang L, Bhatt S, Tomar RS, Joshi K, Padhiyar S, Bhalani H, Kheni J, Vyas UM, Parakhia MV. Extremozymes and compatible solute production potential of halophilic and halotolerant bacteria isolated from crop rhizospheric soils of Southwest Saurashtra Gujarat. Sci Rep 2024; 14:15704. [PMID: 38977706 PMCID: PMC11231302 DOI: 10.1038/s41598-024-63581-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/30/2024] [Indexed: 07/10/2024] Open
Abstract
Halophiles are one of the classes of extremophilic microorganisms that can flourish in environments with very high salt concentrations. In this study, fifteen bacterial strains isolated from various crop rhizospheric soils of agricultural fields along the Southwest coastline of Saurashtra, Gujarat, and identified by 16S rRNA gene sequencing as Halomonas pacifica, H. stenophila, H. salifodinae, H. binhaiensis, Oceanobacillus oncorhynchi, and Bacillus paralicheniformis were investigated for their potentiality to produce extremozymes and compatible solute. The isolates showed the production of halophilic protease, cellulase, and chitinase enzymes ranging from 6.90 to 35.38, 0.004-0.042, and 0.097-0.550 U ml-1, respectively. The production of ectoine-compatible solute ranged from 0.01 to 3.17 mg l-1. Furthermore, the investigation of the ectoine-compatible solute production at the molecular level by PCR showed the presence of the ectoine synthase gene responsible for its biosynthesis in the isolates. Besides, it also showed the presence of glycine betaine biosynthetic gene betaine aldehyde dehydrogenase in the isolates. The compatible solute production by these isolates may be linked to their ability to produce extremozymes under saline conditions, which could protect them from salt-induced denaturation, potentially enhancing their stability and activity. This correlation warrants further investigation.
Collapse
Affiliation(s)
- Likhindra Reang
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Shraddha Bhatt
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India.
| | - Rukam Singh Tomar
- Crop Improvement Section, ICAR - Directorate of Groundnut Research, Junagadh, Gujarat, India
| | - Kavita Joshi
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Shital Padhiyar
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Hiren Bhalani
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - JasminKumar Kheni
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - U M Vyas
- Main Oilseed Research Station, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - M V Parakhia
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| |
Collapse
|
2
|
Malik WA, Javed S. Enhancement of cellulase production by cellulolytic bacteria SB125 in submerged fermentation medium and biochemical characterization of the enzyme. Int J Biol Macromol 2024; 263:130415. [PMID: 38403232 DOI: 10.1016/j.ijbiomac.2024.130415] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 02/01/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Microbial diversity from indigenous cultures has the potential to accelerate lignocellulose degradation through enzymes and make composting economically feasible. Therefore, this study is designed to boost cellulase output from a bacterial strain obtained from soil using a one-variable-at-a-time approach and response surface methodology. The bacteria recognized as Bacillus tequilensis (ON754229) produced the maximum cellulase at a temperature of 37 °C, pH -7.0, and incubation time of 72 h. A major contribution was anticipated by glucose (17 %) and ammonium sulfate (11 %) with cellulase activity of 0.56 U/mL in the optimized medium. The enzyme possessed activity of CMCase, FPase, and amylase of 0.589 μmol/min, 1.22 μmol/min, and 0.92 μmol/min respectively. SDS-PAGE showed a 65 kDa molecular weight of the enzyme capable of degrading cellulose, as confirmed by zymogram analysis. The enzyme showed relatively moderate thermo-stability towards neutral pH conditions possessing optimum conditions at pH 6.5 and temperature of 50 °C. The Km and Vmax values were 11.44 mM and 0.643 μmol/min respectively. The presence of MgSO4, ZnSO4, and Triton X- 100 increased the enzymatic reaction however AgNO3, EDTA, and HgCl2 altered the activation process. These results showed cellulase from B. tequilensis SB125 would be suitable for conventional industrial processes that convert biomass into biofuels.
Collapse
Affiliation(s)
- Waseem Ayoub Malik
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Saleem Javed
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India.
| |
Collapse
|
3
|
Vásquez E, Millones C. Isolation and Identification of Bacteria of Genus Bacillus from Composting Urban Solid Waste and Palm Forest in Northern Peru. Microorganisms 2023; 11:microorganisms11030751. [PMID: 36985324 PMCID: PMC10055787 DOI: 10.3390/microorganisms11030751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/26/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
A technical challenge for composting in Peruvian cities with annual temperatures below 20 °C is that the degradation of municipal solid waste (MSW) is slow, so the identification of cold-adapted bacteria would be interesting for use as inoculants in places with these climatic conditions. This study isolated, identified, and evaluated bacterial strains with cellulolytic and amylolytic activities at low temperatures. Bacterial strains were isolated from the Chachapoyas Municipal Composting Plant and soil from the Ocol Palm Forest in northern Peru. The screening was carried out to evaluate the extracellular enzyme activity of the strains at low temperatures, grouping those with cellulolytic and cellulolytic/amylolytic activities. The DNA-barcoding using 16S rRNA and enzyme activity allowed the identification and selection of five species with enzymatic activity at 15 and 20 °C of the genus Bacillus, three with cellulolytic/amylolytic activity (B. wiedmanii, B. subtilis, and B. velezensis), and two with cellulolytic activity (B. safensis subsp. safensis, and B. subtilis). These strains showed tolerance to temperatures below optimum and could be used in further studies as inoculants for composting organic wastes at temperatures below 20 °C.
Collapse
|
4
|
Dias BGC, Santos FAP, Meschiatti M, Brixner BM, Almeida AA, Queiroz O, Cappellozza BI. Effects of feeding different probiotic types on metabolic, performance, and carcass responses of Bos indicus feedlot cattle offered a high-concentrate diet. J Anim Sci 2022; 100:skac289. [PMID: 36055763 PMCID: PMC9584148 DOI: 10.1093/jas/skac289] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/01/2022] [Indexed: 11/14/2022] Open
Abstract
Two experiments were designed to evaluate the effects of different probiotic combinations on rumen fermentation characteristics, performance, and carcass characteristics of feedlot Bos indicus beef bulls offered a high-concentrate diet. In experiment 1, 30 rumen-fistulated Nellore steers were blocked by initial body weight (BW = 350 ± 35.0 kg) and within blocks (n = 10), animals were randomly assigned to receive: 1) high-concentrate diet without probiotic supplementation (n = 10; CONT), 2) CONT plus 1 g per head of a probiotic mixture containing three strains of Enterococcus faecium and one strain of Saccharomyces cerevisiae (3.5 × 109 CFU/g; n = 10; EFSC), and 3) CONT plus 2 g per head of a probiotic mixture containing Bacillus licheniformis and Bacillus subtilis (3.2 × 109 CFU/g; n = 10; BLBS). The experimental period lasted 35 d, being 28 d of adaptation and 7 d of sampling. From day 34 to day 35 of the experimental period, ruminal fluid and fecal samples were collected every 3 h, starting immediately before feeding (0 h) for rumen fermentation characteristics and apparent nutrient digestibility analysis, respectively. In experiment 2, 240 Nellore bulls were ranked by initial shrunk BW (375 ± 35.1 kg), assigned to pens (n = 4 bulls per pen), and pens randomly assigned to receive the same treatments as in experiment 1 (n = 20 pens per treatment). Regardless of treatment, all bulls received the same step-up and finishing diets throughout the experimental period, which lasted 115 d. In both experiments, data were analyzed as orthogonal contrasts to partition-specific treatment effects: 1) probiotic effect: CONT vs. PROB and 2) probiotic type: EFSC vs. BLBS (SAS Software Inc.). In experiment 1, no contrast effects were observed on nutrient intake, overall nutrient digestibility, and rumen fermentation analyses (P ≥ 0.13). Nonetheless, supplementation of probiotics, regardless of type (P = 0.59), reduced mean acetate:propionate ratio and rumen ammonia-N concentration vs. CONT (P ≤ 0.05). In experiment 2, no significant effects were observed for final BW and dry matter intake (P ≥ 0.12), but average daily gain and feed efficiency tended to improve (P ≤ 0.10) when probiotics were offered to the animals. Probiotic supplementation or type of probiotic did not affect carcass traits (P ≥ 0.22). In summary, supplementation of probiotics containing a mixture of E. faecium and S. cerevisiae or a mixture of B. licheniformis and B. subtilis reduced rumen acetate:propionate ratio and rumen ammonia-N levels and tended to improve the performance of feedlot cattle offered a high-concentrate diet.
Collapse
Affiliation(s)
- Bruno G C Dias
- Departamento de Zootecnia, Universidade de São Paulo, Piracicaba, SP 13418-900, Brazil
| | - Flávio A P Santos
- Departamento de Zootecnia, Universidade de São Paulo, Piracicaba, SP 13418-900, Brazil
| | - Murillo Meschiatti
- Departamento de Zootecnia, Universidade de São Paulo, Piracicaba, SP 13418-900, Brazil
| | - Bárbara M Brixner
- Departamento de Zootecnia, Universidade de São Paulo, Piracicaba, SP 13418-900, Brazil
| | - Alecsander A Almeida
- Departamento de Zootecnia, Universidade de São Paulo, Piracicaba, SP 13418-900, Brazil
| | | | | |
Collapse
|
5
|
Romain B, Delvigne F, Rémond C, Rakotoarivonina H. Control of phenotypic diversification based on serial cultivations on different carbon sources leads to improved bacterial xylanase production. Bioprocess Biosyst Eng 2022; 45:1359-1370. [PMID: 35881245 DOI: 10.1007/s00449-022-02751-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/21/2022] [Indexed: 11/24/2022]
Abstract
Thermobacillus xylanilyticus is a thermophilic and hemicellulolytic bacterium of interest for the production of thermostable hemicellulases. Enzymes' production by this bacterium is challenging, because the proliferation of a cheating subpopulation of cells during exponential growth impairs the production of xylanase after serial cultivations. Accordingly, a strategy of successive cultivations with cells transfers in stationary phase and the use of wheat bran and wheat straw as carbon sources were tested. The ratio between subpopulations and their corresponding metabolic activities were studied by flow cytometry and the resulting hemicellulases production (xylanase, acetyl esterase and β-xylosidase) followed. During serial cultivations, the results pointed out an increase of the enzymatic activities. On xylan, compared to the first cultivation, the xylanase activity increases by 7.15-fold after only four cultivations. On the other hand, the debranching activities were increased by 5.88-fold and 57.2-fold on wheat straw and by 2.77-fold and 3.34-fold on wheat bran for β-xylosidase and acetyl esterase, respectively. The different enzymatic activities then stabilized, reached a plateau and further decreased. Study of the stability and reversibility of the enzyme production revealed cell-to-cell heterogeneities in metabolic activities which could be linked to the reversibility of enzymatic activity changes. Thus, the strategy of successive transfers during the stationary phase of growth, combined with the use of complex lignocellulosic substrates as carbon sources, is an efficient strategy to optimize the hemicellulases production by T. xylanilyticus, by preventing the selection of cheaters.
Collapse
Affiliation(s)
- Bouchat Romain
- Université de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614, AFERE, Reims, France.,Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Frank Delvigne
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Caroline Rémond
- Université de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614, AFERE, Reims, France
| | | |
Collapse
|
6
|
Enhancing the Activity of Carboxymethyl Cellulase Enzyme Using Highly Stable Selenium Nanoparticles Biosynthesized by Bacillus paralicheniformis Y4. Molecules 2022; 27:molecules27144585. [PMID: 35889450 PMCID: PMC9324468 DOI: 10.3390/molecules27144585] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/03/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
The inorganic selenium is absorbed and utilized inefficiently, and the range between toxicity and demand is narrow, so the application is strictly limited. Selenium nanoparticles have higher bioactivity and biosafety properties, including increased antioxidant and anticancer properties. Thus, producing and applying eco-friendly, non-toxic selenium nanoparticles in feed additives is crucial. Bacillus paralicheniformis Y4 was investigated for its potential ability to produce selenium nanoparticles and the activity of carboxymethyl cellulases. The selenium nanoparticles were characterized using zeta potential analyses, Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). Additionally, evaluations of the anti-α-glucosidase activity and the antioxidant activity of the selenium nanoparticles and the ethyl acetate extracts of Y4 were conducted. B. paralicheniformis Y4 exhibited high selenite tolerance of 400 mM and the selenium nanoparticles had an average particle size of 80 nm with a zeta potential value of −35.8 mV at a pH of 7.0, suggesting that the particles are relatively stable against aggregation. After 72 h of incubation with 5 mM selenite, B. paralicheniformis Y4 was able to reduce it by 76.4%, yielding red spherical bio-derived selenium nanoparticles and increasing the carboxymethyl cellulase activity by 1.49 times to 8.96 U/mL. For the first time, this study reports that the carboxymethyl cellulase activity of Bacillus paralicheniforis was greatly enhanced by selenite. The results also indicated that B. paralicheniformis Y4 could be capable of ecologically removing selenite from contaminated sites and has great potential for producing selenium nanoparticles as feed additives to enhance the added value of agricultural products.
Collapse
|
7
|
Characterization of Cellulose-Degrading Bacteria Isolated from Soil and the Optimization of Their Culture Conditions for Cellulase Production. Appl Biochem Biotechnol 2022; 194:5060-5082. [PMID: 35687308 DOI: 10.1007/s12010-022-04002-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
The characterization of bacteria with hydrolytic potential significantly contributes to the industries. Six cellulose-degrading bacteria were isolated from mixture soil samples collected at Kingfisher Lake and the University of Manitoba campus by Congo red method using carboxymethyl cellulose agar medium and identified as Paenarthrobacter sp. MKAL1, Hymenobacter sp. MKAL2, Mycobacterium sp. MKAL3, Stenotrophomonas sp. MKAL4, Chryseobacterium sp. MKAL5, and Bacillus sp. MKAL6. Their cellulase production was optimized by controlling different environmental and nutritional factors such as pH, temperature, incubation period, substrate concentration, nitrogen, and carbon sources using the dinitrosalicylic acid and response surface methods. Except for Paenarthrobacter sp. MKAL1, all strains are motile. Only Bacillus sp. MKAL6 was non-salt-tolerant and showed gelatinase activity. Sucrose enhanced higher cellulase activity of 78.87 ± 4.71 to 190.30 ± 6.42 U/mL in these strains at their optimum pH (5-6) and temperature (35-40 °C). The molecular weights of these cellulases were about 25 kDa. These bacterial strains could be promising biocatalysts for converting cellulose into glucose for industrial purposes.
Collapse
|
8
|
Pan L, Harper K, Queiroz O, Copani G, Cappellozza BI. Effects of a Bacillus-based direct-fed microbial on in vitro nutrient digestibility of forage and high-starch concentrate substrates. Transl Anim Sci 2022; 6:txac067. [PMID: 35702175 PMCID: PMC9186312 DOI: 10.1093/tas/txac067] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
Two experiments evaluated the effects of a Bacillus-based direct-fed microbial (DFM) on in vitro dry matter (DM) and neutral detergent fiber (NDF; experiment 1) and starch (experiment 2) digestibility of a variety of ruminant feedstuffs. In experiment 1, 10 forage sources were evaluated: ryegrass, alfalfa hay, leucaena, corn silage, spinifex, buffel grass, flinders grass, Mitchell grass, Rhodes grass hay, and Queensland bluegrass. Experimental treatments were control (forages with no probiotic inoculation; CON) and forage sources inoculated with a mixture containing Bacillus licheniformis and Bacillus subtilis (3.2 × 109 CFU per g; DFM). In vitro DM and NDF digestibility were evaluated at 24- and 48-h post-treatment inoculation. Treatment × hour interactions were noted for IVDMD (in vitro dry matter digestibility) and IVNDFD (in vitro neutral detergent fibre digestibility) (P ≤ 0.05). More specifically, DFM inoculation increased (P ≤ 0.03) IVDMD at 24 h in four forages and increased 48-h IVDMD (P ≤ 0.02) in alfalfa hay, ryegrass, leucaena, and Mitchell grass hay, but opposite results were observed for Queensland bluegrass (P < 0.01). A 24- and 48-h IVNDFD increased following DFM inoculation (P ≤ 0.02) in five forage sources, but reduced for Queensland bluegrass (P < 0.01). When the forages were classified according to their quality, main treatment effects were detected for IVDMD (P ≤ 0.02) and IVNDFD (P < 0.01). In experiment 2, five common cereal grains were evaluated—high-density barley (82 g/100 mL), low-density barley (69 g/100 mL), corn, sorghum, and wheat—under the same treatments as in experiment 1. In vitro starch digestibility (IVSD) was evaluated at 6- and 12-h following treatment inoculation. Treatment × hour interactions were observed for starch digestibility in three out of five concentrate sources (P ≤ 0.001). Inoculation of DFM yielded greater 24-h starch digestibility for high-, low-density barley, and wheat (P ≤ 0.02), but also greater at 48 h in wheat (P < 0.0001). Moreover, mean starch digestibility improved for corn and sorghum inoculated with DFM (P < 0.01). Using a Bacillus-based DFM (B. licheniformis and B. subtilis) improved the mean in vitro DM and NDF digestibility of different forage sources of varying qualities (based on crude protein content). Similarly, IVSD was also greater following DFM inoculation, highlighting the potential of this probiotic to improve nutrient digestibility and utilization in the beef and dairy cattle herd.
Collapse
Affiliation(s)
- Liyi Pan
- University of Queensland, School of Agriculture and Food Sciences, Gatton, Australia
| | - Karen Harper
- University of Queensland, School of Agriculture and Food Sciences, Gatton, Australia
| | | | | | | |
Collapse
|
9
|
Pham VHT, Kim J, Shim J, Chang S, Chung W. Coconut Mesocarp-Based Lignocellulosic Waste as a Substrate for Cellulase Production from High Promising Multienzyme-Producing Bacillus amyloliquefaciens FW2 without Pretreatments. Microorganisms 2022; 10:microorganisms10020327. [PMID: 35208782 PMCID: PMC8877135 DOI: 10.3390/microorganisms10020327] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 02/05/2023] Open
Abstract
Facing the crucial issue of high cost in cellulase production from commercial celluloses, inexpensive lignocellulosic materials from agricultural wastes have been attractive. Therefore, several studies have focused on increasing the efficiency of cellulase production by potential microorganisms capable of secreting a high and diversified amount of enzymes using agricultural waste as valuable substrates. Especially, extremophilic bacteria play an important role in biorefinery due to their high value catalytic enzymes that are active even under harsh environmental conditions. Therefore, in this study, we aim to investigate the ability to produce cellulase from coconut-mesocarp of the potential bacterial strain FW2 that was isolated from kitchen food waste in South Korea. This strain was tolerant in a wide range of temperature (−6–75 °C, pH range (4.5–12)) and at high salt concentration up to 35% NaCl. The molecular weight of the purified cellulase produced from strain FW2 was estimated to be 55 kDa. Optimal conditions for the enzyme activity using commercial substrates were found to be 40–50 °C, pH 7.0–7.5, and 0–10% NaCl observed in 920 U/mL of CMCase, 1300 U/mL of Avicelase, and 150 U/mL of FPase. It was achieved in 650 U/mL, 720 U/mL, and 140 U/mL of CMCase, Avicelase, and FPase using coconut-mesocarp, respectively. The results revealed that enzyme production by strain FW2 may have significant commercial values for industry, argo-waste treatment, and other potential applications.
Collapse
Affiliation(s)
- Van Hong Thi Pham
- Department of Environmental Energy Engineering, Graduate School of Kyonggi University, Suwon 16227, Korea;
| | - Jaisoo Kim
- Department of Life Science, College of Natural Science of Kyonggi University, Suwon 16227, Korea;
| | - Jeahong Shim
- Soil and Fertilizer Management Division, Rural Development Administration, National Institute of Agricultural Science, Wanju 54875, Korea;
| | - Soonwoong Chang
- Department of Environmental Energy Engineering, College of Creative Engineering of Kyonggi University, Suwon 16227, Korea
- Correspondence: (S.C.); (W.C.); Tel.: +82-31-249-9755 (W.C.)
| | - Woojin Chung
- Department of Environmental Energy Engineering, College of Creative Engineering of Kyonggi University, Suwon 16227, Korea
- Correspondence: (S.C.); (W.C.); Tel.: +82-31-249-9755 (W.C.)
| |
Collapse
|
10
|
Malik WA, Javed S. Biochemical Characterization of Cellulase From Bacillus subtilis Strain and its Effect on Digestibility and Structural Modifications of Lignocellulose Rich Biomass. Front Bioeng Biotechnol 2022; 9:800265. [PMID: 34988069 PMCID: PMC8721162 DOI: 10.3389/fbioe.2021.800265] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Microbial cellulases have become the mainstream biocatalysts due to their complex nature and widespread industrial applications. The present study reports the partial purification and characterization of cellulase from Bacillus subtilis CD001 and its application in biomass saccharification. Out of four different substrates, carboxymethyl cellulose, when amended as fermentation substrate, induced the highest cellulase production from B. subtilis CD001. The optimum activity of CMCase, FPase, and amylase was 2.4 U/ml, 1.5 U/ml, and 1.45 U/ml, respectively. The enzyme was partially purified by (NH4)2SO4 precipitation and sequenced through LC-MS/MS. The cellulase was found to be approximately 55 kDa by SDS-PAGE and capable of hydrolyzing cellulose, as confirmed by zymogram analysis. The enzyme was assigned an accession number AOR98335.1 and displayed 46% sequence homology with 14 peptide-spectrum matches having 12 unique peptide sequences. Characterization of the enzyme revealed it to be an acidothermophilic cellulase, having an optimum activity at pH 5 and a temperature of 60°C. Kinetic analysis of partially purified enzyme showed the Km and Vmax values of 0.996 mM and 1.647 U/ml, respectively. The enzyme activity was accelerated by ZnSO4, MnSO4, and MgSO4, whereas inhibited significantly by EDTA and moderately by β-mercaptoethanol and urea. Further, characterization of the enzyme saccharified sugarcane bagasse, wheat straw, and filter paper by SEM, ATR-FTIR, and XRD revealed efficient hydrolysis and structural modifications of cellulosic materials, indicating the potential industrial application of the B. subtilis CD001 cellulase. The findings demonstrated the potential suitability of cellulase from B. subtilis CD001 for use in current mainstream biomass conversion into fuels and other industrial processes.
Collapse
Affiliation(s)
- Waseem Ayoub Malik
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Saleem Javed
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
11
|
Enhanced Activity by Genetic Complementarity: Heterologous Secretion of Clostridial Cellulases by Bacillus licheniformis and Bacillus velezensis. Molecules 2021; 26:molecules26185625. [PMID: 34577096 PMCID: PMC8468253 DOI: 10.3390/molecules26185625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/25/2022] Open
Abstract
To adapt to various ecological niches, the members of genus Bacillus display a wide spectrum of glycoside hydrolases (GH) responsible for the hydrolysis of cellulose and lignocellulose. Being abundant and renewable, cellulose-containing plant biomass may be applied as a substrate in second-generation biotechnologies for the production of platform chemicals. The present study aims to enhance the natural cellulase activity of two promising 2,3-butanediol (2,3-BD) producers, Bacillus licheniformis 24 and B. velezensis 5RB, by cloning and heterologous expression of cel8A and cel48S genes of Acetivibrio thermocellus. In B. licheniformis, the endocellulase Cel8A (GH8) was cloned to supplement the action of CelA (GH9), while in B. velezensis, the cellobiohydrolase Cel48S (GH48) successfully complemented the activity of endo-cellulase EglS (GH5). The expression of the natural and heterologous cellulase genes in both hosts was demonstrated by reverse-transcription PCR. The secretion of clostridial cellulases was additionally enhanced by enzyme fusion to the subtilisin-like signal peptide, reaching a significant increase in the cellulase activity of the cell-free supernatants. The results presented are the first to reveal the possibility of genetic complementation for enhancement of cellulase activity in bacilli, thus opening the prospect for genetic improvement of strains with an important biotechnological application.
Collapse
|