1
|
Moayedi M, Ahmadi T, Nekouie V, Dehaghani MT, Shojaei S, Benisi SZ, Bakhsheshi-Rad HR. Preparation and assessment of polylactic acid-curcumin nanofibrous wound dressing containing silver nanoparticles for burn wound treatment. Burns 2025; 51:107442. [PMID: 40088691 DOI: 10.1016/j.burns.2025.107442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 01/25/2025] [Accepted: 02/24/2025] [Indexed: 03/17/2025]
Abstract
This study aims to produce and evaluate nanofibrous wound dressings through the electrospinning method, utilizing polylactic acid (PLA), curcumin (Cur), and silver nanoparticles (AgNPs). For this purpose, five types of wound dressings with PLA, PLA+Cur, PLA+Cur+ 1 %AgNPs, PLA+Cur+ 2 %AgNPs and PLA+Cur+ 3 %AgNPs were produced using the electrospinning method. Analysis of the Fourier transform infrared spectroscopy and scanning electron microscopic observations indicated successful fabrication, with nanometer diameters achieved in all electrospun samples. Examination of water absorption of wound dressings revealed that over 40 h the electrospun samples had variable water absorption between 0 % and 0.25 %. The results of the curcumin release test over one week showed that the nanofibers with PLA+Cur+ 2 %AgNPs exhibited the lowest release rate, while those with PLA+Cur+ 3 %AgNPs showed the highest release. Assessment of mechanical properties revealed that the tensile strength of the nanofibers increased by adding curcumin to polylactic acid, while the addition of a high content of AgNPs led to a decrease in tensile strength. Also, the PLA+Cur dressing demonstrated 84.06 % and the PLA+Cur+ 3 %AgNPs dressing exhibited 99.12 % antibacterial properties. The cell culture test demonstrated that the incorporation of curcumin and AgNPs increasedboth the growth and proliferation, as well as the adhesion on the nanofibrous wound dressing. Thus, the PLA+Cur+ 1 %AgNPs nanofibrous scaffold, as a multipurpose dressing, presented considerable promise for wound healing and burn treatment.
Collapse
Affiliation(s)
- Mehri Moayedi
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Tahmineh Ahmadi
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Vahid Nekouie
- Department of Engineering and Mathematics, Sheffield Hallam University, Sheffield S1 1WB, UK; Materials and Engineering Research Institute (MERI), Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Majid Taghian Dehaghani
- Department of Materials and Metallurgical Engineering, Abadeh Higher Education Centre, Shiraz University, Abadeh, Iran
| | - Shahrokh Shojaei
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Soheila Zamalui Benisi
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran; Stem Cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hamid Reza Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| |
Collapse
|
2
|
Seyedi D, Salehi M, Zamani S, Cheraghali D, Dehghani F, Mehrabi M. Evaluation of Burn Wound Healing and Skin Regeneration in Animal Model Using Alginate/PVA Nanofibrous Wound Dressings Containing Dragon's Blood. J Biomed Mater Res B Appl Biomater 2025; 113:e35553. [PMID: 39981607 DOI: 10.1002/jbm.b.35553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/03/2025] [Accepted: 02/06/2025] [Indexed: 02/22/2025]
Abstract
The challenge of healing burn wounds is significant importance in global healthcare systems, with a high demand for advanced wound dressings to aid in the treatment of such injuries. Promising options include bioactive electrospun scaffolds made from polymers with antimicrobial properties, which can prevent infections and promote faster healing. This study involved the creation of a nanofibrous scaffold using the electrospinning technique, which consisted of polyvinyl alcohol (PVA), alginate (Alg), and Dragon's blood (DB). The scaffold was then analyzed for both its morphology and chemical composition. Results indicated that the DB was present in the nanofibrous scaffold, which had a uniform and unbranched appearance with fibers measuring approximately 300-400 nm in diameter. Additionally, mechanical property testing revealed promising results that fall within the range of human skin. The scaffold's wound healing potential was evaluated through various measurements, including water contact angle, drug release, water vapor permeability, blood compatibility, blood clotting index, and antibacterial activity. Results from an in vivo study on burn wounds showed that scaffolds containing 20% DB exhibited excellent wound healing ability with 80.3% wound closure after 21 days. This was attributed to the highest collagen synthesis, re-epithelization and remodeling of the burned skin. Therefore, PVA/Alg/DB nanofibrous scaffolds hold promise as a wound dressing to treat burn injuries.
Collapse
Affiliation(s)
- Danial Seyedi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Majid Salehi
- Regenerative Medicine Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Sepehr Zamani
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Danial Cheraghali
- Department of Mechanical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Farzaneh Dehghani
- Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Mohsen Mehrabi
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
3
|
Kyser AJ, Fotouh B, Harris V, Patel R, Maners C, Frieboes HB. Electrospun nanofibers: Focus on local therapeutic delivery targeting infectious disease. J Drug Deliv Sci Technol 2025; 104:106520. [PMID: 39802685 PMCID: PMC11720493 DOI: 10.1016/j.jddst.2024.106520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Whether it be due to genetic variances, lack of patient adherence, or sub-optimal drug metabolism, the risk of antibiotic resistance from medications administered systemically continues to pose significant challenges to fighting infectious diseases. Ideally, infections would be treated locally for maximal efficacy while minimizing off-target effects. The electrospinning of biomaterials has recently facilitated the creation of electrospun nanofibers as an alternative delivery vehicle for local treatment. This review describes electrospun nanofiber applications to locally target various infectious diseases. Electrospinning is first reviewed as a method to fabricate nanofiber platforms with advantageous properties for developing drug delivery systems. The emergence of artificial intelligence to facilitate the development of nanofiber formulations and the evaluation of operating parameters to customize therapeutic behavior are described. A range of biomaterials utilized for electrospinning nanofibers is summarized in the context of properties suitable for drug delivery, particularly to treat infectious diseases. The current body of literature for electrospun nanofiber applications to tackle infectious diseases, including sexually transmitted infections, oral infections, and Staphylococcus Aureus infections is described. We anticipate that the advantages of electrospun nanofibers to facilitate targeted application while minimizing antibiotic resistance will substantially expand their clinical use in coming years.
Collapse
Affiliation(s)
- Anthony J. Kyser
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY, 40202
| | - Bassam Fotouh
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY, 40202
| | - Victoria Harris
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY, 40202
| | - Rudra Patel
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY, 40202
| | - Caden Maners
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY, 40202
| | - Hermann B. Frieboes
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY, 40202
- Center for Predictive Medicine, University of Louisville, Louisville, KY, 40202
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202
- UofL Health – Brown Cancer Center, University of Louisville, KY, 40202
| |
Collapse
|
4
|
Devi SG, Kanagalakshmi M, Subasini S, Pius A. Optimized production of carboxymethyl cellulose/guar gum based durable hydrogel for in vitro performance assessment. Int J Biol Macromol 2024; 279:135121. [PMID: 39197601 DOI: 10.1016/j.ijbiomac.2024.135121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/01/2024]
Abstract
An important objective of researchers is to develop a perfect wound dressing that can effectively treat different kinds of wounds. Natural substances with beneficial qualities, such as plant extracts and biopolymers are an ideal aid for wound care. Hydrogels based on biopolymers offer a lot of promising applications for topical use and are biocompatible, hydrophilic and non-toxic. When employed alone or in conjunction with other active agents, herbal extracts have a great deal of use in the healing of wounds. This study comprises Ruellia tuberosa extract loaded with carboxymethyl cellulose and guar gum hydrogels that have potential anti-bacterial, antioxidant, anti-inflammatory and hemocompatibility. Using mouse fibroblast cells (L929), the MTT (3- (4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) test was conducted to assess the biocompatibility. Furthermore, the scratch wound assay using the L929 fibroblast cell line of mouse was employed to assess the in vitro wound healing potential of the synthesised composite hydrogels.
Collapse
Affiliation(s)
- S Gopika Devi
- Department of Chemistry, The Gandhigram Rural Institute - Deemed to be University, Gandhigram, Dindigul 624 302, Tamil Nadu, India
| | - M Kanagalakshmi
- Department of Chemistry, The Gandhigram Rural Institute - Deemed to be University, Gandhigram, Dindigul 624 302, Tamil Nadu, India
| | - S Subasini
- Department of Chemistry, The Gandhigram Rural Institute - Deemed to be University, Gandhigram, Dindigul 624 302, Tamil Nadu, India
| | - Anitha Pius
- Department of Chemistry, The Gandhigram Rural Institute - Deemed to be University, Gandhigram, Dindigul 624 302, Tamil Nadu, India.
| |
Collapse
|
5
|
Xu W, Gao X, Zhang M, Jiang Z, Xu X, Huang L, Yao H, Zhang Y, Tong X, Li Y, Lin J, Wen C, Ding X. Electrospun polycaprolactone-chitosan nanofibers on a zinc mesh as biodegradable guided bone-regeneration membranes with enhanced mechanical, antibacterial, and osteogenic properties for alveolar bone-repair applications. Acta Biomater 2024; 187:434-450. [PMID: 39197567 DOI: 10.1016/j.actbio.2024.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
Guided bone-regeneration membrane (GBRM) is commonly used in bone-repair surgery because it blocks fibroblast proliferation and provides spatial support in bone-defect spaces. However, the need for removal surgery and the lack of antibacterial properties of conventional GBRM limit its therapeutic applicability for alveolar bone defects. Here we developed a GBRM for alveolar bone-repair and -regeneration applications through double-sided electrospinning of polycaprolactone and chitosan layers on a Zn mesh surface (denoted DSZM). The DSZM showed a UTS of ∼25.6 MPa, elongation of ∼16.1%, strength-elongation product of ∼0.413 GPa%, and ultrahigh spatial maintenance ability, and the UTS was over 6 times higher than that of commercial Bio-Gide membrane. The DSZM exhibited a corrosion rate of ∼17 µm/y and a Zn ion concentration of ∼0.23 µg/ml after 1 month of immersion in Hanks' solution. The DSZM showed direct and indirect cytocompatibility with exceptional osteogenic differentiation and calcium deposition toward MC3T3-E1 cells. Further, the DSZM showed strongly sustained antibacterial activity against S. aureus and osteogenesis in a rat critical-sized maxillary defect model. Overall, the DSZM fits the requirements for alveolar bone-repair and -regeneration applications as a biodegradable GBRM material due to its spatial support, suitable degradability, cytocompatibility, and antibacterial and osteogenic capabilities. STATEMENT OF SIGNIFICANCE: This work reports the mechanical properties, antibacterial ability and osteogenic properties of electrospun PCL-CS nanofiber on Zn mesh as biodegradable guided bone-regeneration membrane for alveolar bone-repair applications. Our findings demonstrate that the DSZM prepared by double-sided electrospinning of PCL-CS layers on Zn mesh showed a UTS of ∼25.6 MPa, elongation of ∼16.1%, strength-elongation product of ∼0.413 GPa%, and ultrahigh spatial maintenance ability, and the UTS was over 6 times greater than that of commercial Bio-Gide® membrane. The DSZM showed direct and indirect cytocompatibility with exceptional osteogenic differentiation and calcium deposition toward MC3T3-E1 cells. Further, the DSZM showed strongly sustained antibacterial activity against S. aureus and osteogenesis in a rat critical-sized maxillary defect model.
Collapse
Affiliation(s)
- Wenjie Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China; Xiamen Susong Hospital, Xiamen 361000, China
| | - Xue Gao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Menghan Zhang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhengting Jiang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaomin Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Liangfu Huang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Huiyu Yao
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yitian Zhang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xian Tong
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China.
| | - Yuncang Li
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Jixing Lin
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China.
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia.
| | - Xi Ding
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
6
|
Ndlovu SP, Motaung KSCM, Adeyemi SA, Ubanako P, Ngema L, Fonkui TY, Ndinteh DT, Kumar P, Choonara YE, Aderibigbe BA. Sodium alginate-based nanofibers loaded with Capparis Sepiaria plant extract for wound healing. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2380-2401. [PMID: 39037962 DOI: 10.1080/09205063.2024.2381375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/01/2024] [Indexed: 07/24/2024]
Abstract
Burn wounds are associated with infections, drug resistance, allergic reactions, odour, bleeding, excess exudates, and scars, requiring prolonged hospital stay. It is crucial to develop wound dressings that can effectively combat allergic reactions and drug resistance, inhibit infections, and absorb excess exudates to accelerate wound healing. To overcome the above-mentioned problems associated with burn wounds, SA/PVA/PLGA/Capparis sepiaria and SA/PVA/Capparis sepiaria nanofibers incorporated with Capparis sepiaria plant extract were prepared using an electrospinning technique. Fourier-transform infrared spectroscopy confirmed the successful incorporation of the extract into the nanofibers without any interaction between the extract and the polymers. The nanofibers displayed porous morphology and a rough surface suitable for cellular adhesion and proliferation. SA/PVA/PLGA/Capparis sepiaria and SA/PVA/Capparis sepiaria nanofibers demonstrated significant antibacterial effects against wound infection-associated bacterial strains: Pseudomonas aeruginosa, Enterococcus faecalis, Mycobaterium smegmatis, Escherichia coli, Enterobacter cloacae, Proteus vulgaris, and Staphylococcus aureus. Cytocompatibility studies using HaCaT cells revealed the non-toxicity of the nanofibers. SA/PVA/PLGA/Capparis sepiaria and SA/PVA/Capparis sepiaria nanofibers exhibited hemostatic properties, resulting from the synergistic effect of the plant extract and polymers. The in vitro scratch wound healing assay showed that the SA/PVA/Capparis sepiaria nanofiber wound-healing capability is more than the plant extract and a commercially available wound dressing. The wound-healing potential of SA/PVA/Capparis sepiaria nanofiber is attributed to the synergistic effect of the phytochemicals present in the extract, their porosity, and the ECM-mimicking structure of the nanofibers. The findings suggest that the electrospun nanofibers loaded with Capparis sepiaria extract are promising wound dressings that should be explored for burn wounds.
Collapse
Affiliation(s)
- Sindi P Ndlovu
- Department of Chemistry, University of Fort Hare, Alice, Eastern Cape, South Africa
| | | | - Samson A Adeyemi
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Philemon Ubanako
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lindokuhle Ngema
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Thierry Y Fonkui
- Drug Discovery and Smart Molecules Research Labs, Centre for Natural Product Research, Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Derek T Ndinteh
- Drug Discovery and Smart Molecules Research Labs, Centre for Natural Product Research, Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | |
Collapse
|
7
|
Rajabifar N, Rostami A, Afshar S, Mosallanezhad P, Zarrintaj P, Shahrousvand M, Nazockdast H. Wound Dressing with Electrospun Core-Shell Nanofibers: From Material Selection to Synthesis. Polymers (Basel) 2024; 16:2526. [PMID: 39274158 PMCID: PMC11398146 DOI: 10.3390/polym16172526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/18/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
Skin, the largest organ of the human body, accounts for protecting against external injuries and pathogens. Despite possessing inherent self-regeneration capabilities, the repair of skin lesions is a complex and time-consuming process yet vital to preserving its critical physiological functions. The dominant treatment involves the application of a dressing to protect the wound, mitigate the risk of infection, and decrease the likelihood of secondary injuries. Pursuing solutions for accelerating wound healing has resulted in groundbreaking advancements in materials science, from hydrogels and hydrocolloids to foams and micro-/nanofibers. Noting the convenience and flexibility in design, nanofibers merit a high surface-area-to-volume ratio, controlled release of therapeutics, mimicking of the extracellular matrix, and excellent mechanical properties. Core-shell nanofibers bring even further prospects to the realm of wound dressings upon separate compartments with independent functionality, adapted release profiles of bioactive agents, and better moisture management. In this review, we highlight core-shell nanofibers for wound dressing applications featuring a survey on common materials and synthesis methods. Our discussion embodies the wound healing process, optimal wound dressing characteristics, the current organic and inorganic material repertoire for multifunctional core-shell nanofibers, and common techniques to fabricate proper coaxial structures. We also provide an overview of antibacterial nanomaterials with an emphasis on their crystalline structures, properties, and functions. We conclude with an outlook for the potential offered by core-shell nanofibers toward a more advanced design for effective wound healing.
Collapse
Affiliation(s)
- Nariman Rajabifar
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran P.O. Box 15875-4413, Iran
| | - Amir Rostami
- Department of Chemical Engineering, Persian Gulf University, Bushehr P.O. Box 75169-13817, Iran
| | - Shahnoosh Afshar
- Department of Polymer Engineering, Islamic Azad University-Mahshahr Campus, Mahshahr P.O. Box 63511-41111, Iran
| | - Pezhman Mosallanezhad
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran P.O. Box 15875-4413, Iran
| | - Payam Zarrintaj
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Mohsen Shahrousvand
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, Rasht P.O. Box 43841-119, Iran
| | - Hossein Nazockdast
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran P.O. Box 15875-4413, Iran
| |
Collapse
|
8
|
Abdel-Wahab BA, Haque A, Faris Alotaibi H, Alasiri AS, AE Elnoubi O, Zaki Ahmad M, Pathak K, Albarqi HA, Walbi IA, Wahab S. Eco-friendly green synthesis of silver nanoparticles utilizing olive oil waste by-product and their incorporation into a chitosan-aloe vera gel composite for enhanced wound healing in acid burn injuries. INORG CHEM COMMUN 2024; 165:112587. [DOI: 10.1016/j.inoche.2024.112587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
|
9
|
Wu J, Yu F, Shao M, Zhang T, Lu W, Chen X, Wang Y, Guo Y. Electrospun Nanofiber Scaffold for Skin Tissue Engineering: A Review. ACS APPLIED BIO MATERIALS 2024; 7:3556-3567. [PMID: 38777621 DOI: 10.1021/acsabm.4c00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Skin tissue engineering (STE) is widely regarded as an effective approach for skin regeneration. Several synthetic biomaterials utilized for STE have demonstrated favorable fibrillar characteristics, facilitating the regeneration of skin tissue at the site of injury, yet they have exhibited a lack of in situ degradation. Various types of skin regenerative materials, such as hydrogels, nanofiber scaffolds, and 3D-printing composite scaffolds, have recently emerged for use in STE. Electrospun nanofiber scaffolds possess distinct advantages, such as their wide availability, similarity to natural structures, and notable tissue regenerative capabilities, which have garnered the attention of researchers. Hence, electrospun nanofiber scaffolds may serve as innovative biological materials possessing the necessary characteristics and potential for use in tissue engineering. Recent research has demonstrated the potential of electrospun nanofiber scaffolds to facilitate regeneration of skin tissues. Nevertheless, there is a need to enhance the rapid degradation and limited mechanical properties of electrospun nanofiber scaffolds in order to strengthen their effectiveness in soft tissue engineering applications in clinical settings. This Review centers on advanced research into electrospun nanofiber scaffolds, encompassing preparation methods, materials, fundamental research, and preclinical applications in the field of science, technology, and engineering. The existing challenges and prospects of electrospun nanofiber scaffolds in STE are also addressed.
Collapse
Affiliation(s)
- Jingwen Wu
- Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- Hangzhou CASbios Medical Company Hangzhou 310000, P. R. China
| | - Fenglin Yu
- Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Mingfei Shao
- Hangzhou CASbios Medical Company Hangzhou 310000, P. R. China
| | - Tong Zhang
- Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Weipeng Lu
- Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- Hangzhou CASbios Medical Company Hangzhou 310000, P. R. China
| | - Xin Chen
- Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yihu Wang
- Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yanchuan Guo
- Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
10
|
Kanaujiya S, Arya DK, Pandey P, Singh S, Pandey G, Anjum S, Anjum MM, Ali D, Alarifi S, MR V, Sivakumar S, Srivastava S, Rajinikanth PS. Resveratrol-Ampicillin Dual-Drug Loaded Polyvinylpyrrolidone/Polyvinyl Alcohol Biomimic Electrospun Nanofiber Enriched with Collagen for Efficient Burn Wound Repair. Int J Nanomedicine 2024; 19:5397-5418. [PMID: 38863647 PMCID: PMC11164821 DOI: 10.2147/ijn.s464046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024] Open
Abstract
Background The healing of burn wounds is a complicated physiological process that involves several stages, including haemostasis, inflammation, proliferation, and remodelling to rebuild the skin and subcutaneous tissue integrity. Recent advancements in nanomaterials, especially nanofibers, have opened a new way for efficient healing of wounds due to burning or other injuries. Methods This study aims to develop and characterize collagen-decorated, bilayered electrospun nanofibrous mats composed of PVP and PVA loaded with Resveratrol (RSV) and Ampicillin (AMP) to accelerate burn wound healing and tissue repair. Results Nanofibers with smooth surfaces and web-like structures with diameters ranging from 200 to 400 nm were successfully produced by electrospinning. These fibres exhibited excellent in vitro properties, including the ability to absorb wound exudates and undergo biodegradation over a two-week period. Additionally, these nanofibers demonstrated sustained and controlled release of encapsulated Resveratrol (RSV) and Ampicillin (AMP) through in vitro release studies. The zone of inhibition (ZOI) of PVP-PVA-RSV-AMP nanofibers against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) was found 31±0.09 mm and 12±0.03, respectively, which was significantly higher as compared to positive control. Similarly, the biofilm study confirmed the significant reduction in the formation of biofilms in nanofiber-treated group against both S. aureus and E. coli. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis proved the encapsulation of RSV and AMP successfully into nanofibers and their compatibility. Haemolysis assay (%) showed no significant haemolysis (less than 5%) in nanofiber-treated groups, confirmed their cytocompatibility with red blood cells (RBCs). Cell viability assay and cell adhesion on HaCaT cells showed increased cell proliferation, indicating its biocompatibility as well as non-toxic properties. Results of the in-vivo experiments on a burn wound model demonstrated potential burn wound healing in rats confirmed by H&E-stained images and also improved the collagen synthesis in nanofibers-treated groups evidenced by Masson-trichrome staining. The ELISA assay clearly indicated the efficient downregulation of TNF-alpha and IL-6 inflammatory biomarkers after treatment with nanofibers on day 10. Conclusion The RSV and AMP-loaded nanofiber mats, developed in this study, expedite burn wound healing through their multifaceted approach.
Collapse
Affiliation(s)
- Shubham Kanaujiya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Dilip Kumar Arya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Sneha Singh
- Department of Chemical Engineering, IIT Kanpur, Kanpur, India
| | - Giriraj Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Shabnam Anjum
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, 110122, People’s Republic of China
| | - Md Meraj Anjum
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Vijayakumar MR
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Sri Sivakumar
- Department of Chemical Engineering, IIT Kanpur, Kanpur, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
11
|
Piskláková L, Skuhrovcová K, Bártová T, Seidelmannová J, Vondrovic Š, Velebný V. Trends in the Incorporation of Antiseptics into Natural Polymer-Based Nanofibrous Mats. Polymers (Basel) 2024; 16:664. [PMID: 38475347 DOI: 10.3390/polym16050664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Nanofibrous materials represent a very promising form of advanced carrier systems that can be used industrially, especially in regenerative medicine as highly functional bandages, or advanced wound dressings. By incorporation of antimicrobial additives directly into the structure of the nanofiber carrier, the functionality of the layer is upgraded, depending on the final requirement-bactericidal, bacteriostatic, antiseptic, or a generally antimicrobial effect. Such highly functional nanofibrous layers can be prepared mostly by electrospinning technology from both synthetic and natural polymers. The presence of a natural polymer in the composition is very advantageous. Especially in medical applications where, due to the presence of the material close to the human body, the healing process is more efficient and without the occurrence of an unwanted inflammatory response. However, converting natural polymers into nanofibrous form, with a homogeneously distributed and stable additive, is a great challenge. Thus, a combination of natural and synthetic materials is often used. This review clearly summarizes the issue of the incorporation and effectiveness of different types of antimicrobial substances, such as nanoparticles, antibiotics, common antiseptics, or substances of natural origin, into electrospun nanofibrous layers made of mostly natural polymer materials. A section describing the problematic aspects of antimicrobial polymers is also included.
Collapse
Affiliation(s)
- Lenka Piskláková
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava, Czech Republic
| | - Kristýna Skuhrovcová
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
- Centre of Polymer Systems, Tomas Bata University in Zlín, Třída Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Tereza Bártová
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | | | - Štěpán Vondrovic
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | - Vladimír Velebný
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| |
Collapse
|
12
|
Erdoğmuş SF, Altintaş ÖE, Demirel HH, Okumuş N. Fabrication of wound dressings: Herbal extract-loaded nanoliposomes embedded in fungal chitosan/polycaprolactone electrospun nanofibers for tissue regeneration. Microsc Res Tech 2024; 87:360-372. [PMID: 37850370 DOI: 10.1002/jemt.24438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/26/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023]
Abstract
Wound healing is a complex process and one of the major therapeutic and economic subjects in the pharmaceutical area. In recent years, the fabrication of nano-sized wound dressing models has attracted great attention for tissue regeneration. Plant extracts loaded nanoparticles are environmentally friendly and non-toxic and the release of the bioactive substance will be controlled to the wound area. This study aims to fabricate wound dressing models that contain bioactive components for tissue regeneration. Fungal chitosan/polycaprolactone nanofiber was fabricated by electrospinning and it has been characterized. Plant extracts loaded nanoliposomes were prepared, characterized, and embedded in nanofiber structures. The effectiveness of wound dressing models for tissue regeneration was evaluated by in vitro and in vivo studies. It was observed that all wound dressing models positively affect the cell viability of human dermal fibroblast cells. It was determined that plant extracts loaded nanoparticles embedded in nanofibers increased in cell viability than nanoparticles that were non-embedded in nanofiber structures. Histological analysis showed that plant extract-loaded nanoliposomes embedded in chitosan/PCL nanofibers were used for tissue regeneration. The most effective nanofibers were determined as Wd-ClNL nanofibers. RESEARCH HIGHLIGHTS: Hypericum perforatum L. and Cistus laurifolius L. were prepared by modified ultrasonic extraction method. Fungal chitosan/polycaprolactone nanofiber was fabricated by electrospinning and it has been characterized. Plant extract-loaded nanoliposomes were prepared, and characterized. They were embedded in chitosan/polycaprolactone nanofiber. Effects of the wound dressing model were analyzed by in vitro and in vivo assays for tissue regeneration.
Collapse
Affiliation(s)
- Sevim Feyza Erdoğmuş
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Özlem Erdal Altintaş
- Department of Medical Services and Techniques, Şuhut Vocational School of Health Services, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Hasan Hüseyin Demirel
- Afyon Kocatepe University, Bayat Vocational School, Department of Laboratory and Veterinary Health, Afyonkarahisar, Turkey
| | - Nurullah Okumuş
- Afyonkarahisar Health Sciences University, Faculty of Medicine, Department of Pediatrics, Afyonkarahisar, Turkey
| |
Collapse
|
13
|
Hamedi ZS, Manafi A, Hashemi SS, Mehrabani D, Seddighi A, Tanideh N, Mokhtari M. Healing Effect of Hypericum perforatum in Burn Injuries. World J Plast Surg 2024; 13:57-65. [PMID: 39665012 PMCID: PMC11629761 DOI: 10.61186/wjps.13.3.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 11/09/2024] [Indexed: 12/13/2024] Open
Abstract
Background Burn injury is still the leading cause of mortality and morbidity in burn patients. We comapred healing effect of Hypericum perforatum, silver sulfadiazine and alpha ointments on burn injuries in rat model. Methods Sixty female Sprague-Dawley rats in an animal experimental study were randomly divided to 5 equal groups as H. perforatum, silver sulfadiazine and (SSD), alpha, gel base and the burn injury left untreated. Wounds were assessed macroscopically and histologic after burn injury and on days 7th, 14th and 21st after treatments. Results Burn wounds decreased in size on day 7th in H. perforatum group (P<0.01). Regarding scoring the inflammation, re-epithelialization, angiogenesis, formation of granulation tissue and number of macrophage, the best scores were visible in H. perforatum group, and the worst in the gel base and the burn injury left untreated (P<0.01). Conclusions H. perforatum was shown to significantly induce re-epithelialization, angiogenesis and granulation tissue and decrease the inflammation resulting into a healing process in burn wounds. As H. perforatum is inexpensive and an easily available herbal medicine, it can be considered as a therapeutic of choice to ameliorate burn injuries.
Collapse
Affiliation(s)
- Zahra Sadat Hamedi
- Division of Hematology, Oncology and Palliative Care, Department of Internal Medicine, Virginia Commonwealth University Health System, Richmond, Virginia
| | - Amir Manafi
- Department of Anesthesiology, Arrowhead Regional Medical Center, Colton, California
| | - Seyedeh-Sara Hashemi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Davood Mehrabani
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Comparative and Experimental Medicne Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Li Ka Shing Center for Health Research and Innovation, University of Alberta, Edmonton, AB, Canada
| | - Anahita Seddighi
- Department of Molecular Biology, Universität Wien, Wien, Austria
- Department of Genetics, Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Nader Tanideh
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maral Mokhtari
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Gürtler AL, Rades T, Heinz A. Electrospun fibers for the treatment of skin diseases. J Control Release 2023; 363:621-640. [PMID: 37820983 DOI: 10.1016/j.jconrel.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
Skin diseases are among the most common diseases in the global population and with the growth of the aging population, they represent an increasing burden to healthcare systems worldwide. Even though they are rarely life-threatening, the suffering for those affected is high due to the visibility and physical discomfort related to these diseases. Typical symptoms of skin diseases include an inflamed, swollen or itchy skin, and therefore, there is a high demand for effective therapy options. In recent years, electrospinning has attracted considerable interest in the field of drug delivery. The technique allows producing multifunctional drug-loaded fibrous patches from various natural and synthetic polymers with fiber diameters in the nano- and micrometer range, suitable for the treatment of a wide variety of skin diseases. The great potential of electrospun fiber patches not only lies in their tunable drug release properties and the possibility to entrap a variety of therapeutic compounds, but they also provide physical and mechanical protection to the impaired skin area, exhibit a high surface area, allow gas exchange, absorb exudate due to their porous structure and are cytocompatible and biodegradable. In the case of wound healing, cell adhesion is promoted due to the resemblance of the electrospun fibers to the structure of the native extracellular matrix. This review gives an overview of the potential applications of electrospun fibers in skin therapy. In addition to the treatment of bacterial, diabetic and burn wounds, focus is placed on inflammatory diseases such as atopic dermatitis and psoriasis, and therapeutic options for the treatment of skin cancer, acne vulgaris and herpes labialis are discussed. While we aim to emphasize the great potential of electrospun fiber patches for the treatment of skin diseases with this review paper, we also highlight challenges and limitations of current research in the field.
Collapse
Affiliation(s)
- Anna-Lena Gürtler
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Rades
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Heinz
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
15
|
Bardania H, Jafari F, Baneshi M, Mahmoudi R, Ardakani MT, Safari F, Barmak MJ. Folic Acid-Functionalized Albumin/Graphene Oxide Nanocomposite to Simultaneously Deliver Curcumin and 5-Fluorouracil into Human Colorectal Cancer Cells: An In Vitro Study. BIOMED RESEARCH INTERNATIONAL 2023; 2023:8334102. [PMID: 37304465 PMCID: PMC10256446 DOI: 10.1155/2023/8334102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/03/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023]
Abstract
Background Nowadays, due to various inherent properties, graphene-based nanoparticles are widely used in drug delivery research. On the other hand, folate receptors are highly expressed on the surface of human tumor cells. In this work, to enhance the 5-fluorouracil (5FU) and curcumin (Cur) effects on colon cancer, we constructed a folic acid- (FA-) modified codelivery carrier based on graphene nanoparticles (GO-Alb-Cur-FA-5FU). Materials and Methods The HUVEC and HT-29 were selected for evaluating the antitumor effect of the prepared nanocarriers. The structure of nanocarriers was characterized by FTIR spectroscopy, X-ray diffraction analysis, TEM microscopy, and a DLS analyzer. The efficiency of the prepared carrier was evaluated by fluorescence microscopy using Annexin V and the PI kit. The cytotoxicity of the carrier's component individually and the efficacy of the drug carrier GO-Alb-Cur-FA-5FU were assessed by MTT. Results The results of the pharmacological tests indicated that the new nanoparticles cause increased apparent toxicity in HT-29 cells. The apoptosis rate of the HT-29 and HUVEC cells treated with IC50 values of GO-Alb-Cur-FA-5FU for 48 h was higher than the cells treated with IC50 values of 5FU and Cur individually, which indicated the greater inhibitory efficacy of GO-Alb-Cur-FA-5FU than free drugs. Conclusion The designed GO-Alb-CUR-FA-5FU delivery system can be applied for targeting colon cancer cells and can be severe as a potential candidate for future drug development.
Collapse
Affiliation(s)
- Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Farajollah Jafari
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Marzieh Baneshi
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia, Canada B1P 6L2
| | - Reza Mahmoudi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Maryam Tajali Ardakani
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Farshad Safari
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mehrzad Jafari Barmak
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
16
|
T A, Prabhu A, Baliga V, Bhat S, Thenkondar ST, Nayak Y, Nayak UY. Transforming Wound Management: Nanomaterials and Their Clinical Impact. Pharmaceutics 2023; 15:pharmaceutics15051560. [PMID: 37242802 DOI: 10.3390/pharmaceutics15051560] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Wound healing is a complex process that can be further complicated in chronic wounds, leading to prolonged healing times, high healthcare costs, and potential patient morbidity. Nanotechnology has shown great promise in developing advanced wound dressings that promote wound healing and prevent infection. The review article presents a comprehensive search strategy that was applied to four databases, namely Scopus, Web of Science, PubMed, and Google Scholar, using specific keywords and inclusion/exclusion criteria to select a representative sample of 164 research articles published between 2001 and 2023. This review article provides an updated overview of the different types of nanomaterials used in wound dressings, including nanofibers, nanocomposites, silver-based nanoparticles, lipid nanoparticles, and polymeric nanoparticles. Several recent studies have shown the potential benefits of using nanomaterials in wound care, including the use of hydrogel/nano silver-based dressings in treating diabetic foot wounds, the use of copper oxide-infused dressings in difficult-to-treat wounds, and the use of chitosan nanofiber mats in burn dressings. Overall, developing nanomaterials in wound care has complemented nanotechnology in drug delivery systems, providing biocompatible and biodegradable nanomaterials that enhance wound healing and provide sustained drug release. Wound dressings are an effective and convenient method of wound care that can prevent wound contamination, support the injured area, control hemorrhaging, and reduce pain and inflammation. This review article provides valuable insights into the potential role of individual nanoformulations used in wound dressings in promoting wound healing and preventing infections, and serves as an excellent resource for clinicians, researchers, and patients seeking improved healing outcomes.
Collapse
Affiliation(s)
- Ashwini T
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Ashlesh Prabhu
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Vishal Baliga
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shreesha Bhat
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Siddarth T Thenkondar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
17
|
Mosallanezhad P, Nazockdast H, Ahmadi Z, Rostami A. Fabrication and characterization of polycaprolactone/chitosan nanofibers containing antibacterial agents of curcumin and ZnO nanoparticles for use as wound dressing. Front Bioeng Biotechnol 2022; 10:1027351. [PMID: 36213068 PMCID: PMC9539460 DOI: 10.3389/fbioe.2022.1027351] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
The potential of the nanoscale structure is utilized by electrospun nanofibers, which are promising materials for wound dressings. Here, we prepared wound dressings constituting polycaprolactone (PCL) and chitosan (CS). Curcumin (Cur) and zinc oxide nanoparticles (ZnO) as antibacterial agents were embedded in PCL/CS electrospun nanofibers and different properties including morphology, physicomechanical, interaction with water, antibacterial efficiency, and in vitro studies were investigated. SEM images confirmed the nanofibrous structure of samples with 100 ± 5 to 212 ± 25 nm in average diameter. Elemental analysis of nanofibers showed a good distribution of ZnO along nanofibers which not only caused decreasing in nanofiber diameter but also increased tensile strength of nanofibers up to 2.9 ± 0.5 MPa and with good elongation at break of 39 ± 2.9. ZnO nanoparticles also facilitated the interaction of nanofibers with water, and this led to the highest water vapor transition rate, which was equal to 0.28 ± 0.02 g cm−2 day−1. The sample containing 3 wt% Cur had the highest water uptake value (367 ± 15%) and the lowest water contact angle (78 ± 3.7°), although Cur has a hydrophobic nature. The release profile of Cur showed a two-stage release and the Peppas model predicted a non-fickian diffusion. Simultaneous incorporation of CS, ZnO, and Cur effectively inhibited bacterial growth. In addition, in vitro studies represented that high content of Cur decreases cell viability and cell attachment. The outcomes from the fabricated nanofibrous scaffolds demonstrated appropriate properties for application as a wound dressing.
Collapse
Affiliation(s)
- Pezhman Mosallanezhad
- Department of Polymer Engineering, Amirkabir University of Technology, Mahshahr, Iran
| | - Hossein Nazockdast
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
- *Correspondence: Hossein Nazockdast,
| | - Zahed Ahmadi
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Amir Rostami
- Department of Chemical Engineering, Faculty of Petroleum, Gas, and Petrochemical Engineering, Persian Gulf University, Bushehr, Iran
| |
Collapse
|
18
|
Ji Y, Song W, Xu L, Yu DG, Annie Bligh SW. A Review on Electrospun Poly(amino acid) Nanofibers and Their Applications of Hemostasis and Wound Healing. Biomolecules 2022; 12:794. [PMID: 35740919 PMCID: PMC9221312 DOI: 10.3390/biom12060794] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/28/2022] [Accepted: 06/04/2022] [Indexed: 02/07/2023] Open
Abstract
The timely and effective control and repair of wound bleeding is a key research issue all over the world. From traditional compression hemostasis to a variety of new hemostatic methods, people have a more comprehensive understanding of the hemostatic mechanism and the structure and function of different types of wound dressings. Electrospun nanofibers stand out with nano size, high specific surface area, higher porosity, and a variety of complex structures. They are high-quality materials that can effectively promote wound hemostasis and wound healing because they can imitate the structural characteristics of the skin extracellular matrix (ECM) and support cell adhesion and angiogenesis. At the same time, combined with amino acid polymers with good biocompatibility not only has high compatibility with the human body but can also be combined with a variety of drugs to further improve the effect of wound hemostatic dressing. This paper summarizes the application of different amino acid electrospun wound dressings, analyzes the characteristics of different materials in preparation and application, and looks forward to the development of directions of poly(amino acid) electrospun dressings in hemostasis.
Collapse
Affiliation(s)
- Yuexin Ji
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.J.); (W.S.); (L.X.)
| | - Wenliang Song
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.J.); (W.S.); (L.X.)
| | - Lin Xu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.J.); (W.S.); (L.X.)
| | - Deng-Guang Yu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.J.); (W.S.); (L.X.)
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| | - Sim Wan Annie Bligh
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong 999077, China
| |
Collapse
|