1
|
Alfaifi J. miRNAs Role in Wilms tumor pathogenesis: Signaling pathways interplay. Pathol Res Pract 2024; 256:155254. [PMID: 38460245 DOI: 10.1016/j.prp.2024.155254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Wilms' tumors (WTs) are the most common type of kidney tumor in children, and a negative outlook is generally associated with widespread anaplastic. MicroRNAs (miRNAs) are crucial in the development of WT by regulating the expression of specific genes. There is an increasing amount of research that connects the dysregulation of miRNAs to the development of various renal illnesses. The conditions encompassed are renal fibrosis, renal cancers, and chronic and polycystic kidney disease. Dysregulation of several important miRNAs, either oncogenic or tumor-suppressing, has been found in WT. The present state of knowledge on the involvement of dysregulated miRNAs in the progression of WT is summarized in this review.
Collapse
Affiliation(s)
- Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| |
Collapse
|
2
|
Alli VJ, Yadav P, Suresh V, Jadav SS. Synthetic and Medicinal Chemistry Approaches Toward WEE1 Kinase Inhibitors and Its Degraders. ACS OMEGA 2023; 8:20196-20233. [PMID: 37323408 PMCID: PMC10268025 DOI: 10.1021/acsomega.3c01558] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023]
Abstract
WEE1 is a checkpoint kinase critical for mitotic events, especially in cell maturation and DNA repair. Most cancer cells' progression and survival are linked with elevated levels of WEE1 kinase. Thus, WEE1 kinase has become a new promising druggable target. A few classes of WEE1 inhibitors are designed by rationale or structure-based techniques and optimization approaches to identify selective acting anticancer agents. The discovery of the WEE1 inhibitor AZD1775 further emphasized WEE1 as a promising anticancer target. Therefore, the current review provides a comprehensive data on medicinal chemistry, synthetic approaches, optimization methods, and the interaction profile of WEE1 kinase inhibitors. In addition, WEE1 PROTAC degraders and their synthetic procedures, including a list of noncoding RNAs necessary for regulation of WEE1, are also highlighted. From the standpoint of medicinal chemistry, the contents of this compilation serve as an exemplar for the further design, synthesis, and optimization of promising WEE1-targeted anticancer agents.
Collapse
Affiliation(s)
- Vidya Jyothi Alli
- Department
of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology Tarnaka, Uppal Road, Hyderabad 500037, India
| | - Pawan Yadav
- Department
of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology Tarnaka, Uppal Road, Hyderabad 500037, India
| | - Vavilapalli Suresh
- Department
of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology Tarnaka, Uppal Road, Hyderabad 500037, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Surender Singh Jadav
- Department
of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology Tarnaka, Uppal Road, Hyderabad 500037, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Hu Q, Huang T. Regulation of the Cell Cycle by ncRNAs Affects the Efficiency of CDK4/6 Inhibition. Int J Mol Sci 2023; 24:ijms24108939. [PMID: 37240281 DOI: 10.3390/ijms24108939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) regulate cell division at multiple levels. Aberrant proliferation induced by abnormal cell cycle is a hallmark of cancer. Over the past few decades, several drugs that inhibit CDK activity have been created to stop the development of cancer cells. The third generation of selective CDK4/6 inhibition has proceeded into clinical trials for a range of cancers and is quickly becoming the backbone of contemporary cancer therapy. Non-coding RNAs, or ncRNAs, do not encode proteins. Many studies have demonstrated the involvement of ncRNAs in the regulation of the cell cycle and their abnormal expression in cancer. By interacting with important cell cycle regulators, preclinical studies have demonstrated that ncRNAs may decrease or increase the treatment outcome of CDK4/6 inhibition. As a result, cell cycle-associated ncRNAs may act as predictors of CDK4/6 inhibition efficacy and perhaps present novel candidates for tumor therapy and diagnosis.
Collapse
Affiliation(s)
- Qingyi Hu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
4
|
Montaner-Angoiti E, Marín-García PJ, Llobat L. Epigenetic Alterations in Canine Malignant Lymphoma: Future and Clinical Outcomes. Animals (Basel) 2023; 13:468. [PMID: 36766357 PMCID: PMC9913421 DOI: 10.3390/ani13030468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 02/02/2023] Open
Abstract
Canine malignant lymphoma is a common neoplasia in dogs, and some studies have used dogs as a research model for molecular mechanisms of lymphomas in humans. In two species, chemotherapy is the treatment of choice, but the resistance to conventional anticancer drugs is frequent. The knowledge of molecular mechanisms of development and progression of neoplasia has expanded in recent years, and the underlying epigenetic mechanisms are increasingly well known. These studies open up new ways of discovering therapeutic biomarkers. Histone deacetylases and demethylase inhibitors could be a future treatment for canine lymphoma, and the use of microRNAs as diagnosis and prognosis biomarkers is getting closer. This review summarises the epigenetic mechanisms underlying canine lymphoma and their possible application as treatment and biomarkers, both prognostic and diagnostic.
Collapse
Affiliation(s)
| | - Pablo Jesús Marín-García
- Departamento Producción y Sanidad Animal, Salud Pública y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain
| | - Lola Llobat
- Departamento Producción y Sanidad Animal, Salud Pública y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain
| |
Collapse
|
5
|
Role of MicroRNAs in Human Osteosarcoma: Future Perspectives. Biomedicines 2021; 9:biomedicines9050463. [PMID: 33922820 PMCID: PMC8146779 DOI: 10.3390/biomedicines9050463] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
Osteosarcoma (OS) is a rare form of cancer with high death rate but is one of the most frequent forms of bone cancer in children and adolescents. MiRNAs are small endogenous RNAs that regulate gene expression post-transcriptionally. The discovery of miRNAs could allow us to obtain an earlier diagnosis, predict prognosis and chemoresistance, and lead to the discovery of new treatments in different types of tumors, including OS. Despite the fact that there is currently only one clinical trial being carried out on a single miRNA for solid tumors, it is very probable that the number of clinical trials including miRNAs as prognostic and diagnostic biomarkers, as well as potential therapeutic targets, will increase in the near future. This review summarizes the different miRNAs related to OS and their possible therapeutic application.
Collapse
|
6
|
Fu W, Yu G, Liang J, Fan P, Dong K, Zhang B, Chen X, Zhu H, Chu L. miR-144-5p and miR-451a Inhibit the Growth of Cholangiocarcinoma Cells Through Decreasing the Expression of ST8SIA4. Front Oncol 2021; 10:563486. [PMID: 33520692 PMCID: PMC7841262 DOI: 10.3389/fonc.2020.563486] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidences indicate that non-coding RNAs play crucial roles in the progression of an extensive range of carcinomas. This study aimed to investigate the action mechanism of miR-144-5p and miR-451a in cholangiocarcinoma. We found that miR-144-5p and miR-451a were significantly decreased in cholangiocarcinoma patient samples compared to the adjacent normal bile duct samples. The downregulation of these two miRNAs was correlated with a more advanced disease state of cholangiocarcinoma patients. Overexpression of miR-144-5p and miR-451a suppressed the proliferation, invasion and migration of cholangiocarcinoma cells in vitro and inhibited xenograft tumor growth. Knockdown of these two miRNAs had the opposite effects. miR-144-5p and miR-451a regulated the expression of ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 4 (ST8SIA4), and presented a correlation with ST8SIA4 in patient samples. Overexpression of ST8SIA4 promoted the proliferation, invasion and migration of cholangiocarcinoma cells, and the changes were reversed by upregulating the expression of miR-144-5p and miR-451a. Our findings indicated that miR-144-5p and miR-451a displayed a tumor suppressor role through decreasing the expression of ST8SIA4 in cholangiocarcinoma.
Collapse
Affiliation(s)
- Wan Fu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Provincial Key Laboratory of Hepatobiliary and Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangcai Yu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junnan Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Provincial Key Laboratory of Hepatobiliary and Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Fan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Provincial Key Laboratory of Hepatobiliary and Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Keshuai Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Provincial Key Laboratory of Hepatobiliary and Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Provincial Key Laboratory of Hepatobiliary and Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Provincial Key Laboratory of Hepatobiliary and Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Zhu
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Provincial Key Laboratory of Hepatobiliary and Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Kolenda T, Guglas K, Kopczyńska M, Sobocińska J, Teresiak A, Bliźniak R, Lamperska K. Good or not good: Role of miR-18a in cancer biology. Rep Pract Oncol Radiother 2020; 25:808-819. [PMID: 32884453 DOI: 10.1016/j.rpor.2020.07.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/24/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
Abstract
miR-18a is a member of primary transcript called miR-17-92a (C13orf25 or MIR17HG) which also contains five other miRNAs: miR-17, miR-19a, miR-20a, miR-19b and miR-92a. This cluster as a whole shows specific characteristics, where miR-18a seems to be unique. In contrast to the other members, the expression of miR-18a is additionally controlled and probably functions as its own internal controller of the cluster. miR-18a regulates many genes involved in proliferation, cell cycle, apoptosis, response to different kinds of stress, autophagy and differentiation. The disturbances of miR-18a expression are observed in cancer as well as in different diseases or pathological states. The miR-17-92a cluster is commonly described as oncogenic and it is known as 'oncomiR-1', but this statement is a simplification because miR-18a can act both as an oncogene and a suppressor. In this review we summarize the current knowledge about miR-18a focusing on its regulation, role in cancer biology and utility as a potential biomarker.
Collapse
Key Words
- 5-FU, 5-fluorouracyl
- ACVR2A, activin A receptor type 2A
- AKT, AKT serine/threonine kinase
- AR, androgen receptor
- ATG7, autophagy related 7
- ATM, ATM serine/threonine kinase
- BAX, BCL2 associated Xapoptosis regulator
- BCL2, BCL2 apoptosis regulator
- BCL2L10, BCL2 like 10
- BDNF, brain derived neurotrophic factor
- BLCA, bladder urothelial carcinoma
- BRCA, breast cancer
- Biomarker
- Bp, base pair
- C-myc (MYCBP), MYC binding protein
- CASC2, cancer susceptibility 2
- CD133 (PROM1), prominin 1
- CDC42, cell division cycle 42
- CDKN1, Bcyclin dependent kinase inhibitor 1B
- COAD, colon adenocarcinoma
- Cancer
- Circulating miRNA
- DDR, DNA damage repair
- E2F family (E2F1, E2F2, E2F3), E2F transcription factors
- EBV, Epstein-Barr virus
- EMT, epithelial-to-mesenchymal transition
- ER, estrogen receptor
- ERBB (EGFR), epidermal growth factor receptor
- ESCA, esophageal carcinoma
- FENDRR, FOXF1 adjacent non-coding developmental regulatory RNA
- FER1L4, fer-1 like family member 4 (pseudogene)
- GAS5, growth arrest–specific 5
- HIF-1α (HIF1A), hypoxia inducible factor 1 subunit alpha
- HNRNPA1, heterogeneous nuclear ribonucleoprotein A1
- HNSC, head and neck squamous cell carcinoma
- HRR, homologous recombination-based DNA repair
- IFN-γ (IFNG), interferon gamma
- IGF1, insulin like growth factor 1
- IL6, interleukin 6
- IPMK, inositol phosphate multikinase
- KIRC, clear cell kidney carcinoma
- KIRP, kidney renal papillary cell carcinoma
- KRAS, KRAS proto-oncogene, GTPase
- LIHC, liver hepatocellular carcinoma
- LMP1, latent membrane protein 1
- LUAD, lung adenocarcinoma
- LUSC, lung squamous cell carcinoma
- Liquid biopsy
- MAPK, mitogen-activated protein kinase
- MCM7, minichromosome maintenance complex component 7
- MET, mesenchymal-to-epithelial transition
- MTOR, mechanistic target of rapamycin kinase
- N-myc (MYCN), MYCN proto-oncogene, bHLH transcription factor
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NOTCH2, notch receptor 2
- Oncogene
- PAAD, pancreatic adenocarcinoma
- PERK (EIF2AK3), eukaryotic translation initiation factor 2 alpha kinase 3
- PI3K (PIK3CA), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha
- PIAS3, protein inhibitor of activated STAT 3
- PRAD, prostate adenocarcinoma
- RISC, RNA-induced silencing complex
- SMAD2, SMAD family member 2
- SMG1, SMG1 nonsense mediated mRNA decay associated PI3K related kinase
- SNHG1, small nucleolar RNA host gene 1
- SOCS5, suppressor of cytokine signaling 5
- STAD, stomach adenocarcinoma
- STAT3, signal transducer and activator of transcription 3
- STK4, serine/threonine kinase 4
- Suppressor
- TCGA
- TCGA, The Cancer Genome Atlas
- TGF-β (TGFB1), transforming growth factor beta 1
- TGFBR2, transforming growth factor beta receptor 2
- THCA, papillary thyroid carcinoma
- TNM, Classification of Malignant Tumors: T - tumor / N - lymph nodes / M – metastasis
- TP53, tumor protein p53
- TP53TG1, TP53 target 1
- TRIAP1, p53-regulating inhibitor of apoptosis gene
- TSC1, TSC complex subunit 1
- UCA1, urothelial cancer associated 1
- UCEC, uterine corpus endometrial carcinoma
- UTR, untranslated region
- WDFY3-AS2, WDFY3 antisense RNA 2
- WEE1, WEE1 G2 checkpoint kinase
- WNT family, Wingless-type MMTV integration site family/Wnt family ligands
- ZEB1/ZEB2, zinc finger E-box binding homeobox 1 and 2
- ceRNA, competitive endogenous RNA
- cncRNA, protein coding and non-coding RNA
- lncRNA, long-non coding RNA
- miR-17-92a
- miR-18a
- miRNA
Collapse
Affiliation(s)
- Tomasz Kolenda
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland.,Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warszawa, Poland
| | - Kacper Guglas
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warszawa, Poland
| | - Magda Kopczyńska
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland.,Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Sobocińska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Teresiak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
| | - Renata Bliźniak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
| | | |
Collapse
|
8
|
Liu D, Cao Z, Xu W, Lin G, Zhou X, Ding X, Wang N, Wu C, Su B. Enhancement of chemosensitivity by WEE1 inhibition in EGFR-TKIs resistant non-small cell lung cancer. Biomed Pharmacother 2019; 117:109185. [PMID: 31387179 DOI: 10.1016/j.biopha.2019.109185] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/01/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) is the first-line treatment in non-resectable non-small lung cancer (NSCLC) with EGFR mutation. However, EGFR-TIKs resistance would inevitably develop within 9-14 months after treatment. And, chemotherapy is the main treatment for EGFR-TKIs resistant patients. WEE1 kinase, a G2/M checkpoint regulator, was recently considered as a putative biomarker for the platinum-based chemo-response. The aim of this study is to clarify the relationship between WEE1 kinase and chemosensitivity in EGFR-TKIs resistant NSCLC. WEE1 expression was tested in EGFR-TKIs resistant cell lines (H1299, PC9/G2) and patients' specimens by western blot, qPCR and immunohistochemistry (IHC). In in vitro experiment, WEE1 expression was higher in EGFR-TKIs resistant than EGFR-TKIs sensitive cell lines and was gradually increased following cisplatin or gemcitabine treatment with the enrichment of G2/M cell cycle phase. And, for patients with acquired Icotinib/Gefitinib resistance, 58.4% (7/12) had increased WEE1 expression compared to its initial expression level. In order to explore the impact of WEE1 on chemo-response, WEE1 knockdown was conducted in EGFR-TKIs resistant H1299 and PC9/G2 cells. MTT and colony formation assay showed that the efficacy of cisplatin and gemcitabine was enhanced in the two cell lines after WEE1 knockdown. And, the IC50 value of cisplatin decreased from 8.64 μg/ml to 3.10 μg/ml or 2.38 μg/ml in H1299 and from 3.66 μg/ml to 0.97 μg/ml or 1.18 μg/ml in PC9/G2 after WEE1 knockdown with two specific shRNAs. This study revealed that WEE1 expression was increased after EGFR-TKIs resistance, and WEE1 knockdown could enhance chemosensitivity in EGFR-TKIs resistant NSCLC. It is suggested the combination of WEE1 inhibitor and chemotherapy might improve the clinical outcome of NSCLC patients with acquired EGFR-TKIs resistance.
Collapse
Affiliation(s)
- Di Liu
- Department of Thoracic Surgery, Tongji University School of Medicine, Shanghai, PR China
| | - Ziyang Cao
- Department of Pathology, Tongji University School of Medicine, Shanghai, PR China
| | - Wen Xu
- Department of Respiratory Medicine, Tongji University School of Medicine, Shanghai, PR China
| | - Ge Lin
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Xiao Zhou
- Department of Thoracic Surgery, Tongji University School of Medicine, Shanghai, PR China
| | - Xi Ding
- Department of Thoracic Surgery, Tongji University School of Medicine, Shanghai, PR China
| | - Na Wang
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Chunyan Wu
- Department of Pathology, Tongji University School of Medicine, Shanghai, PR China.
| | - Bo Su
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, PR China.
| |
Collapse
|
9
|
Hoffman JR, Davis ME. Embryonic miRs to the Rescue. Circ Res 2019; 125:26-28. [PMID: 31219747 DOI: 10.1161/circresaha.119.315284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jessica R Hoffman
- From the Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA
| | - Michael E Davis
- From the Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA
| |
Collapse
|
10
|
Wang JD, Zhou HS, Tu XX, He Y, Liu QF, Liu Q, Long ZJ. Prediction of competing endogenous RNA coexpression network as prognostic markers in AML. Aging (Albany NY) 2019; 11:3333-3347. [PMID: 31141496 PMCID: PMC6555472 DOI: 10.18632/aging.101985] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/19/2019] [Indexed: 12/16/2022]
Abstract
Recently, competing endogenous RNAs (ceRNAs) hypothesis has gained a great interest in the study of molecular biological mechanisms of cancer occurrence and progression. However, studies on leukemia are limited, and there is still a lack of comprehensive analysis of lncRNA-miRNA-mRNA ceRNA regulatory network of AML based on high-throughput sequencing and large-scale sample size. We obtained RNA-Seq data and compared the expression profiles between 407 normal whole blood (GTEx) and 151 bone marrows of AML (TCGA). The similarity between two sets of genes with trait in the network was analyzed by weighted correlation network analysis (WGCNA). MiRcode, starBase, miRTarBase, miRDB and TargetScan was used to predict interactions between lncRNAs, miRNAs and target mRNAs. At last, we identified 108 lncRNAs, 10 miRNAs and 8 mRNAs to construct a lncRNA-miRNA-mRNA ceRNA network, which might act as prognostic biomarkers of AML. Among the network, a survival model with 8 target mRNAs (HOXA9+INSR+KRIT1+MYB+SPRY2+UBE2V1+WEE1+ZNF711) was set up by univariate and multivariate cox proportional hazard regression analysis, of which the AUC was 0.831, indicating its sensitivity and specificity in AML prognostic prediction. CeRNA networks could provide further insight into the study on gene regulation and AML prognosis.
Collapse
Affiliation(s)
- Jun-Dan Wang
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
- Institute of Hematology, Sun Yat-sen University, Guangzhou 510630, China
- Equal contribution
| | - Hong-Sheng Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
- Equal contribution
| | - Xi-Xiang Tu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Yi He
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
- Institute of Hematology, Sun Yat-sen University, Guangzhou 510630, China
| | - Qi-Fa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Quentin Liu
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
- Institute of Hematology, Sun Yat-sen University, Guangzhou 510630, China
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116000, China
| | - Zi-Jie Long
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
- Institute of Hematology, Sun Yat-sen University, Guangzhou 510630, China
| |
Collapse
|
11
|
Wu M, Li X, Liu Q, Xie Y, Yuan J, Wanggou S. miR-526b-3p serves as a prognostic factor and regulates the proliferation, invasion, and migration of glioma through targeting WEE1. Cancer Manag Res 2019; 11:3099-3110. [PMID: 31114353 PMCID: PMC6489667 DOI: 10.2147/cmar.s192361] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/17/2019] [Indexed: 12/22/2022] Open
Abstract
Background: MicroRNAs play important roles in cancer progression including glioma. In this study, we aimed to explore the expression pattern, prognostic potential, and functional role of miR-526b-3p in human glioma. Materials and methods: The expression of miR-526b-3p in glioma tissues and the adjacent non-tumor tissues was determined by quantitative RT-PCR. The chi-square test was performed to evaluate the statistical associations between miR-526b-3p level and patient characteristics. The prognostic value of miR-526b-3p was analyzed by Kaplan–Meier and Cox regression analyses. The function of miR-526b-3p was analyzed by MTT, colony formation assay, transwell assay, and flow cytometry analysis in vitro. The binding between miR-526b-3p and predicted target WEE1 was verified using dual luciferase assay and Western blot analysis. Results: We found that miR-526b-3p expression was significantly downregulated in both glioma tissues and cell lines. Downregulation of miR-526b-3p was significantly associated with advanced WHO grade, lower KPS score, and inferior patient outcomes. Functional investigation indicated that overexpression of miR-526b-3p suppressed cell proliferation, migration, and invasion, and promoted apoptosis in glioma cell lines. Mechanically, WEE1 was identified as direct targets of miR-526b-3p and overexpression of WEE1 significantly suppressed the levels of WEE1. Moreover, re-introduction of WEE1 abrogates the suppression of motility and invasiveness induced by miR-526b-3p in glioma cells. Conclusion: These findings indicate that miR-526b-3p may target WEE1 and inhibit glioma tumorigenesis and progression.
Collapse
Affiliation(s)
- Ming Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yuanyang Xie
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Jian Yuan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Siyi Wanggou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
12
|
Kabekkodu SP, Shukla V, Varghese VK, D' Souza J, Chakrabarty S, Satyamoorthy K. Clustered miRNAs and their role in biological functions and diseases. Biol Rev Camb Philos Soc 2018; 93:1955-1986. [PMID: 29797774 DOI: 10.1111/brv.12428] [Citation(s) in RCA: 255] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 04/20/2018] [Accepted: 04/26/2018] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are endogenous, small non-coding RNAs known to regulate expression of protein-coding genes. A large proportion of miRNAs are highly conserved, localized as clusters in the genome, transcribed together from physically adjacent miRNAs and show similar expression profiles. Since a single miRNA can target multiple genes and miRNA clusters contain multiple miRNAs, it is important to understand their regulation, effects and various biological functions. Like protein-coding genes, miRNA clusters are also regulated by genetic and epigenetic events. These clusters can potentially regulate every aspect of cellular function including growth, proliferation, differentiation, development, metabolism, infection, immunity, cell death, organellar biogenesis, messenger signalling, DNA repair and self-renewal, among others. Dysregulation of miRNA clusters leading to altered biological functions is key to the pathogenesis of many diseases including carcinogenesis. Here, we review recent advances in miRNA cluster research and discuss their regulation and biological functions in pathological conditions.
Collapse
Affiliation(s)
- Shama P Kabekkodu
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Vaibhav Shukla
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Vinay K Varghese
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Jeevitha D' Souza
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| |
Collapse
|
13
|
Association between MicroRNA-373 and Long Noncoding RNA NORAD in Hepatitis C Virus-Infected Hepatocytes Impairs Wee1 Expression for Growth Promotion. J Virol 2018; 92:JVI.01215-18. [PMID: 30089699 DOI: 10.1128/jvi.01215-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 07/30/2018] [Indexed: 12/20/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infection may lead to end-stage liver disease, including hepatocellular carcinoma (HCC). We have shown previously that microRNA-373 (miR-373) is upregulated in HCV-infected human liver biopsy specimens. To gain insight into the role of miR-373 in HCV-mediated pathogenesis, we investigated its interacting partner for hepatocyte growth regulation. Transcriptome sequencing (RNA-seq) data revealed that Wee1 is associated with miR-373 and is a direct target. Interestingly, higher expression of Wee1 was noted in HCV-infected hepatocytes than in uninfected hepatocytes, suggesting that other factors may block miR-373-mediated Wee1 inhibition. We subsequently found an association between the long noncoding RNA NORAD (LINC00657) and miR-373, and we demonstrated that NORAD binds to miR-373 and Wee1 independently. However, the high level of Wee1 expression in HCV-infected hepatocytes suggested that miR-373 forms a complex with NORAD. Depletion of miR-373 or the inhibitor Wee1 reduces the growth of Huh7.5 cells harboring the HCV genome as well as reducing Wee1 expression. Taken together, our data demonstrate a novel mechanism of hepatocyte growth promotion during HCV infection involving a miR-373-NORAD-Wee1 axis, which may be a target for future therapy against HCV-associated HCC.IMPORTANCE The mechanism of HCV-mediated liver pathogenesis is poorly understood. In this study, we observed that HCV infection upregulates miR-373 and Wee1, a pivotal player in the G2 checkpoint in the cell cycle, although Wee1 is a direct target for miR-373. Subsequent investigation demonstrated that miR-373 forms a complex with the long noncoding RNA NORAD, resulting in the release of their common target, Wee1, in HCV-infected cells, which, in turn, favors uncontrolled cell growth. Our study suggested a previously unknown mechanism for hepatocyte growth promotion following HCV infection, and this pathway can be targeted for future therapy against HCV-mediated liver pathogenesis.
Collapse
|
14
|
Wang W, Zhang A, Hao Y, Wang G, Jia Z. The emerging role of miR-19 in glioma. J Cell Mol Med 2018; 22:4611-4616. [PMID: 30073755 PMCID: PMC6156349 DOI: 10.1111/jcmm.13788] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/31/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022] Open
Abstract
Glioma has been regarded as the most common, highly proliferative and invasive brain tumour. Advances in research of miRNAs in glioma are toward further understanding of the pathogenesis of glioma. MiR‐19, a member of miR‐17~92 cluster, was reported to play an oncogenic role in tumourigenesis. Here we review the identified data about the effect of miR‐19 on proliferation, apoptosis, migration and invasion of glioma cells, the target genes regulated by miR‐19, and correlation of miR‐19 with the sensitivity of glioma cells to chemotherapy and radiotherapy. It is concluded that miR‐19 plays an important role in the pathogenesis of glioma and can be a potential target for gene therapy of glioma.
Collapse
Affiliation(s)
- Weihan Wang
- Department of Neurosurgery, Tianjin Medical University, General Hospital, Tianjin Neurological Institute, Laboratory of Neuro-Oncology, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Anling Zhang
- Department of Neurosurgery, Tianjin Medical University, General Hospital, Tianjin Neurological Institute, Laboratory of Neuro-Oncology, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Yubing Hao
- Department of Neurosurgery, Tianjin Medical University, General Hospital, Tianjin Neurological Institute, Laboratory of Neuro-Oncology, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Guangxiu Wang
- Department of Neurosurgery, Tianjin Medical University, General Hospital, Tianjin Neurological Institute, Laboratory of Neuro-Oncology, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Zhifan Jia
- Department of Neurosurgery, Tianjin Medical University, General Hospital, Tianjin Neurological Institute, Laboratory of Neuro-Oncology, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| |
Collapse
|
15
|
Pang H, Xu X, Dai L, Wang K, Yao X. MicroRNA‑195 is associated with regulating the pathophysiologic process of human laryngeal squamous cell carcinoma. Mol Med Rep 2018; 17:5283-5291. [PMID: 29393451 DOI: 10.3892/mmr.2018.8523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 12/20/2017] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs) have been reported to be associated with the modulation of tumor development, including alterations associated with the development of human laryngeal squamous cell carcinoma (LSCC). The present study was designed to investigate whether miRNA‑195 was associated with the pathophysiologic process of human LSCC and to identify its potential roles and underlying molecular mechanisms. To determine whether miRNA‑195 serves a role in LSCC, reverse transcription‑quantitative polymerase chain reaction was used to detect miRNA‑195 expression in LSCC tissues. The tumor‑suppressive effect of miRNA‑195 was determined by in vitro assays. Gain‑of‑function studies using miRNA‑195 mimics were performed to investigate cell viability, migration and invasion, and apoptosis in the AMC‑HN‑8 cell line. Western blotting was performed to reveal the molecular mechanisms of miRNA‑195 and its downstream signaling pathways in the LSCC AMC‑HN‑8 cell line. The present study demonstrated that miRNA‑195 is downregulated in primary LSCC tumors. Upregulating miRNA‑195 in vitro suppressed cell viability, migration and invasion in AMC‑HN‑8 cells. Overexpression of miRNA‑195 alone in AMC‑HN‑8 cells was sufficient to induce cell apoptosis, as identified by terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Compared with the high expression of miRNA‑195 in AMC‑HN‑8 cells, the expression levels of vascular endothelial growth factor receptor‑II protein and downstream signaling pathway proteins, which were associated with cell viability, migration, invasion and apoptosis, were markedly decreased compared with control or miRNA‑195 negative control treatment group. Together, these data suggest the therapeutic potential of miRNA‑195 in modulating cell growth, migration and apoptosis during the pathophysiological progression of LSCC and that miRNA‑195 may serve as a potential therapeutic target in human LSCC.
Collapse
Affiliation(s)
- Haifeng Pang
- Department of Otolaryngology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xuemei Xu
- Department of Otolaryngology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Linlin Dai
- Department of Otolaryngology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Kun Wang
- Department of Otolaryngology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xianyi Yao
- Department of Otolaryngology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
16
|
[Value of serum miR-17-92 cluster in diagnosis of retinoblastoma]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19. [PMID: 28697830 PMCID: PMC7389926 DOI: 10.7499/j.issn.1008-8830.2017.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To investigate the value of serum miR-17-92 cluster in the diagnosis of retinoblastoma (RB). METHODS Serum samples were collected from 20 children with RB and 20 healthy controls. Quantitative real-time PCR was used to measure the expression of miR-17-92 cluster. The expression of miR-17-92 cluster was compared between children with different stages of RB and the changes in the expression of miR-17-92 cluster after multimodality therapy were analyzed. The receiver operating characteristic (ROC) curve was used to investigate the value of serum miR-17-92 cluster in the diagnosis of RB. RESULTS Compared with the healthy controls, the children with RB had significantly higher relative expression of miR-17-3P, miR-17-5P, miR-18a, and miR-20a in serum (P<0.05), and miR-18a showed the greatest increase. There were no significant differences in the relative expression of miR-19a, miR-19b-1, and miR-92a-1 between children with RB and healthy controls (P>0.05). There were no significant differences in the expression of miR-17-5P, miR-17-3P, miR-18a, and miR-20a between the children with early-to-moderate stage of RB and those with advanced stage of RB (P>0.05), but there were significant reductions after multimodality therapy (P<0.05). In the diagnosis of RB, the areas under the ROC curve (AUCs) for serum miR-17-3P, miR-17-5P, miR-18a, and miR-20a were 0.770, 0.755, 0.828, and 0.665 respectively, and miR-18a had the largest AUC, with a sensitivity of 90% and a specificity of 65%. CONCLUSIONS miR-17-3P, miR-17-5P, miR-18a, and miR-20a are highly expressed in the serum of children with RB, and miR-18a may be used as a new marker for the diagnosis of RB.
Collapse
|
17
|
Ames H, Halushka MK, Rodriguez FJ. miRNA Regulation in Gliomas: Usual Suspects in Glial Tumorigenesis and Evolving Clinical Applications. J Neuropathol Exp Neurol 2017; 76:246-254. [PMID: 28431179 DOI: 10.1093/jnen/nlx005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In recent years, an increasing role for noncoding small RNAs (miRNA) has been uncovered in carcinogenesis. These oligonucleotides can promote degradation and/or inhibit translation of key mRNAs. Recent studies have also highlighted a possible role for miRNAs in adult and pediatric brain tumors, including high- and low-grade gliomas, medulloblastoma, ependymoma, and neoplasms associated with neurofibromatosis type 1. Gliomas represent the most common category of primary intraparenchymal brain tumors, and, for example, manipulation of signaling pathways, through inhibition of PTEN transcription appears to be an important function of miRNA dysregulation through miR-21, miR-106b, and miR-26a. Moreover, altered miRNA expression in gliomas play roles in the regulation of common tumorigenic processes, including receptor tyrosine kinase signaling, angiogenesis, invasion, suppression of differentiation, cell cycle enhancement, and inhibition of apoptosis. Suppression of differentiation requires the downregulation of a number of miRNAs that are both enriched in the brain and required for terminal glial differentiation, including miR-219 and miR-338. Our evolving understanding about the biology of gliomas make them attractive for miRNA study, given that recent evidence suggests that epigenetic and subtle genetic changes may contribute to their pathogenesis. Identification of key miRNAs also provides a rationale for developing robust biomarkers and inhibitory RNA strategies for therapeutic purposes in glioma patients.
Collapse
Affiliation(s)
- Heather Ames
- Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marc K Halushka
- Division of Cardiovascular Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fausto J Rodriguez
- Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Gao Z, Liu R, Liao J, Yang M, Pan E, Yin L, Pu Y. Possible tumor suppressive role of the miR-144/451 cluster in esophageal carcinoma as determined by principal component regression analysis. Mol Med Rep 2016; 14:3805-13. [PMID: 27572636 DOI: 10.3892/mmr.2016.5691] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 06/24/2016] [Indexed: 11/06/2022] Open
Abstract
MicroRNA (miRNA) clusters are expressed universally across different types of organisms, and an accumulating number of studies have demonstrated that miRNA clusters function more efficiently compared with single miRNAs during the development of certain cancer types. miRNA clusters may have increased stability and reliability over individual miRNAs as diagnostic or therapeutic biomarkers. In the present study, the expression levels of mature miRNAs within the miR-144/451 cluster were examined using stem‑loop reverse transcription‑quantitative polymerase chain reaction in 102 patients pathologically diagnosed with esophageal carcinoma. Bioinformatics tools were used to identify a possible miRNA‑mediated network of the miR‑144/451 cluster. The expression levels of hsa‑miR‑451a, hsa‑miR‑144‑3p and hsa‑miR‑144‑5p in tumor tissues were significantly lower compared with those in adjacent non‑tumor tissues (P<0.05). Pearson correlation analysis demonstrated that the expression levels of individual miR‑144/451 cluster members were correlated with each other, except for the pair of hsa‑miR‑144‑3p and hsa‑miR‑4732‑3p. In particular, hsa‑miR‑144‑5p expression was highly associated with hsa-miR-4732‑5p and hsa-miR-451a expression levels, with correlation coefficients of 0.729 and 0.608, respectively. Furthermore, the low expression levels of hsa‑miR‑144‑3p [odds ratio (OR), 0.85; P<0.05] and hsa-miR-144-5p (OR, 0.84; P<0.05) were determined to be risk factors for esophageal carcinoma development. Kyoto Encyclopedia of Genes and Genomes pathway analysis demonstrated that miRNAs forming the miR‑144/451 cluster may cooperate to regulate the cell cycle. Therefore, the miR‑144/451 cluster may serve an important role in the progression of esophageal carcinoma and may be considered as a biomarker for the detection of esophageal carcinoma at an early stage.
Collapse
Affiliation(s)
- Zhikui Gao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Juan Liao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Miao Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Enchun Pan
- Huaian Center for Disease Control and Prevention, Huaian, Jiangsu 223001, P.R. China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
19
|
Sardu C, Barbieri M, Rizzo MR, Paolisso P, Paolisso G, Marfella R. Cardiac Resynchronization Therapy Outcomes in Type 2 Diabetic Patients: Role of MicroRNA Changes. J Diabetes Res 2016; 2016:7292564. [PMID: 26636106 PMCID: PMC4655265 DOI: 10.1155/2016/7292564] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 03/27/2015] [Indexed: 11/18/2022] Open
Abstract
Heart failure (HF) and type 2 diabetes mellitus (T2DM) are two growing and related diseases in general population and particularly in elderly people. In selected patients affected by HF and severe dysfunction of left ventricle ejection fraction (LVEF), with left bundle brunch block, the cardiac resynchronization therapy with a defibrillator (CRT) is the treatment of choice to improve symptoms, NYHA class, and quality of life. CRT effects are related to alterations in genes and microRNAs (miRs) expression, which regulate cardiac processes involved in cardiac apoptosis, cardiac fibrosis, cardiac hypertrophy and angiogenesis, and membrane channel ionic currents. Different studies have shown a different prognosis in T2DM patients and T2DM elderly patients treated by CRT-D. We reviewed the literature data on CRT-D effect on adult and elderly patients with T2DM as compared with nondiabetic patients.
Collapse
Affiliation(s)
- Celestino Sardu
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, 80138 Naples, Italy
| | - Michelangela Barbieri
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, 80138 Naples, Italy
| | - Maria Rosaria Rizzo
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, 80138 Naples, Italy
| | - Pasquale Paolisso
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, 80138 Naples, Italy
| | - Giuseppe Paolisso
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, 80138 Naples, Italy
| | - Raffaele Marfella
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, 80138 Naples, Italy
- *Raffaele Marfella:
| |
Collapse
|
20
|
Yu X, Li Z, Chan MTV, Wu WKK. The roles of microRNAs in Wilms' tumors. Tumour Biol 2015; 37:1445-50. [PMID: 26634744 DOI: 10.1007/s13277-015-4514-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 11/25/2015] [Indexed: 12/12/2022] Open
Abstract
Wilms' tumor is the most common renal tumor in children in which diffusely anaplastic or unfavorable histology foreshadows poor prognosis. MicroRNAs are small, non-coding RNAs that negatively regulate gene expression at the posttranscriptional level. Accumulating evidence shows that microRNA dysregulation takes part in the pathogenesis of many renal diseases, such as chronic kidney diseases, polycystic kidney disease, renal fibrosis, and renal cancers. In Wilms' tumor, dysregulation of some key oncogenic or tumor-suppressing microRNAs, such as miR-17~92 cluster, miR-185, miR-204, and miR-483, has been documented. In this review, we will summarize current evidence on the role of dysregulated microRNAs in the development of Wilms' tumor.
Collapse
Affiliation(s)
- Xin Yu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100042, China
| | - Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100042, China.
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|