1
|
Miguel-Hernández S, Zluhan-Martínez E, Garay-Arroyo A, Cabrera-Muñoz L, Hernández-Angeles A, Durán-Figueroa NV, Pérez-Koldenkova V, Ponce-Castañeda MV. In vivo movement of retinoblastoma-related protein (RBR) towards cytoplasm during mitosis in Arabidopsisthaliana. Differentiation 2024; 140:100800. [PMID: 38987088 DOI: 10.1016/j.diff.2024.100800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Retinoblastoma protein is central in signaling networks of fundamental cell decisions such as proliferation and differentiation in all metazoans and cancer development. Immunostaining and biochemical evidence demonstrated that during interphase retinoblastoma protein is in the nucleus and is hypophosphorylated, and during mitosis is in the cytoplasm and is hyperphosphorylated. The purpose of this study was to visualize in vivo in a non-diseased tissue, the dynamic spatial and temporal nuclear exit toward the cytoplasm of this protein during mitosis and its return to the nucleus to obtain insights into its potential cytosolic functions. Using high-resolution time-lapse images from confocal microscopy, we tracked in vivo the ortholog in plants the RETINOBLASTOMA RELATED (RBR) protein tagged with Green Fluorescent Protein (GFP) in Arabidopsis thaliana's root. RBR protein exits from dense aggregates in the nucleus before chromosomes are in prophase in less than 2 min, spreading outwards as smaller particles projected throughout the cytosol during mitosis like a diffusive yet controlled event until telophase, when the daughter's nuclei form; RBR returns to the nuclei in coordination with decondensing chromosomal DNA forming new aggregates again in punctuated larger structures in each corresponding nuclei. We propose RBR diffused particles in the cytoplasm may function as a cytosolic sensor of incoming signals, thus coordinating re-aggregation with DNA is a mechanism by which any new incoming signals encountered by RBR may lead to a reconfiguration of the nuclear transcriptomic context. The small RBR diffused particles in the cytoplasm may preserve topologic-like properties allowing them to aggregate and restore their nuclear location, they may also be part of transient cytoplasmic storage of the cellular pre-mitotic transcriptional context, that once inside the nuclei may execute both the pre mitosis transcriptional context as well as new transcriptional instructions.
Collapse
Affiliation(s)
- Sergio Miguel-Hernández
- Laboratorio Nacional de Microscopía Avanzada de la Coordinación de Investigación en Salud, CMN SXXI Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Estephania Zluhan-Martínez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Depto. De Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Depto. De Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Adriana Hernández-Angeles
- Unidad de Investigación Médica en Enfermedades Infecciosas, Hospital de Pediatría, CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Noé Valentín Durán-Figueroa
- Unidad Profesional Interdisciplinaria de Ingeniería y Biotecnología, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Vadim Pérez-Koldenkova
- Laboratorio Nacional de Microscopía Avanzada de la Coordinación de Investigación en Salud, CMN SXXI Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - M Verónica Ponce-Castañeda
- Unidad de Investigación Médica en Enfermedades Infecciosas, Hospital de Pediatría, CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico; Facultad de Ciencias, Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
2
|
Idriss S, Hallal M, El-Kurdi A, Zalzali H, El-Rassi I, Ehli EA, Davis CM, Chung PED, Gendoo DMA, Zacksenhaus E, Saab R, Khoueiry P. A temporal in vivo catalog of chromatin accessibility and expression profiles in pineoblastoma reveals a prevalent role for repressor elements. Genome Res 2023; 33:269-282. [PMID: 36650051 PMCID: PMC10069464 DOI: 10.1101/gr.277037.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Pediatric pineoblastomas (PBs) are rare and aggressive tumors of grade IV histology. Although some oncogenic drivers are characterized, including germline mutations in RB1 and DICER1, the role of epigenetic deregulation and cis-regulatory regions in PB pathogenesis and progression is largely unknown. Here, we generated genome-wide gene expression, chromatin accessibility, and H3K27ac profiles covering key time points of PB initiation and progression from pineal tissues of a mouse model of CCND1-driven PB. We identified PB-specific enhancers and super-enhancers, and found that in some cases, the accessible genome dynamics precede transcriptomic changes, a characteristic that is underexplored in tumor progression. During progression of PB, newly acquired open chromatin regions lacking H3K27ac signal become enriched for repressive state elements and harbor motifs of repressor transcription factors like HINFP, GLI2, and YY1. Copy number variant analysis identified deletion events specific to the tumorigenic stage, affecting, among others, the histone gene cluster and Gas1, the growth arrest specific gene. Gene set enrichment analysis and gene expression signatures positioned the model used here close to human PB samples, showing the potential of our findings for exploring new avenues in PB management and therapy. Overall, this study reports the first temporal and in vivo cis-regulatory, expression, and accessibility maps in PB.
Collapse
Affiliation(s)
- Salam Idriss
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Mohammad Hallal
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon.,Biomedical Engineering Program, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Abdullah El-Kurdi
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon.,Pillar Genomics Institute, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Hasan Zalzali
- Department of Pediatric and Adolescent Medicine, American University of Beirut, Beirut 1107 2020, Lebanon.,Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Inaam El-Rassi
- Biomedical Engineering Program, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Erik A Ehli
- Avera Institute for Human Genetics, Sioux Falls, South Dakota 57108, USA
| | - Christel M Davis
- Avera Institute for Human Genetics, Sioux Falls, South Dakota 57108, USA
| | - Philip E D Chung
- Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Deena M A Gendoo
- Centre for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2SY, United Kingdom
| | - Eldad Zacksenhaus
- Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Raya Saab
- Department of Pediatric and Adolescent Medicine, American University of Beirut, Beirut 1107 2020, Lebanon.,Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Pierre Khoueiry
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; .,Pillar Genomics Institute, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| |
Collapse
|
3
|
Özdemir Özdoğan G, Kaya H. Next-Generation Sequencing Data Analysis on Pool-Seq and Low-Coverage Retinoblastoma Data. Interdiscip Sci 2020; 12:302-310. [PMID: 32519123 DOI: 10.1007/s12539-020-00374-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 04/26/2020] [Accepted: 05/22/2020] [Indexed: 12/31/2022]
Abstract
Next-generation sequencing (NGS) is related to massively parallel or deep deoxyribonucleic acid (DNA) sequencing technology which has revolutionized genomic researches in recent years. Although the cost of generating NGS data was decreased compared to the one at the time of emerging this technology, its cost might still be somewhat a problem. Hence, new strategies as pool-seq and low-coverage NGS data have been developed to overcome the cost problem. Despite decreasing cost, it is important to elucidate whether they are efficient in NGS studies. We applied a bioinformatics pipeline on pool-seq and low-coverage retinoblastoma data retrieved from only tumor data. Retinoblastoma is an eye malignancy in childhood that is initiated by RB1 mutation or MYCN amplification and can lead to the loss of vision of eye(s), and even sometimes life. We applied our pipeline on both retinoblastoma disease data and two other particular data to testify the validity and also for comparison purposes in the aspect of performance. High-confidence variant calls from Genome in a Bottle Consortium were used for fulfilling these purposes. We observed that our pipeline successfully called higher number of variants than a standard pipeline for all these three different data. Besides, the recall and F-score values were quite better in our pipeline as being noteworthy. We further presented our results on disease data in the aspects of the variants, variant types and disease-related genes. This study provides a guideline for performing NGS data analysis pipeline on pool-seq and low-coverage sequencing data in conjunction. To get more conclusive outcomes of these two strategies, we recommend using cancer data having higher mutation rates and larger pools.
Collapse
Affiliation(s)
| | - Hilal Kaya
- Department of Computer Engineering, Ankara Yildirim Beyazit University, 06010, Ankara, Turkey.
| |
Collapse
|
4
|
Yang M, Li Y, Wei W. MicroRNA-188-5p Promotes Epithelial-Mesenchymal Transition by Targeting ID4 Through Wnt/β‑catenin Signaling in Retinoblastoma. Onco Targets Ther 2019; 12:10251-10262. [PMID: 31819510 PMCID: PMC6885564 DOI: 10.2147/ott.s229739] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/31/2019] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Here, we investigated the involvement of the miR-188-5p/inhibitor of the DNA binding 4 (ID4) axis in retinoblastoma (Rb). PATIENTS AND METHODS We included 35 Rb tissues and the corresponding adjacent normal tissues. RT-qPCR, Western blot, lentivirus transfection, measurement of cell migration in vitro, and chip analysis were performed during the study. Mouse Rb models were established to investigate the in vivo mechanisms. RESULTS We showed that miR-188-5p was upregulated in Rb tissues; moreover, we identified a pathway involving the upregulation of miR-188-5p and its downstream target, ID4, in vitro. Cell experiments revealed that the overexpression of miR-188-5p significantly downregulated the expression of ID4 and the underlying mechanism involved direct targeting of the ID4 3'-UTR. The levels of ID4 are lower in Rb tissues; it plays an antitumor role by inhibiting Rb metastasis in vitro and in vivo. Further investigation revealed that the miR-188-5p/ID4 axis regulated metastasis by promoting epithelial-mesenchymal transition (EMT). We demonstrated that microRNA-188-5p promoted EMT by targeting ID4 through Wnt/β catenin signaling in Rb. CONCLUSION miRNA-188-5p can promote EMT by targeting ID4 through the Wnt/β‑catenin signaling pathway.
Collapse
Affiliation(s)
- Ming Yang
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing100730, People’s Republic of China
| | - Yang Li
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing100730, People’s Republic of China
| | - Wenbin Wei
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing100730, People’s Republic of China
| |
Collapse
|
5
|
Abstract
The human genome is generally organized into stable chromosomes, and only tumor cells are known to accumulate kilobase (kb)-sized extrachromosomal circular DNA elements (eccDNAs). However, it must be expected that kb eccDNAs exist in normal cells as a result of mutations. Here, we purify and sequence eccDNAs from muscle and blood samples from 16 healthy men, detecting ~100,000 unique eccDNA types from 16 million nuclei. Half of these structures carry genes or gene fragments and the majority are smaller than 25 kb. Transcription from eccDNAs suggests that eccDNAs reside in nuclei and recurrence of certain eccDNAs in several individuals implies DNA circularization hotspots. Gene-rich chromosomes contribute to more eccDNAs per megabase and the most transcribed protein-coding gene in muscle, TTN (titin), provides the most eccDNAs per gene. Thus, somatic genomes are rich in chromosome-derived eccDNAs that may influence phenotypes through altered gene copy numbers and transcription of full-length or truncated genes. Somatic cells can accumulate structural variations such as deletions. Here, Møller et al. show that normal human cells generate large extrachromosomal circular DNAs (eccDNAs), most likely the products of excised DNA, that can be transcriptionally active and, thus, may have phenotypic consequences.
Collapse
|
6
|
Castro-Magdonel BE, Orjuela M, Camacho J, García-Chéquer AJ, Cabrera-Muñoz L, Sadowinski-Pine S, Durán-Figueroa N, Orozco-Romero MDJ, Velázquez-Wong AC, Hernández-Ángeles A, Hernández-Galván C, Lara-Molina C, Ponce-Castañeda MV. miRNome landscape analysis reveals a 30 miRNA core in retinoblastoma. BMC Cancer 2017; 17:458. [PMID: 28668075 PMCID: PMC5493862 DOI: 10.1186/s12885-017-3421-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 06/09/2017] [Indexed: 12/22/2022] Open
Abstract
Background miRNAs exert their effect through a negative regulatory mechanism silencing expression upon hybridizing to their target mRNA, and have a prominent position in the control of many cellular processes including carcinogenesis. Previous miRNA studies on retinoblastoma (Rb) have been limited to specific miRNAs reported in other tumors or to medium density arrays. Here we report expression analysis of the whole miRNome on 12 retinoblastoma tumor samples using a high throughput microarray platform including 2578 mature miRNAs. Methods Twelve retinoblastoma tumor samples were analyzed using an Affymetrix platform including 2578 mature miRNAs. We applied RMA analysis to normalize raw data, obtained categorical data from detection call values, and also used signal intensity derived expression data. We used Diana-Tools-microT-CDS to find miRNA targets and ChromDraw to map miRNAs in chromosomes. Results We discovered a core-cluster of 30 miRNAs that were highly expressed in all the cases and a cluster of 993 miRNAs that were uniformly absent in all cases. Another 1022 miRNA were variably present in the samples reflecting heterogeneity between tumors. We explored mRNA targets, pathways and biological processes affected by some of these miRNAs. We propose that the core-cluster of 30 miRs represent miRNA machinery common to all Rb, and affecting most pathways considered hallmarks of cancer. In this core, we identified miR-3613 as a potential and critical down regulatory hub, because it is highly expressed in all the samples and its potential mRNA targets include at least 36 tumor suppressor genes, including RB1. In the variably expressed miRNA, 36 were differentially expressed between males and females. Some of the potential pathways targeted by these 36 miRNAs were associated with hormonal production. Conclusion These findings indicate that Rb tumor samples share a common miRNA expression profile regardless of tumor heterogeneity, and shed light on potential novel therapeutic targets such as mir-3613 This is the first work to delineate the miRNA landscape in retinoblastoma tumor samples using an unbiased approach. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3421-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Blanca Elena Castro-Magdonel
- Medical Research Unit in Infectious Diseases, Hospital de Pediatría, CMN SXXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, 06720, Mexico City, Mexico.,Pharmacology Department, CINVESTAV, Mexico City, Mexico
| | | | | | - Adda Jeanette García-Chéquer
- Medical Research Unit in Infectious Diseases, Hospital de Pediatría, CMN SXXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, 06720, Mexico City, Mexico
| | - Lourdes Cabrera-Muñoz
- Pathology Department, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City, Mexico
| | - Stanislaw Sadowinski-Pine
- Pathology Department, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City, Mexico
| | - Noé Durán-Figueroa
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Ana Claudia Velázquez-Wong
- Medical Research Unit in Human Genetics, Hospital de Pediatría, CMN SXXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Adriana Hernández-Ángeles
- Medical Research Unit in Infectious Diseases, Hospital de Pediatría, CMN SXXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, 06720, Mexico City, Mexico
| | - Claudia Hernández-Galván
- Ophthalmology Department, Hospital de Pediatría, CMN SXXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Citlali Lara-Molina
- Ophthalmology Department, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - M Verónica Ponce-Castañeda
- Medical Research Unit in Infectious Diseases, Hospital de Pediatría, CMN SXXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, 06720, Mexico City, Mexico.
| |
Collapse
|
7
|
García-Chequer AJ, Méndez-Tenorio A, Olguín-López G, Sánchez-Vallejo C, Isa P, Arias CF, Torres J, Hernández-Angeles A, Ramírez-Ortiz MA, Lara C, Cabrera-Muñoz MDL, Sadowinski-Pine S, Bravo-Ortiz JC, Ramón-García G, Diegopérez-Ramírez J, Ramírez-Reyes G, Casarrubias-Islas R, Ramírez J, Orjuela M, Ponce-Castañeda MV. Illumina next generation sequencing data and expression microarrays data from retinoblastoma and medulloblastoma tissues. Data Brief 2016; 6:908-16. [PMID: 26937470 PMCID: PMC4753385 DOI: 10.1016/j.dib.2015.12.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 12/31/2015] [Indexed: 12/01/2022] Open
Abstract
Retinoblastoma (Rb) is a pediatric intraocular malignancy and probably the most robust clinical model on which genetic predisposition to develop cancer has been demonstrated. Since deletions in chromosome 13 have been described in this tumor, we performed next generation sequencing to test whether recurrent losses could be detected in low coverage data. We used Illumina platform for 13 tumor tissue samples: two pools of 4 retinoblastoma cases each and one pool of 5 medulloblastoma cases (raw data can be found at http://www.ebi.ac.uk/ena/data/view/PRJEB6630). We first created an in silico reference profile generated from a human sequenced genome (GRCh37p5). From this data we calculated an integrity score to get an overview of gains and losses in all chromosomes; we next analyzed each chromosome in windows of 40 kb length, calculating for each window the log2 ratio between reads from tumor pool and in silico reference. Finally we generated panoramic maps with all the windows whether lost or gained along each chromosome associated to its cytogenetic bands to facilitate interpretation. Expression microarrays was done for the same samples and a list of over and under expressed genes is presented here. For this detection a significance analysis was done and a log2 fold change was chosen as significant (raw data can be found at http://www.ncbi.nlm.nih.gov/geo/accession number GSE11488). The complete research article can be found at Cancer Genetics journal (Garcia-Chequer et al., in press) [1]. In summary here we provide an overview with visual graphics of gains and losses chromosome by chromosome in retinoblastoma and medulloblastoma, also the integrity score analysis and a list of genes with relevant expression associated. This material can be useful to researchers that may want to explore gains and losses in other malignant tumors with this approach or compare their data with retinoblastoma.
Collapse
Affiliation(s)
- A J García-Chequer
- Unidad de Investigación Médica en Enfermedades Infecciosas, Hospital de Pediatría, Instituto Mexicano del Seguro Social, Centro Médico Nacional SXXI, México D.F., Mexico
| | - A Méndez-Tenorio
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México D.F., Mexico
| | - G Olguín-López
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México D.F., Mexico
| | - C Sánchez-Vallejo
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México D.F., Mexico
| | - P Isa
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - C F Arias
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - J Torres
- Unidad de Investigación Médica en Enfermedades Infecciosas, Hospital de Pediatría, Instituto Mexicano del Seguro Social, Centro Médico Nacional SXXI, México D.F., Mexico
| | - A Hernández-Angeles
- Unidad de Investigación Médica en Enfermedades Infecciosas, Hospital de Pediatría, Instituto Mexicano del Seguro Social, Centro Médico Nacional SXXI, México D.F., Mexico
| | | | - C Lara
- Hospital Infantil de México Federico Gómez, México D.F., Mexico
| | | | | | | | | | | | | | | | - J Ramírez
- Unidad de Microarreglos, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., Mexico
| | | | - M V Ponce-Castañeda
- Unidad de Investigación Médica en Enfermedades Infecciosas, Hospital de Pediatría, Instituto Mexicano del Seguro Social, Centro Médico Nacional SXXI, México D.F., Mexico
| |
Collapse
|