1
|
Workman VL, Giblin AV, Green NH, MacNeil S, Hearnden V. Adipose tissue and adipose-derived stromal cells can reduce skin contraction in an in vitro tissue engineered full thickness skin model. Adipocyte 2025; 14:2473367. [PMID: 40104883 DOI: 10.1080/21623945.2025.2473367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/10/2025] [Accepted: 02/17/2025] [Indexed: 03/20/2025] Open
Abstract
Skin contracts during wound healing to facilitate wound closure. In some patients, skin contraction can lead to the formation of skin contractures that limit movement, impair function, and significantly impact well-being. Current treatment options for skin contractures are burdensome for patients, and there is a high risk of recurrence. Autologous fat grafting can improve the structure and function of scarred skin; however, relatively little is known about the effect of fat on skin contraction. In this study, an in vitro tissue-engineered model of human skin was used to test the effects of adipose tissue and adipose-derived stromal cells on skin contraction. Untreated tissue-engineered skin contracted to approximately 60% of the original area over 14 days in culture. The addition of adipose tissue reduced this contraction by 50%. Adipose tissue, which was emulsified or concentrated and high doses of adipose-derived stromal cells (ADSC) were able to inhibit contraction to a similar degree; however, lower doses of ADSC did not show the same effect. In conclusion, the subcutaneous application of adipose tissue has the potential to inhibit skin contraction. This study provides in vitro evidence to support the use of autologous fat grafting to prevent skin contraction in patients most at risk.
Collapse
Affiliation(s)
- Victoria L Workman
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK
| | - Anna-Victoria Giblin
- Department of Plastic Surgery, Sheffield Teaching Hospitals, NHS Foundation Trust, Sheffield, UK
| | - Nicola H Green
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK
- INSIGNEO Institute, University of Sheffield, Sheffield, UK
| | - Sheila MacNeil
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK
| | - Vanessa Hearnden
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK
- INSIGNEO Institute, University of Sheffield, Sheffield, UK
| |
Collapse
|
2
|
Chen X, Scaletta C, Liao Z, Laurent A, Applegate LA, Hirt-Burri N. Optimization and Standardization of Stable De-Epidermized Dermis (DED) Models for Functional Evaluation of Cutaneous Cell Therapies. Bioengineering (Basel) 2024; 11:1297. [PMID: 39768115 PMCID: PMC11727145 DOI: 10.3390/bioengineering11121297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
The human skin is a remarkable organ capable of extensive regeneration, especially after severe injuries such as burns and related wounds. The de-epidermized dermis (DED) model has become a valuable in vitro tool for skin regeneration studies, particularly for testing the mechanism of action and the efficacy of clinical cutaneous cell therapies. To further improve the quality and robustness of these applications, our study focused on optimizing and standardizing DED tissue preparation and storage, enhancing its effectiveness for clinical testing. Therefore, we optimized the air-liquid interfacial culture medium composition by simplifying the historical formulation without compromising keratinocyte (therapeutic cell model) viability or proliferation. Furthermore, we investigated the impacts of adding burn wound exudates in the model by focusing on cell behavior for enhanced translational significance. The results revealed notable differences in keratinocyte adhesion and proliferation between burn wound exudates collected at the early stages and late stages of acute patient treatment, providing new information on a possible therapeutic window to apply cell therapies on burn patients. Generally, this study reported a robust method for the preclinical in vitro assessment of keratinocyte-based cutaneous cell therapies using DED models. Overall, the study underscored the importance of using in vitro models with enhanced translational relevance to better predict the clinical effects of cutaneous cell therapies in burn patient populations.
Collapse
Affiliation(s)
- Xi Chen
- Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland; (X.C.); (C.S.); (Z.L.); (A.L.)
| | - Corinne Scaletta
- Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland; (X.C.); (C.S.); (Z.L.); (A.L.)
| | - Zhifeng Liao
- Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland; (X.C.); (C.S.); (Z.L.); (A.L.)
| | - Alexis Laurent
- Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland; (X.C.); (C.S.); (Z.L.); (A.L.)
- Manufacturing Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland
| | - Lee Ann Applegate
- Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland; (X.C.); (C.S.); (Z.L.); (A.L.)
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou 215123, China
| | - Nathalie Hirt-Burri
- Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland; (X.C.); (C.S.); (Z.L.); (A.L.)
| |
Collapse
|
3
|
Workman VL, Giblin AV, Green NH, MacNeil S, Hearnden V. Development of a tissue-engineered skin model with epidermal, dermal and hypodermal components. IN VITRO MODELS 2023; 2:297-306. [PMID: 39872499 PMCID: PMC11756454 DOI: 10.1007/s44164-023-00058-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 01/30/2025]
Abstract
Tissue-engineered models of skin have evolved over the past 50 years, have successfully been translated to clinical use and continue to be improved using new technologies. However, very few of these constructs incorporate a hypodermal component. The hypodermis is critical to skin homeostasis, skin function and many skin diseases, but our understanding of the hypodermis is limited in comparison to our knowledge of the epidermis and dermis, in part due to a lack of suitable in vitro models. The purpose of this study was to develop and characterise a tissue-engineered model of skin consisting of epidermal, dermal and hypodermal layers, namely a trilayer skin model. Models were produced by culturing human keratinocytes and fibroblasts on decellularised human dermis in combination with explanted human adipose tissue. Bilayer models of skin, comprising of an epidermis and dermis, had a thicker epidermal component compared to trilayer models but exhibited similar cytokeratin expression patterns (AE1/AE3 and cytokeratin 14). Addition of adipose tissue improved the appearance of the dermal-epidermal junction, increased the number of rete ridge-like features and cells maintained similar levels of proliferation (Ki-67) compared to native tissues over 28 days in culture. This technique enabled us to create a physiologically relevant model of human skin with representative morphology across the hypodermis, dermis and epidermis. This model maintained native extracellular matrix architecture, contained a heterogeneous population of cells and has the potential to be applied to a range of different applications where research questions require the inclusion of a hypodermis. Supplementary Information The online version contains supplementary material available at 10.1007/s44164-023-00058-9.
Collapse
Affiliation(s)
- V. L. Workman
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK
| | - A-V. Giblin
- Department of Plastic Surgery, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - N. H. Green
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK
| | - S. MacNeil
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK
| | - V. Hearnden
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK
| |
Collapse
|
4
|
Louri NA, Dey N, AlHasan RN, Abdulla SH, Elsakka M, Gulreez R, Darwish AH, Kadalmani B, Al Khalifa KBA. Abdominoplasty Panniculus as a Source for Human Acellular Dermis: A Preliminary Report. Tissue Eng Regen Med 2022; 19:727-738. [PMID: 35325403 PMCID: PMC9294103 DOI: 10.1007/s13770-022-00439-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/07/2022] [Accepted: 02/02/2022] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND In extensive deep dermal burn injuries, split-thickness skin graft (STSG) has been the most preferred treatment option for resurfacing burn wounds. A thick split-thickness skin graft is ideal for preventing graft contracture but is associated with delayed donor healing and the lack of adequate donor skin. When applied with STSG, the dermal substitutes offer better-reconstructed skin than STSG alone. Human-derived acellular dermal matrix (HADM) obtained from cadaver skin is a dermal equivalent with good clinical outcomes. However, high cost and limited cadaver donor skin availability limit its clinical utility. Developing a low-cost preparation method and finding an alternate source of human donated skin can help reduce the cost. The objective of this study was to explore the feasibility of making HADM from abdominoplasty panniculus skin. METHODS Skin samples were collected from the abdominoplasty panniculus of ten eligible donors with their informed consent. A combination of low-cost reagents-sodium chloride and hypotonic solution (water for injection) was used for decellularizing the skin. Characterization of the prepared Acellular Dermis Matrix prototype was done. RESULTS The skin was deepidermized with one molar NaCl treatment at 37 °C for 24 h. The deepidermized dermis became acellular with hypotonic solution treatment at 4 °C for two weeks. The hematoxylin and eosin staining and cytotoxicity test confirmed the acellularity and non-cytotoxicity of the prepared HADM prototype. The HADM prototype also facilitated the formation of neo-epithelium in the 3D cell co-culture model. CONCLUSION This study confirms that abdominoplasty panniculus can be a viable alternative for HADM preparation. Further characterization studies are required to prove the concept.
Collapse
Affiliation(s)
- Nayef Abdulrahman Louri
- Department of Plastic Surgery and Burn Unit, Bahrain Defence Force Royal Medical Services Military Hospital, Riffa, Southern Governorate, 28743, Bahrain.
| | - Nigamananda Dey
- Department of Plastic Surgery and Burn Unit, Bahrain Defence Force Royal Medical Services Military Hospital, Riffa, Southern Governorate, 28743, Bahrain
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Rashed N AlHasan
- Department of Plastic Surgery and Burn Unit, Bahrain Defence Force Royal Medical Services Military Hospital, Riffa, Southern Governorate, 28743, Bahrain
| | - Safa Hassan Abdulla
- Department of Pathology, Bahrain Defence Force Royal Medical Services, Riffa, Bahrain
| | - Mohamed Elsakka
- Department of Plastic Surgery and Burn Unit, Bahrain Defence Force Royal Medical Services Military Hospital, Riffa, Southern Governorate, 28743, Bahrain
| | - Rasheeqa Gulreez
- Department of Plastic Surgery and Burn Unit, Bahrain Defence Force Royal Medical Services Military Hospital, Riffa, Southern Governorate, 28743, Bahrain
| | | | - Balamuthu Kadalmani
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | | |
Collapse
|
5
|
Hamilton NJI, Lee DDH, Gowers KHC, Butler CR, Maughan EF, Jevans B, Orr JC, McCann CJ, Burns AJ, MacNeil S, Birchall MA, O'Callaghan C, Hynds RE, Janes SM. Bioengineered airway epithelial grafts with mucociliary function based on collagen IV- and laminin-containing extracellular matrix scaffolds. Eur Respir J 2020; 55:1901200. [PMID: 32444408 PMCID: PMC7301290 DOI: 10.1183/13993003.01200-2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 02/26/2020] [Indexed: 12/15/2022]
Abstract
Current methods to replace damaged upper airway epithelium with exogenous cells are limited. Existing strategies use grafts that lack mucociliary function, leading to infection and the retention of secretions and keratin debris. Strategies that regenerate airway epithelium with mucociliary function are clearly desirable and would enable new treatments for complex airway disease.Here, we investigated the influence of the extracellular matrix (ECM) on airway epithelial cell adherence, proliferation and mucociliary function in the context of bioengineered mucosal grafts. In vitro, primary human bronchial epithelial cells (HBECs) adhered most readily to collagen IV. Biological, biomimetic and synthetic scaffolds were compared in terms of their ECM protein content and airway epithelial cell adherence.Collagen IV and laminin were preserved on the surface of decellularised dermis and epithelial cell attachment to decellularised dermis was greater than to the biomimetic or synthetic alternatives tested. Blocking epithelial integrin α2 led to decreased adherence to collagen IV and to decellularised dermis scaffolds. At air-liquid interface (ALI), bronchial epithelial cells cultured on decellularised dermis scaffolds formed a differentiated respiratory epithelium with mucociliary function. Using in vivo chick chorioallantoic membrane (CAM), rabbit airway and immunocompromised mouse models, we showed short-term preservation of the cell layer following transplantation.Our results demonstrate the feasibility of generating HBEC grafts on clinically applicable decellularised dermis scaffolds and identify matrix proteins and integrins important for this process. The long-term survivability of pre-differentiated epithelia and the relative merits of this approach against transplanting basal cells should be assessed further in pre-clinical airway transplantation models.
Collapse
Affiliation(s)
- Nick J I Hamilton
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
- UCL Ear Institute, The Royal National Throat Nose and Ear Hospital, London, UK
- Nick J.I. Hamilton and Sam M. Janes are joint-senior authors
| | - Dani Do Hyang Lee
- Respiratory, Critical Care and Anaesthesia, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Kate H C Gowers
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Colin R Butler
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Elizabeth F Maughan
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Benjamin Jevans
- Stem Cell and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Jessica C Orr
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Conor J McCann
- Stem Cell and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Alan J Burns
- Stem Cell and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Sheila MacNeil
- Dept of Materials and Science Engineering, The Kroto Research Institute, North Campus, University of Sheffield, Sheffield, UK
| | - Martin A Birchall
- UCL Ear Institute, The Royal National Throat Nose and Ear Hospital, London, UK
| | - Christopher O'Callaghan
- Respiratory, Critical Care and Anaesthesia, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Robert E Hynds
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
- Nick J.I. Hamilton and Sam M. Janes are joint-senior authors
| |
Collapse
|
6
|
Hamilton NJ, Hynds RE, Gowers KH, Tait A, Butler CR, Hopper C, Burns AJ, Birchall MA, Lowdell M, Janes SM. Using a Three-Dimensional Collagen Matrix to Deliver Respiratory Progenitor Cells to Decellularized Trachea In Vivo. Tissue Eng Part C Methods 2019; 25:93-102. [PMID: 30648458 PMCID: PMC6389769 DOI: 10.1089/ten.tec.2018.0241] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/14/2019] [Indexed: 10/27/2022] Open
Abstract
IMPACT STATEMENT This article describes a method for engrafting epithelial progenitor cells to a revascularized scaffold in a protective and supportive collagen-rich environment. This method has the potential to overcome two key limitations of existing grafting techniques as epithelial cells are protected from mechanical shear and the relatively hypoxic phase that occurs while grafts revascularize, offering the opportunity to provide epithelial cells to decellularized allografts at the point of implantation. Advances in this area will improve the safety and efficacy of bioengineered organ transplantation.
Collapse
Affiliation(s)
- Nick J.I. Hamilton
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
- UCL Ear Institute, The Royal National Throat Nose and Ear Hospital, London, United Kingdom
| | - Robert E. Hynds
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Kate H.C. Gowers
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Angela Tait
- Department of Biochemical Engineering, University College London, London, United Kingdom
| | - Colin R. Butler
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Colin Hopper
- Maxillofacial Surgery, Eastman Dental Institute, London, United Kingdom
| | - Alan J. Burns
- Stem Cell and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Institute of Child Health, London, United Kingdom
| | - Martin A. Birchall
- UCL Ear Institute, The Royal National Throat Nose and Ear Hospital, London, United Kingdom
| | - Mark Lowdell
- Institute of Immunity and Transplantation, Centre for Cell, Gene and Tissue Therapeutics, Royal Free Hospital, London, United Kingdom
| | - Sam M. Janes
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
7
|
Boone M, Draye JP, Verween G, Pirnay JP, Verbeken G, De Vos D, Rose T, Jennes S, Jemec GBE, Del Marmol V. Real-time three-dimensional imaging of epidermal splitting and removal by high-definition optical coherence tomography. Exp Dermatol 2016; 23:725-30. [PMID: 25047067 DOI: 10.1111/exd.12516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2014] [Indexed: 01/06/2023]
Abstract
While real-time 3-D evaluation of human skin constructs is needed, only 2-D non-invasive imaging techniques are available. The aim of this paper is to evaluate the potential of high-definition optical coherence tomography (HD-OCT) for real-time 3-D assessment of the epidermal splitting and decellularization. Human skin samples were incubated with four different agents: Dispase II, NaCl 1 M, sodium dodecyl sulphate (SDS) and Triton X-100. Epidermal splitting, dermo-epidermal junction, acellularity and 3-D architecture of dermal matrices were evaluated by High-definition optical coherence tomography before and after incubation. Real-time 3-D HD-OCT assessment was compared with 2-D en face assessment by reflectance confocal microscopy (RCM). (Immuno) histopathology was used as control. HD-OCT imaging allowed real-time 3-D visualization of the impact of selected agents on epidermal splitting, dermo-epidermal junction, dermal architecture, vascular spaces and cellularity. RCM has a better resolution (1 μm) than HD-OCT (3 μm), permitting differentiation of different collagen fibres, but HD-OCT imaging has deeper penetration (570 μm) than RCM imaging (200 μm). Dispase II and NaCl treatments were found to be equally efficient in the removal of the epidermis from human split-thickness skin allografts. However, a different epidermal splitting level at the dermo-epidermal junction could be observed and confirmed by immunolabelling of collagen type IV and type VII. Epidermal splitting occurred at the level of the lamina densa with dispase II and above the lamina densa (in the lamina lucida) with NaCl. The 3-D architecture of dermal papillae and dermis was more affected by Dispase II on HD-OCT which corresponded with histopathologic (orcein staining) fragmentation of elastic fibres. With SDS treatment, the epidermal removal was incomplete as remnants of the epidermal basal cell layer remained attached to the basement membrane on the dermis. With Triton X-100 treatment, the epidermis was not removed. In conclusion, HD-OCT imaging permits real-time 3-D visualization of the impact of selected agents on human skin allografts.
Collapse
Affiliation(s)
- Marc Boone
- Department of Dermatology, Hôpital Erasme, Université Libre de Bruxelles, Bruxelles, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Naturally Occurring Extracellular Matrix Scaffolds for Dermal Regeneration: Do They Really Need Cells? BIOMED RESEARCH INTERNATIONAL 2015; 2015:839694. [PMID: 26509165 PMCID: PMC4609781 DOI: 10.1155/2015/839694] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/19/2015] [Accepted: 04/19/2015] [Indexed: 01/09/2023]
Abstract
The pronounced effect of extracellular matrix (ECM) scaffolds in supporting tissue regeneration is related mainly to their maintained 3D structure and their bioactive components. These decellularized matrix scaffolds could be revitalized before grafting via adding stem cells, fibroblasts, or keratinocytes to promote wound healing. We reviewed the online published literature in the last five years for the studies that performed ECM revitalization and discussed the results of these studies and the related literature. Eighteen articles met the search criteria. Twelve studies included adding cells to acellular dermal matrix (ADM), 3 studies were on small intestinal mucosa (SIS), one study was on urinary bladder matrix (UBM), one study was on amniotic membrane, and one study included both SIS and ADM loaded constructs. We believe that, in chronic and difficult-to-heal wounds, revitalizing the ECM scaffolds would be beneficial to overcome the defective host tissue interaction. This belief still has to be verified by high quality randomised clinical trials, which are still lacking in literature.
Collapse
|
9
|
Takami Y, Yamaguchi R, Ono S, Hyakusoku H. Clinical application and histological properties of autologous tissue-engineered skin equivalents using an acellular dermal matrix. J NIPPON MED SCH 2015; 81:356-63. [PMID: 25744478 DOI: 10.1272/jnms.81.356] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We developed a transplantable tissue-engineered skin equivalent composed of autologous cultured keratinocytes, fibroblasts, and a decellularized allogeneic dermis (acellular allogeneic dermal matrix; ADM) obtained from cadavers. In a process taking 3 weeks, cultured autologous keratinocytes from burn patients were expanded and then grown on ADMs. The tissue-engineered autologous skin equivalents (TESEs) were then transplanted in a one-stage procedure to the debrided third-degree burn wounds of 4 patients. The mean graft survival rate was 96%. Delayed graft loss and graft fragility were not observed. Histological and immunohistological findings indicated that the transplanted TESE had similar characteristics to normal human split-thickness skin grafts. These results suggest that the TESE using ADM can be used for permanent repair of full-thickness skin defects.
Collapse
|
10
|
Human adipose-derived stromal cells as a feeder layer to improve keratinocyte expansion for clinical applications. Tissue Eng Regen Med 2015. [DOI: 10.1007/s13770-015-0007-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
11
|
Osman NI, Hillary C, Bullock AJ, MacNeil S, Chapple CR. Tissue engineered buccal mucosa for urethroplasty: progress and future directions. Adv Drug Deliv Rev 2015; 82-83:69-76. [PMID: 25451857 DOI: 10.1016/j.addr.2014.10.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/22/2014] [Accepted: 10/03/2014] [Indexed: 01/15/2023]
Abstract
PURPOSE Autologous buccal mucosa is commonly utilized in the surgical treatment of urethral strictures. Extensive strictures require a larger quantity of tissue, which may lead to donor site morbidity. This review assesses progress in producing tissue engineered buccal mucosa as an alternative graft material. RESULTS Few clinical studies have introduced cells onto biological or synthetic scaffolds and implanted resulting constructs in patients. The available studies show that buccal mucosa cells on acellular human dermis or on collagen matrix lead to good acute stage tissue integration. Urothelial cells on a synthetic substrate also perform well. However while some patients do well many years post-grafting, others develop stricture recurrence. Acellular biomaterials used to treat long urethral defects in animals commonly lead to fibrosis. CONCLUSIONS Tissue engineered buccal mucosa shows promise as a substitute for native tissue. The fibrosis which occurs months post-implantation may reflect the underlying disease process recurring in these patients.
Collapse
Affiliation(s)
- N I Osman
- Kroto Research Institute, University of Sheffield, Sheffield, UK; Department of Urology, Royal Hallamshire Hospital, Sheffield, UK
| | - C Hillary
- Kroto Research Institute, University of Sheffield, Sheffield, UK; Department of Urology, Royal Hallamshire Hospital, Sheffield, UK
| | - A J Bullock
- Kroto Research Institute, University of Sheffield, Sheffield, UK
| | - S MacNeil
- Kroto Research Institute, University of Sheffield, Sheffield, UK
| | - C R Chapple
- Department of Urology, Royal Hallamshire Hospital, Sheffield, UK.
| |
Collapse
|
12
|
Deshpande P, Ortega Í, Sefat F, Sangwan VS, Green N, Claeyssens F, MacNeil S. Rocking media over ex vivo corneas improves this model and allows the study of the effect of proinflammatory cytokines on wound healing. Invest Ophthalmol Vis Sci 2015; 56:1553-61. [PMID: 25655804 PMCID: PMC4349110 DOI: 10.1167/iovs.14-15308] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/08/2014] [Indexed: 12/28/2022] Open
Abstract
PURPOSE The aim of this work was to develop an in vitro cornea model to study the effect of proinflammatory cytokines on wound healing. METHODS Initial studies investigated how to maintain the ex vivo models for up to 4 weeks without loss of epithelium. To study the effect of cytokines, corneas were cultured with the interleukins IL-17A, IL-22, or a combination of IL-17A and IL-22, or lipopolysaccharide (LPS). The effect of IL-17A on wound healing was then examined. RESULTS With static culture conditions, organ cultures deteriorated within 2 weeks. With gentle rocking of media over the corneas and carbon dioxide perfusion, the ex vivo models survived for up to 4 weeks without loss of epithelium. The cytokine that caused the most damage to the cornea was IL-17A. Under static conditions, wound healing of the central corneal epithelium occurred within 9 days, but only a single-layered epithelium formed whether the cornea was exposed to IL-17A or not. With rocking of media gently over the corneas, a multilayered epithelium was achieved 9 days after wounding. In the presence of IL-17A, however, there was no wound healing evident. Characterization of the cells showed that wherever epithelium was present, both differentiated cells and highly proliferative cells were present. CONCLUSIONS We propose that introducing rocking to extend the effective working life of this model and the introduction of IL-17A to this model to induce aspects of inflammation extend its usefulness to study the effects of agents that influence corneal regeneration under normal and inflamed conditions.
Collapse
Affiliation(s)
- Pallavi Deshpande
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
| | - Ílida Ortega
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
| | - Farshid Sefat
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
| | - Virender S. Sangwan
- Sudhakar and Sreekanth Ravi Stem Cell Laboratory, LV Prasad Eye Institute, Kallam Anji Reddy Campus, LV Prasad Marg, Hyderabad, Telangana, India
| | - Nicola Green
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
| | - Sheila MacNeil
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|