1
|
Gugel I, Ebner FH, Grimm F, Czemmel S, Paulsen F, Hagel C, Tatagiba M, Nahnsen S, Tabatabai G. Contribution of mTOR and PTEN to Radioresistance in Sporadic and NF2-Associated Vestibular Schwannomas: A Microarray and Pathway Analysis. Cancers (Basel) 2020; 12:cancers12010177. [PMID: 31936793 PMCID: PMC7016954 DOI: 10.3390/cancers12010177] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/07/2020] [Indexed: 01/29/2023] Open
Abstract
The use of radiation treatment has increased for both sporadic and neurofibromatosis type 2 (NF2)-associated vestibular schwannoma (VS). However, there are a subset of radioresistant tumors and systemic treatments that are seldom used in these patients. We investigated molecular alterations after radiation in three NF2-associated and five sporadically operated recurrent VS after primary irradiation. We compared these findings with 49 non-irradiated (36 sporadic and 13 NF2-associated) VS through gene-expression profiling and pathway analysis. Furthermore, we stained the key molecules of the distinct pathway by immunohistochemistry. A total of 195 differentially expressed genes in sporadic and NF2-related comparisons showed significant differences based on the criteria of p value < 0.05 and a two-fold change. These genes were involved in pathways that are known to be altered upon irradiation (e.g., mammalian target of rapamycin (mTOR), phosphatase and tensin homolog (PTEN) and vascular endothelial growth factor (VEGF) signaling). We observed a combined downregulation of PTEN signaling and an upregulation of mTOR signaling in progressive NF2-associated VS after irradiation. Immunostainings with mTOR and PTEN antibodies confirmed the respective molecular alterations. Taken together, mTOR inhibition might be a promising therapeutic strategy in NF2-associated VS progress after irradiation.
Collapse
Affiliation(s)
- Isabel Gugel
- Center for Neuro-Oncol., Comprehensive Cancer Center Tübingen Stuttgart, 72076 Tübingen, Germany
- Department of Neurosurgery, University Hospital Tübingen, 72076 Tübingen, Germany
- Centre of Neurofibromatosis and Rare Diseases, University Hospital Tübingen, 72076 Tübingen, Germany
- Interdisciplinary Division of Neuro-Oncol., University Hospital Tübingen, 72076 Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- Correspondence: ; Tel.: +49-7071-2980325; Fax: +49-07071-295245
| | - Florian H. Ebner
- Department of Neurosurgery, Alfried Krupp Hospital, 45131 Essen, Germany
| | - Florian Grimm
- Center for Neuro-Oncol., Comprehensive Cancer Center Tübingen Stuttgart, 72076 Tübingen, Germany
- Department of Neurosurgery, University Hospital Tübingen, 72076 Tübingen, Germany
- Interdisciplinary Division of Neuro-Oncol., University Hospital Tübingen, 72076 Tübingen, Germany
| | - Stefan Czemmel
- Quantitative Biology Center (QBiC), University of Tübingen, 72076 Tübingen, Germany
| | - Frank Paulsen
- Center for Neuro-Oncol., Comprehensive Cancer Center Tübingen Stuttgart, 72076 Tübingen, Germany
- Interdisciplinary Division of Neuro-Oncol., University Hospital Tübingen, 72076 Tübingen, Germany
- Department of Radiation Oncology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Christian Hagel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Marcos Tatagiba
- Center for Neuro-Oncol., Comprehensive Cancer Center Tübingen Stuttgart, 72076 Tübingen, Germany
- Department of Neurosurgery, University Hospital Tübingen, 72076 Tübingen, Germany
- Centre of Neurofibromatosis and Rare Diseases, University Hospital Tübingen, 72076 Tübingen, Germany
- Interdisciplinary Division of Neuro-Oncol., University Hospital Tübingen, 72076 Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Sven Nahnsen
- Quantitative Biology Center (QBiC), University of Tübingen, 72076 Tübingen, Germany
| | - Ghazaleh Tabatabai
- Center for Neuro-Oncol., Comprehensive Cancer Center Tübingen Stuttgart, 72076 Tübingen, Germany
- Department of Neurosurgery, University Hospital Tübingen, 72076 Tübingen, Germany
- Interdisciplinary Division of Neuro-Oncol., University Hospital Tübingen, 72076 Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
2
|
Irradiation of pediatric glioblastoma cells promotes radioresistance and enhances glioma malignancy via genome-wide transcriptome changes. Oncotarget 2018; 9:34122-34131. [PMID: 30344926 PMCID: PMC6183347 DOI: 10.18632/oncotarget.26137] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/08/2018] [Indexed: 01/05/2023] Open
Abstract
Pediatric glioblastoma (GBM) is a relatively rare brain tumor in children that has a dismal prognosis. Surgery followed by radiotherapy is the main treatment protocol used for older patients. The benefit of adjuvant chemotherapy is still limited due to a poor understanding of the underlying molecular and genetic changes that occur with irradiation of the tumor. In this study, we performed total RNA sequencing on an established stable radioresistant pediatric GBM cell line to identify mRNA expression changes following radiation. The expression of many genes was altered in the radioresistant pediatric GBM model. These genes have never before been reported to be associated with the development of radioresistant GBM. In addition to exhibiting an accelerated growth rate, radioresistant GBM cells also have overexpression of the DNA synthesis-rate-limiting enzyme ribonucleotide reductase, and pro-cathepsin B. These newly identified genes should be concertedly studied to better understand their role in pediatric GBM recurrence and progression after radiation. It was observed that the changes in multiple biological pathways protected GBM cells against radiation and transformed them to a more malignant form. These changes emphasize the importance of developing a treatment regimen that consists of a multiple-agent cocktail that acts on multiple implicated pathways to effectively target irradiated pediatric GBM. An alternative to radiation or a novel therapy that targets differentially expressed genes, such as metalloproteases, growth factors, and oncogenes and aim to minimize oncogenic changes following radiation is necessary to improve recurrent GBM survival.
Collapse
|
3
|
Dionysiou DD, Stamatakos GS. Applying a 4D Multiscale In Vivo Tumor Growth Model to the Exploration of Radiotherapy Scheduling: The Effects of Weekend Treatment Gaps and P53 Gene Status on the Response of Fast Growing Solid Tumors. Cancer Inform 2017. [DOI: 10.1177/117693510600200001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The present paper aims at demonstrating clinically oriented applications of the multiscale four dimensional in vivo tumor growth simulation model previously developed by our research group. To this end the effect of weekend radiotherapy treatment gaps and p53 gene status on two virtual glioblastoma tumors differing only in p53 gene status is investigated in silico. Tumor response predictions concerning two rather extreme dose fractionation schedules (daily dose of 4.5 Gy administered in 3 equal fractions) namely HART (Hyperfractionated Accelerated Radiotherapy weekend less) 54 Gy and CHART (Continuous HART) 54 Gy are presented and compared. The model predictions suggest that, for the same p53 status, HART 54 Gy and CHART 54 Gy have almost the same long term effects on locoregional tumor control. However, no data have been located in the literature concerning a comparison of HART and CHART radiotherapy schedules for glioblastoma. As non small cell lung carcinoma (NSCLC) may also be a fast growing and radiosensitive tumor, a comparison of the model predictions with the outcome of clinical studies concerning the response of NSCLC to HART 54 Gy and CHART 54 Gy is made. The model predictions are in accordance with corresponding clinical observations, thus strengthening the potential of the model.
Collapse
Affiliation(s)
- Dimitra D. Dionysiou
- Laboratory of Microwaves and Fiber Optics, Institute of Communication and Computer Systems, School of Electrical and Computer Engineering, National Technical University of Athens, GR-157 80 Zografos, Greece
- Department of Mathematics, School of Applied Sciences, National Technical University of Athens, GR-157 80 Zografos, Greece
| | - Georgios S. Stamatakos
- Laboratory of Microwaves and Fiber Optics, Institute of Communication and Computer Systems, School of Electrical and Computer Engineering, National Technical University of Athens, GR-157 80 Zografos, Greece
| |
Collapse
|
4
|
Kelley K, Knisely J, Symons M, Ruggieri R. Radioresistance of Brain Tumors. Cancers (Basel) 2016; 8:cancers8040042. [PMID: 27043632 PMCID: PMC4846851 DOI: 10.3390/cancers8040042] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/10/2016] [Accepted: 03/24/2016] [Indexed: 12/21/2022] Open
Abstract
Radiation therapy (RT) is frequently used as part of the standard of care treatment of the majority of brain tumors. The efficacy of RT is limited by radioresistance and by normal tissue radiation tolerance. This is highlighted in pediatric brain tumors where the use of radiation is limited by the excessive toxicity to the developing brain. For these reasons, radiosensitization of tumor cells would be beneficial. In this review, we focus on radioresistance mechanisms intrinsic to tumor cells. We also evaluate existing approaches to induce radiosensitization and explore future avenues of investigation.
Collapse
Affiliation(s)
- Kevin Kelley
- Radiation Medicine Department, Hofstra Northwell School of Medicine, Northwell Health, Manhasset, NY 11030, USA.
| | - Jonathan Knisely
- Radiation Medicine Department, Hofstra Northwell School of Medicine, Northwell Health, Manhasset, NY 11030, USA.
| | - Marc Symons
- The Feinstein Institute for Molecular Medicine, Hofstra Northwell School of Medicine, Northwell Health, Manhasset, NY 11030, USA.
| | - Rosamaria Ruggieri
- Radiation Medicine Department, Hofstra Northwell School of Medicine, Northwell Health, Manhasset, NY 11030, USA.
- The Feinstein Institute for Molecular Medicine, Hofstra Northwell School of Medicine, Northwell Health, Manhasset, NY 11030, USA.
| |
Collapse
|
5
|
GARUFI ALESSIA, D’ORAZI VALERIO, ARBISER JACKL, D’ORAZI GABRIELLA. Gentian violet induces wtp53 transactivation in cancer cells. Int J Oncol 2014; 44:1084-1090. [PMID: 24535435 PMCID: PMC3977805 DOI: 10.3892/ijo.2014.2304] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/08/2014] [Indexed: 01/26/2023] Open
Abstract
Recent studies suggest that gentian violet (GV) may have anticancer activity by inhibiting for instance NADPH oxidases (Nox genes) whose overexpression is linked to tumor progression. Nox1 overexpression has been shown to inhibit transcriptional activity of the oncosuppressor p53, impairing tumor cell response to anticancer drugs. The tumor suppressor p53 is a transcription factor that, upon cellular stress, is activated to induce target genes involved in tumor cell growth inhibition and apoptosis. Thus, its activation is important for efficient tumor eradication. In this study, we examined the effect of GV on wild-type (wt) p53 activity in cancer cells. We found that GV was able to overcome the inhibitory effect of the NADPH oxidase Nox1 on p53 transcriptional activity. For the first time we show that GV was able to directly induce p53/DNA binding and transcriptional activity. In vitro, GV markedly induced cancer cell death and apoptotic marker PARP cleavage in wtp53-carrying cells. GV-induced cell death was partly inhibited in cells deprived of p53, suggesting that the anticancer activity of GV may partly depend on p53 activation. GV is US Food and Drug Administration approved for human use and may, therefore, have therapeutic potential in the management of cancer through p53 activation.
Collapse
Affiliation(s)
- ALESSIA GARUFI
- Department of Experimental Oncology, Regina Elena National Cancer Institute, 00159 Rome
| | - VALERIO D’ORAZI
- Department of Surgical Sciences, Sapienza University, 00161 Rome,
Italy
| | - JACK L. ARBISER
- Department of Dermatology and Winship Cancer Institute, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Atlanta, GA,
USA
| | - GABRIELLA D’ORAZI
- Department of Experimental Oncology, Regina Elena National Cancer Institute, 00159 Rome
- Department of Medical, Oral and Biotechnological Sciences, University ‘G. d’Annunzio’, 66013 Chieti,
Italy
| |
Collapse
|
6
|
Cheng PH, Lian S, Zhao R, Rao XM, McMasters KM, Zhou HS. Combination of autophagy inducer rapamycin and oncolytic adenovirus improves antitumor effect in cancer cells. Virol J 2013; 10:293. [PMID: 24059864 PMCID: PMC3850263 DOI: 10.1186/1743-422x-10-293] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/21/2013] [Indexed: 02/07/2023] Open
Abstract
Background Combination of oncolytic adenoviruses (Ads) and chemotherapy drugs has shown promising therapeutic results and is considered as a potential approach for cancer therapy. We previously have shown that autophagy may generate decomposed cellular molecules that can be used as nutrition to support virus replication in cancer cells. In this study, we evaluated a unique combination of the novel oncolytic Ad-cycE with rapamycin, an autophagy inducer and first-line chemotherapeutic drug. Methods The combination of oncolytic Ad-cycE and the autophagy inducer rapamycin was assessed for enhanced antitumor effect. We also evaluated the combined effects of rapamycin and Ad-cycE on cancer cell viability. The interaction between Ad-cycE and rapamycin was analyzed with Calcusyn (Biosoft, Ferguson, MO). Results We show that rapamycin induces autophagy, enhances Ad E1A expression and increases Ad oncolytic replication. Combination of rapamycin and Ad-cycE elicits stronger cytotoxicity than single treatment alone. The analyzed data indicates that the Ad-cycE and rapamycin combination has a significantly synergistic antitumor effect. Conclusions Our study provides a new insight into vector development and demonstrates the novel roles of autophagy in adenovirus replication. The combination of autophagy-induced chemotherapy and oncolytic virotherapy may be a new approach to improve future cancer treatment.
Collapse
Affiliation(s)
- Pei-Hsin Cheng
- Department of Surgery, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Cirone M, Garufi A, Di Renzo L, Granato M, Faggioni A, D'Orazi G. Zinc supplementation is required for the cytotoxic and immunogenic effects of chemotherapy in chemoresistant p53-functionally deficient cells. Oncoimmunology 2013; 2:e26198. [PMID: 24228232 PMCID: PMC3820813 DOI: 10.4161/onci.26198] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 08/12/2013] [Accepted: 08/17/2013] [Indexed: 11/19/2022] Open
Abstract
Optimal tumor eradication often results from the death of malignant cells, as induced by chemotherapeutic agents, coupled to the induction of antitumor immune responses. However, cancer cells frequently become resistant to the cytotoxic activity of chemotherapy. The aim of the present study was to evaluate whether zinc dichloride (ZnCl2), which was known to re-establish the chemosensitivity of cancer cells by reactivating p53, promotes immunogenic instances of cell death. We found that ZnCl2, in combination with chemotherapeutic agents such as cisplatin and adriamycin (ADR), favors the apoptotic demise of chemoresistant cells, while cisplatin and ADR alone fail to do so. The co-culture of immature dendritic cells (DCs) with cancer cells succumbing to the co-administration of chemotherapy and ZnCl2 led to DC activation, as indicated by the upregulation of the activation markers CD83 and CD86. In part, such process depended on cell death, as it was limited (but not abrogated) by the pan-caspase inhibitor Z-VAD-fmk. Moreover, DC activation relied on the ZnCl2-induced exposure of calreticulin (CRT) on the surface of cancer cells, correlating with the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), a marker of endoplasmic reticulum stress. The siRNA-mediated knockdown of CRT as well as the inhibition of CRT exposure with brefeldin A strongly impaired DC maturation, indicating CRT translocation as induced by that ZnCl2 is a key event in this setting. Altogether, these results suggest that ZnCl2, has the potential to enhance the therapeutic effects of antineoplastic agents not only by improving their cytotoxic activity but also by promoting CRT exposure.
Collapse
Affiliation(s)
- Mara Cirone
- Department of Experimental Medicine; Istituto Pasteur-Fondazione Cenci Bolognetti; Sapienza University; Rome, Italy
| | | | | | | | | | | |
Collapse
|
8
|
Balducci M, Chiesa S, Diletto B, D'Agostino GR, Mangiola A, Manfrida S, Mantini G, Albanese A, Fiorentino A, Frascino V, De Bari B, Micciche' F, De Rose F, Morganti AG, Anile C, Valentini V. Low-dose fractionated radiotherapy and concomitant chemotherapy in glioblastoma multiforme with poor prognosis: a feasibility study. Neuro Oncol 2011; 14:79-86. [PMID: 21993440 DOI: 10.1093/neuonc/nor173] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We explored the feasibility of concurrent palliative chemotherapy and low-dose fractionated radiotherapy (LD-FRT) in glioblastoma multiforme (GBM). Patients with recurrent/progressive GBM at least 3 months after the end of primary radiotherapy received 0.3 Gy twice daily with cisplatin and fotemustine if progressing on temozolomide, or 0.4 Gy twice daily with temozolomide if recurrent 4-6 months later (retreatment group). Newly diagnosed GBM with gross residual mass received 30 Gy with concomitant and adjuvant temozolomide and 0.4 Gy twice daily from the second adjuvant cycle (naive group) for 2-4 cycles. Twenty-six patients were enrolled. In the retreatment group (n = 17; median LD-FRT total dose 7.2 Gy [range 2.4-11.6]), grade 3 or 4 hematological toxicity was observed in 5.9% of patients. Median follow-up time was 20 months (range 4-35). Median progression-free survival (PFS) and overall survival (OS) from the time of recurrence or progression were 4 and 8 months, respectively (OS at 6 months, 69%; at 12 months, 16.7%). In the naive group (n = 9; median LD-FRT total dose 8 Gy [range 3.2-16]), grade 3 or 4 hematological toxicity was observed in 11.1% of patients. Median follow-up time was 17 months (range 8-20)-median PFS was 9 months, with PFS at 6 months and at 1 year of 66.7% and 26.7%, respectively; and median OS was 12 months, with OS at 6 months and at 1 year of 77.8% and 34.6%, respectively. LD-FRT with concurrent chemotherapy was well tolerated.
Collapse
Affiliation(s)
- Mario Balducci
- Department of Radiotherapy, Catholic University of the Sacred Heart, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wild-type p53 enhances the cytotoxic effect of radionuclide gene therapy using sodium iodide symporter in a murine anaplastic thyroid cancer model. Eur J Nucl Med Mol Imaging 2009; 37:235-41. [DOI: 10.1007/s00259-009-1251-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 07/31/2009] [Indexed: 10/20/2022]
|
10
|
Dai X, Tao D, Wu H, Cheng J. Low dose hyper-radiosensitivity in human lung cancer cell line A549 and its possible mechanisms. ACTA ACUST UNITED AC 2009; 29:101-6. [DOI: 10.1007/s11596-009-0122-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Indexed: 11/30/2022]
|
11
|
Jaboin JJ, Han Z, Hallahan DE. Using in vivo biopanning for the development of radiation-guided drug delivery systems. Methods Mol Biol 2009; 542:285-300. [PMID: 19565908 DOI: 10.1007/978-1-59745-561-9_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This chapter illustrates our protocol for in vivo biopanning using T7 bacteriophage libraries for the purpose of selecting recombinant peptides for the tumor-specific delivery of radiosensitizers to radiation-inducible antigens within tumor neovasculature. Our goal is to discover peptides binding within tumor vascular endothelium of irradiated tumors. We have previously demonstrated that tumor irradiation increases the spectrum of antigenic targets for drug delivery. To identify candidate peptides with the ability to bind radiation-induced antigens, we inject the phage peptide library intravenously into mice bearing irradiated GL261 and Lewis lung carcinoma (LLC) hind limb tumors. Phage are recovered from excised tumors, amplified, and readministered to mouse-bearing tumors for six total rounds. At least 50 bacterial colonies are selected from each of the tumor types, and prioritized. This prioritization is based on their relative concentrations in tumor versus normal tissues, and then assessment of dominant phage present in both tumor types. These phage are amplified, and the gene sequences determined to deduce the recombinant peptide product. Further prioritization is performed by fluorescence labeling of the selected phage, and injection into irradiated and mock-irradiated tumor-bearing mice for evaluation of in vivo targeting of the candidate phage/peptides.
Collapse
Affiliation(s)
- Jerry J Jaboin
- Department of Radiation Oncology, Vanderbilt University, Nashville, TN, USA
| | | | | |
Collapse
|
12
|
Liu B, Zhang H, Zhou G, Xie Y, Hao J, Zhou Q, Duan X, Qiu R. Enhanced cell death by AdCMV-p53 after irradiation of HeLa cells with 12C6+ ions. Eur J Obstet Gynecol Reprod Biol 2008; 138:226-31. [PMID: 17904269 DOI: 10.1016/j.ejogrb.2007.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Revised: 08/12/2007] [Accepted: 08/16/2007] [Indexed: 11/24/2022]
Abstract
OBJECTIVES To investigate whether the adenovirus-mediated p53 transfer could enhance the suppression of cervix adenocarcinoma by low-dose (< or =2.0Gy) heavy-ion irradiation. STUDY DESIGN HeLa cells were exposed to C-beam, and then infected with AdCMV-p53 or GFP. P53 expression and cell cycle were detected by flow cytometric analysis. Cell apoptosis was observed under a fluorescent microscope with DAPI staining. The survival fraction was determined by colony forming assay. RESULTS During the observation, the proportion of p53-positive cells in the C-beam with 80 MOI p53 groups was significantly higher than that in control, C-beam only, 80 MOI p53 only, and C-beam with 40 MOI p53 (p<0.05). The proportion of cells in G(1)- or G(2)-phase in the C-beam with p53 groups was significantly higher than that in the C-beam only groups, or p53 only groups (p<0.05). The percentage of apoptotic cells for the C-beam with p53 was significantly higher than that for the C-beam only, or p53 only (p<0.05). The survival fractions for the C-beam with p53 are significantly lower than those for the C-beam only, or p53 only (p<0.05). SF2 for C-beam with 40 or 80 MOI p53 decreased to approximately 10% and approximately 4%, respectively, compared with C-beam alone (approximately 42%). CONCLUSIONS Adenovirus-mediated p53 transfer could enhance the suppression of cervix adenocarcinoma cells by low-dose C-beam irradiation.
Collapse
Affiliation(s)
- Bing Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Liu B, Zhang H, Zhou G, Xie Y, Hao J, Qiu R, Duan X, Zhou Q. Adenovirus-mediated p53 gene transfer sensitizes hepatocellular carcinoma cells to heavy-ion radiation. J Gastroenterol 2007; 42:140-5. [PMID: 17351803 DOI: 10.1007/s00535-006-1977-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2006] [Accepted: 11/08/2006] [Indexed: 02/04/2023]
Abstract
BACKGROUND The purpose of this study was to investigate whether adenovirus-mediated p53 transfer could sensitize hepatocellular carcinoma to heavy-ion irradiation. METHODS HepG2 cells were preexposed to a (12)C(6+) beam, and then infected with replication-deficient adenovirus recombinant vectors containing human wild-type p53 (AdCMV-p53) ((12)C(6+) irradiation + AdCMV-p53 infection). The survival fraction was determined by clonogenic assay. The cell cycle, cell apoptosis, and p53 expression were monitored by flow cytometric analysis. RESULTS p53 expression in (12)C(6+) irradiation + AdCMV-p53 infection groups was markedly higher than that in (12)C(6+) irradiation only groups (P < 0.05), suggesting that the preexposure to the (12)C(6+) beam promoted the expression of exogenous p53 in HepG2 cells infected with AdCMV-p53 only. The G(1)-phase arrest and cell apoptosis in the (12)C(6+) irradiation + AdCMV-p53 infection groups were significantly more than those in the (12)C(6+) irradiated groups (P < 0.05). The survival fractions of the (12)C(6+) irradiation + AdCMV-p53 infection groups decreased by 30%-49% compared with those of the (12)C(6+) beam-irradiated only groups (P < 0.05). CONCLUSIONS Adenovirus-mediated p53 gene transfer can promote G(1)-phase arrest and cell apoptosis, thus sensitizing hepatocellular carcinoma cells to heavy-ion irradiation.
Collapse
Affiliation(s)
- Bing Liu
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu Province, PR China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Clark AJ, Chan DC, Chen MY, Fillmore H, Dos Santos WG, Van Meter TE, Graf MR, Broaddus WC. Down-regulation of Wilms’ tumor 1 expression in glioblastoma cells increases radiosensitivity independently of p53. J Neurooncol 2007; 83:163-72. [PMID: 17206472 DOI: 10.1007/s11060-006-9317-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Accepted: 12/06/2006] [Indexed: 11/25/2022]
Abstract
The Wilms' tumor 1 (WT1) gene is overexpressed in human glioblastoma and correlates with wild-type p53 status. In other cell types, WT1 inhibits p53-mediated apoptosis in response to DNA damaging agents. However, neither this interaction nor the relationship between WT1 and radiosensitivity has been studied in glioblastoma. To study this interaction, we generated LN-229 glioma cell lines (p53 mutant) stably expressing WT1 isoforms and induced apoptosis by transfecting with different doses of wild-type p53 plasmid expression vector. Constitutive expression of WT1 did not protect against exogenous p53-mediated apoptosis. Likewise, WT1 expression did not protect against endogenous p53-mediated cell death induced by radiotherapy in U87MG cells, which contain functional wild-type p53. We then tested the efficacy of WT1 siRNA in inhibiting WT1 expression and its effect on radiosensitivity. In T98G and LN-18 glioma cells, which possess p53 mutations, WT1 siRNA decreased WT1 protein to almost undetectable levels by 96-h post-transfection. Furthermore, WT1 siRNA transfection caused a significantly larger decrease in viability following irradiation than was seen in untransfected cells in both cell lines after treatment with ED50 of ionizing radiation. In conclusion, WT1 overexpression did not protect against p53-mediated apoptosis or ionizing radiation induced cell death. WT1 siRNA increased the radiosensitivity of two human glioma cell lines independently of p53. Anti-WT1 strategies may, therefore, prove useful in improving the response of glioblastoma to radiotherapy, thus potentially improving patient survival.
Collapse
Affiliation(s)
- Aaron J Clark
- Department of Neurosurgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23298-0631, USA
| | | | | | | | | | | | | | | |
Collapse
|