1
|
The Role of the Metzincin Superfamily in Prostate Cancer Progression: A Systematic-Like Review. Int J Mol Sci 2021; 22:ijms22073608. [PMID: 33808504 PMCID: PMC8036576 DOI: 10.3390/ijms22073608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/21/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer remains a leading cause of cancer-related morbidity in men. Potentially important regulators of prostate cancer progression are members of the metzincin superfamily of proteases, principally through their regulation of the extracellular matrix. It is therefore timely to review the role of the metzincin superfamily in prostate cancer and its progression to better understand their involvement in this disease. A systematic-like search strategy was conducted. Articles that investigated the roles of members of the metzincin superfamily and their key regulators in prostate cancer were included. The extracted articles were synthesized and data presented in tabular and narrative forms. Two hundred and five studies met the inclusion criteria. Of these, 138 investigated the role of the Matrix Metalloproteinase (MMP) subgroup, 34 the Membrane-Tethered Matrix Metalloproteinase (MT-MMP) subgroup, 22 the A Disintegrin and Metalloproteinase (ADAM) subgroup, 8 the A Disintegrin and Metalloproteinase with Thrombospondin Motifs (ADAMTS) subgroup and 53 the Tissue Inhibitor of Metalloproteinases (TIMP) family of regulators, noting that several studies investigated multiple family members. There was clear evidence that specific members of the metzincin superfamily are involved in prostate cancer progression, which can be either in a positive or negative manner. However, further understanding of their mechanisms of action and how they may be used as prognostic indicators or molecular targets is required.
Collapse
|
2
|
Proteomic analysis of human prostate cancer PC-3M-1E8 cells and PC-3M-2B4 cells of same origin but with different metastatic potential. PLoS One 2018; 13:e0206139. [PMID: 30379883 PMCID: PMC6209233 DOI: 10.1371/journal.pone.0206139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/08/2018] [Indexed: 12/29/2022] Open
Abstract
Prostate cancer (PCa) is the second most frequently diagnosed cancer and the fifth leading cause of death from cancer in men worldwide. Increased understanding of the prostate cancer metastasis mechanisms will help identify more efficient intervention strategies to prevent or treat this deadly disease in the future. To identify the candidate proteins that contribute to metastasis of PCa, isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis was performed to explore differentially expressed proteins between two homologous human prostate cancer cell lines including highly-metastatic PC-3M-1E8 cell line and poorly-metastatic PC-3M-2B4 cell line. Here, a total of 58 proteins were identified to be significantly differentially expressed between PC-3M-1E8 and PC-3M-2B4 cells, which were further verified using real-time quantitative PCR and western blot analysis. The bioinformatic analysis suggested that the differentially expressed proteins, like MMP1 and FHL1, may contribute to the higher metastatic ability of PC-3M-1E8 cells than PC-3M-2B4 cells. In addition, functional analyses proved MMP1’s positive effect on the higher metastatic ability of PC-3M-1E8 cells than PC-3M-2B4 cells. These findings provided a unique resource to specifically reveal the complex molecular regulatory mechanisms underlying the progression of prostate cancer from poorly-metastatic to highly-metastatic stage.
Collapse
|
3
|
Mallett CL, Lim H, Thind K, Chen Y, Ribot EJ, Martinez F, Scholl TJ, Foster PJ. Longitudinal anatomical and metabolic MRI characterization of orthotopic xenograft prostate tumors in nude mice. J Magn Reson Imaging 2013; 40:848-56. [PMID: 24924594 DOI: 10.1002/jmri.24433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 09/01/2013] [Indexed: 01/04/2023] Open
Abstract
PURPOSE To assess anatomic and functional magnetic resonance imaging (MRI) for monitoring of tumor volume and metabolism of orthotopic xenograft prostate cancer tumors. MATERIALS AND METHODS Human-derived PC-3M cells were implanted into the prostate in 22 nude mice. Tumor volume and MRI appearance were monitored for up to 29 days. Histology was performed to detect metastases. Hyperpolarized [1-(13) C]pyruvate MRI was used to measure tumor metabolism on day 22. RESULTS Tumors were visible by MRI 9 days after tumor cell implantation. Tumor volume increased to 720 ± 190 mm(3) on day 29 of imaging. Metastasis was seen in the iliac lymph nodes at all timepoints, and in more distant lymph nodes at later timepoints, but was not detectable by MRI. Regions with low pyruvate uptake corresponded to regions with necrosis and had a higher lactate/pyruvate ratio (0.98 ± 0.4 vs. 1.6 ± 1.1). CONCLUSION MRI using the balanced steady-state free precession (bSSFP) sequence can be used to monitor tumor growth in orthotopic PC-3M tumors as early as 9 days post-injection. Hyperpolarized pyruvate MRI has potential to assess tumor metabolism and necrosis.
Collapse
Affiliation(s)
- Christiane L Mallett
- Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Xiang-Yun L, Ying-Wen X, Chen-Jing X, Jiu-Jiu W, Qi P, Bo G, Zu-Yue S. Possible mechanism of benign prostatic hyperplasia induced by androgen-estrogen ratios in castrated rats. Indian J Pharmacol 2010; 42:312-7. [PMID: 21206625 PMCID: PMC2959216 DOI: 10.4103/0253-7613.70397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 05/13/2010] [Accepted: 07/20/2010] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES To explore the role of androgen-estrogen balance in benign prostatic hyperplasia (BPH) induced by varying doses of estradiol/testosterone propionate (E(2)/TP) in castrated rats. MATERIALS AND METHODS A total of 222 rats were divided into 37 groups at random, including 35 groups of different E(2)/TP, one control, and one castrated group. All 37 groups except the control group were castrated, for eliminating endogenesis of testosterone in rats. The treated groups were administered testosterone propionate (TP; at the dosages of 0.15, 0.74, 3.7, 18.5, and 92.6 mg/kg), combined with estradiol (E(2); at the dosage of 0, 0.4, 2, 10, 50, 250, and 1250 µg/kg) diluted in vegetable oil for 30 days, respectively, whereas the control groups received only vegetable oil. All prostate specimens were removed under anesthesia, then fixed and embedded in paraffin, for measuring the organ quotient, volume, area of prostate glandular cavity, and the height of prostate epithelia. RESULTS When the dosages of TP were 0.15, 3.7, 18.5, and 92.6 mg/kg, the degree of prostatic hyperplasia had no obvious dose-effect relationship with E(2). When TP was 0.74 mg/kg, with the increase of the dosage of E(2), the volume and quotient of prostate were increasing. However, when the dosage of E(2)exceeded 50 µg/kg, E(2)/TP was 5/74, the prostatic volume did not increase obviously. CONCLUSION The proper levels of E2/TP play an important role in the pathogenesis of BPH. In rats, the balance point of E(2)/TP is 5/74.
Collapse
Affiliation(s)
- Liu Xiang-Yun
- Department of Pharmacology and Toxicology, Shanghai Institute of Planned Parenthood Research, National Evaluation Centre for the Toxicology of Fertility Regulation Drugs, Shanghai 200032, China
| | - Xu Ying-Wen
- Department of Pharmacology and Toxicology, Shanghai Institute of Planned Parenthood Research, National Evaluation Centre for the Toxicology of Fertility Regulation Drugs, Shanghai 200032, China
| | - Xie Chen-Jing
- Department of Pharmacology and Toxicology, Shanghai Institute of Planned Parenthood Research, National Evaluation Centre for the Toxicology of Fertility Regulation Drugs, Shanghai 200032, China
| | - Wang Jiu-Jiu
- Department of Pharmacology and Toxicology, Shanghai Institute of Planned Parenthood Research, National Evaluation Centre for the Toxicology of Fertility Regulation Drugs, Shanghai 200032, China
| | - Pan Qi
- Department of Pharmacology and Toxicology, Shanghai Institute of Planned Parenthood Research, National Evaluation Centre for the Toxicology of Fertility Regulation Drugs, Shanghai 200032, China
| | - Gui Bo
- Department of Pharmacology and Toxicology, Shanghai Institute of Planned Parenthood Research, National Evaluation Centre for the Toxicology of Fertility Regulation Drugs, Shanghai 200032, China
| | - Sun Zu-Yue
- Department of Pharmacology and Toxicology, Shanghai Institute of Planned Parenthood Research, National Evaluation Centre for the Toxicology of Fertility Regulation Drugs, Shanghai 200032, China
| |
Collapse
|
5
|
Malek A, Catapano CV, Czubayko F, Aigner A. A sensitive polymerase chain reaction-based method for detection and quantification of metastasis in human xenograft mouse models. Clin Exp Metastasis 2010; 27:261-71. [PMID: 20364399 DOI: 10.1007/s10585-010-9324-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 03/18/2010] [Indexed: 12/16/2022]
Abstract
Tumor cell dissemination to distant organs accounts for the majority of cancer related deaths. Analysis of the stepwise process of metastasis formation and progression might provide novel therapeutic strategies for the treatment of disseminated cancer. However, studies with both biological and therapeutic endpoints would require highly sensitive and specific methods for precise quantification of the metastatic tumor burden in vivo. We have developed a quantitative real-time PCR-based assay for the detection and quantification of human tumor cells disseminated in mouse organs. The method relies on the parallel amplification of unique, species-specific, conserved and non-transcribed sequences in the mouse and human genomes. We tested the method in xenograft models to assess the metastatic potential of various cancer cell lines, the impact of injection modality and cell type on organ distribution, and the early stages of metastasis implantation and progression. With this method, we observed clear quantitative differences among colon cancer cell lines in terms of metastasis formation in the lung, consistent with the different in vitro growth properties. The mode of cell implantation and cell intrinsic properties strongly affected the metastatic pattern of prostate and breast cancer cell lines in mouse organs. The qPCR assay accurately determined the malignant cell burden even at early stages of metastasis progression in the lung. We describe a very sensitive assay for the highly reproducible detection and accurate quantification of human metastatic cells in mouse tissues and demonstrate its broad applicability to various experimental settings.
Collapse
Affiliation(s)
- Anastasia Malek
- Laboratory of Experimental Oncology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland.
| | | | | | | |
Collapse
|
6
|
Zhuang Z, Jian P, Longjiang L, Bo H, Wenlin X. Oral cancer cells with different potential of lymphatic metastasis displayed distinct biologic behaviors and gene expression profiles. J Oral Pathol Med 2009; 39:168-75. [PMID: 19678870 DOI: 10.1111/j.1600-0714.2009.00817.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Oral squamous cell carcinoma (OSCC) often spreads from the primary tumor to regional lymph nodes in the early stage. Better understanding of the biology of lymphatic spread of oral cancer cells is important for improving the survival rate of cancer patients. METHODS We established the cell line LNMTca8113 by repeated injections in foot pads of nude mice, which had a much higher lymphatic metastasis rate than its parental cell line Tca8113. Then, we compared the biologic behaviors of cancer cells between them. Moreover, microarray-based expression profiles between them were also compared, and a panel of differential genes was validated using real-time-PCR. RESULTS In contrast to Tca8113 cells, LNMTca8113 cells were more proliferative and resistant to apoptosis in the absence of serum, and had enhanced ability of inducing capillary-like structures. Moreover, microarray-based expression profiles between them identified 1341 genes involved in cell cycle, cell adhesion, lymphangiogenesis, regulation of apoptosis, and so on. Some genes dedicating to the metastatic potential, including JAM2, TNC, CTSC, LAMB1, VEGFC, HAPLN1, ACPP, GDF9 and FGF11, were upregulated in LNMTca8113 cells. CONCLUSION These results suggested that LNMTca8113 and Tca8113 cells were proper models for lymphatic metastasis study because there were differences in biologic behaviors and metastasis-related genes between them. Additionally, the differentially expressed gene profiles in cancer progression may be helpful in exploring therapeutic targets and provide the foundation for further functional validation of these specific candidate genes for OSCC.
Collapse
Affiliation(s)
- Zhang Zhuang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu
| | | | | | | | | |
Collapse
|
7
|
Stock D, Groome PA, Siemens DR. Inflammation and prostate cancer: a future target for prevention and therapy? Urol Clin North Am 2008; 35:117-30; vii. [PMID: 18061030 DOI: 10.1016/j.ucl.2007.09.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Given its long natural history, prostate cancer has become an ideal model for the clinical and basic science study of neoplastic disease in distinct pathologic phases: tumor initiation, progression, invasion, and metastasis. Chronic or recurrent acute inflammation, a product of infectious agents or other sources, has potential promotional roles in each of these phases. Nonsteroidal anti-inflammatory drugs (NSAIDs), because of their ability to attenuate inflammation, as well as possibly direct anti-cancer properties associated with the inhibition of stromal cyclooxygenase-2, are potential candidates for clinical use in prostate cancer. Though epidemiologic evidence indicating a reduced risk of prostate cancer for NSAID users supports a chemoprotective benefit, observational assessment and clinical trials of these agents among large cohorts of prostate cancer patients are needed to determine their value in prostate cancer management.
Collapse
Affiliation(s)
- David Stock
- Department of Community Health and Epidemiology, Queen's University, Abramsky Hall, Kingston, Ontario, Canada
| | | | | |
Collapse
|
8
|
Liu XY, Li DM, Zhang XF, Wu JH, Sun ZY. Mitosis orientation in prostate epithelial cells changed by endocrine effect. Acta Pharmacol Sin 2008; 29:226-9. [PMID: 18215352 DOI: 10.1111/j.1745-7254.2008.00728.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM The aim of the present study was to investigate the effect of androgen and estrogen on mitosis orientation in the prostate epithelial cells of male rats. METHODS Castrated rats were treated with a single injection of testosterone propionate (TP) or benzogynestry (E2). There were 8 rats in the control group and TP-treated or E2-treated group. Prostate, liver, a specimen of skin, and a segment of the jejunum and colon were removed after the corresponding treatment. The results were observed through immunohistochemistry and iron hematoxylin-eosin staining. RESULTS All mitoses found in the prostate epithelial cells of castrated rats with TP were oriented parallel to the basement membrane; however, mitoses found in the prostate epithelial cells of castrated rats in E2 and the control group were oriented perpendicular to the basement membrane. TP treatment resulted in marked changes in mitosis orientation in the prostate epithelial cells. Bromodeoxyuridine-labeled positive cells could be seen throughout the stroma and prostate epithelial cells with an injection of TP; however, the positive cells could only be seen in the stroma of prostate with an injection of E2, and the positive cells could hardly be seen in the control group. CONCLUSION We found a novel effect of TP in the prostate as a marked change of mitosis orientation in prostate epithelial cells.
Collapse
|
9
|
Abstract
Characterization of gene expression profiles in tumor cells and the tumor microenvironment is an important step in understanding neoplastic progression. To date, there are limited data available on expression changes that occur in the tumor-associated stroma as either a cause or consequence of cancer. In the present study, we employed a 54,000 target oligonucleotide microarray to compare expression profiles in the 4 major components of the microenvironment: tumor epithelium, tumor-associated stroma, normal epithelium, and normal stroma. Cells from 5 human, whole-mount prostatectomy specimens were microdissected and the extracted and amplified mRNA was hybridized to an Affymetrix Human Genome U133 Plus 2.0 GeneChip. Using the intersection of 2 analysis methods, we identified sets of differentially expressed genes among the 4 components. Forty-four genes were found to be consistently differentially expressed in the tumor-associated stroma; 35 were found in the tumor epithelium. Interestingly, the tumor-associated stroma showed a predominant up-regulation of transcripts compared with normal stroma, in sharp contrast to the overall down-regulation seen in the tumor epithelium relative to normal epithelium. These data provide insight into the molecular changes occurring in tumor-associated stromal cells and suggest new potential targets for future diagnostic, imaging, or therapeutic intervention.
Collapse
|
10
|
Eccles S, Paon L, Sleeman J. Lymphatic metastasis in breast cancer: importance and new insights into cellular and molecular mechanisms. Clin Exp Metastasis 2007; 24:619-36. [PMID: 17985200 DOI: 10.1007/s10585-007-9123-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 10/19/2007] [Indexed: 02/08/2023]
Abstract
Lymph node metastasis is the main prognosis factor in a number of malignancies, including breast carcinomas. The means by which lymph node metastases arise is not fully understood, and many questions remain about their importance in the further spread of breast cancer. Nevertheless, a number of key cellular and molecular mechanisms of lymphatic metastasis have been identified. These include induction of intra- or peri-tumoral lymphangiogenesis or co-option of existing lymphatic vessels to allow tumour cells to enter the lymphatics, although it remains to be established whether this is primarily an active or passive process. Gene expression microarrays and functional studies in vitro and in vivo, together with detailed clinical observations have identified a number of molecules that can play a role in the genesis of lymph node metastases. These include the well-recognised lymphangiogenic cytokines VEGF-C and VEGF-D as well as chemokine-receptor interactions, integrins and downstream signalling pathways. This paper briefly reviews current clinical and experimental evidence for the underlying mechanisms and significance of lymphatic metastasis in breast cancer and highlights questions that still need to be addressed.
Collapse
Affiliation(s)
- Suzanne Eccles
- Cancer Research UK Centre for Cancer Therapeutics, McElwain Laboratories, The Institute of Cancer Research, Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
| | | | | |
Collapse
|
11
|
Fokas E, Engenhart-Cabillic R, Daniilidis K, Rose F, An HX. Metastasis: the seed and soil theory gains identity. Cancer Metastasis Rev 2007; 26:705-15. [PMID: 17786535 DOI: 10.1007/s10555-007-9088-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The metastatic spread of tumor cells to distant sites represents the major cause of cancer-related deaths. Cancer metastasis involves a series of complex interactions between tumor cells and microenvironment that influence its biological effectiveness and facilitate tumor cell arrest to distant organs. More than a century since Paget developed the theory of seed and soil, the enigma of tissue specificity observed in metastatic colonization of tumor cells begins to unfold itself. The advent of new technologies has led to the discovery of novel molecules and pathways that confer metastasis-associated properties to the cancer cells, mediating organ specificity and unique genetic signatures have been developed using microarray studies. Future clinical studies and new antimetastatic compounds aiming to improve survival of patients with metastasis will most probably be based on these signatures. This review summarizes the plethora of old and new molecules that are strongly correlated with organ-specific metastases and which provide now an identity to the theory of seed and soil.
Collapse
Affiliation(s)
- Emmanouil Fokas
- Department of Radiotherapy and Radiation Oncology, University Hospital Marburg, Medical Faculty of Philipps University Marburg, Marburg, Germany.
| | | | | | | | | |
Collapse
|
12
|
Abstract
Most cancer deaths are due to the development of metastases, hence the most important improvements in morbidity and mortality will result from prevention (or elimination) of such disseminated disease. Some would argue that treatments directed against metastasis are too late because cells have already escaped from the primary tumour. Such an assertion runs contrary to the significant but (for many common adult cancers) fairly modest improvements in survival following the use of adjuvant radiation and chemotherapy designed to eliminate disseminated cells after surgical removal of the primary tumour. Nonetheless, the debate raises important issues concerning the accurate early identification of clonogenic, metastatic cells, the discovery of novel, tractable targets for therapy, and the monitoring of minimal residual disease. We focus on recent findings regarding intrinsic and extrinsic molecular mechanisms controlling metastasis that determine how, when, and where cancers metastasise, and their implications for patient management in the 21st century.
Collapse
Affiliation(s)
- Suzanne A Eccles
- Tumour Biology and Metastasis, Cancer Research UK Centre for Cancer Therapeutics, Institute of Cancer Research, Sutton, UK.
| | | |
Collapse
|
13
|
Arya M, Bott SR, Shergill IS, Ahmed HU, Williamson M, Patel HR. The metastatic cascade in prostate cancer. Surg Oncol 2006; 15:117-28. [PMID: 17150354 DOI: 10.1016/j.suronc.2006.10.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 09/28/2006] [Accepted: 10/18/2006] [Indexed: 11/22/2022]
Abstract
Morbidity and mortality due to prostate cancer are mainly a result of prostate cancer metastases. After the initial neoplastic transformation of cells, the process of metastasis involves a series of sequential steps, which involve neoangiogenesis and lymphangiogenesis, loss of adhesion with migration away from the primary tumour and entry into the systemic vasculature or lymphatics. Metastatic growth in sites such as lymph nodes and bone marrow then involves the specific non-random homing of prostate cancer cells. An appreciation and understanding of this metastatic cascade in relation to prostate cancer is clinically important in order to stratify men with prostate cancer into prognostic groups. Moreover, it is crucial in the future development of therapies that can prevent metastases.
Collapse
Affiliation(s)
- Manit Arya
- Prostate Cancer Research Centre, University College London, The Institute of Urology, 67 Riding House Street, London W1W 7EJ, UK.
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Metastasis is the spread of tumor cells from a primary site to distant organs. It is the major cause of cancer morbidity and death. In the last few decades, significant advances have been made in surgical techniques, radiation therapy delivery, and chemotherapy including the development of combination regimens and agents inhibiting newly characterized biological targets. Treatment of metastasis, however, remains the most challenging task in cancer therapy because metastatic growth relies on complex interactions between tumor cells and the host and is often resistant to all therapeutic modalities. Management of metastasis in bone is especially challenging given the difficulty of access for therapeutic agents. Contemporary research seeks to explain the striking organ specificity observed in metastasis. In this article, we will examine historic perspectives on site-specific metastasis and review cellular and molecular evidence pertinent to the mechanisms of organ specificity. We will discuss a number of studies that aim to identify gene signatures correlating with organ-selective metastasis using microarray technology. Lastly, we will discuss potential areas of future research including microRNAs, proteomics, and the development of diagnostic and therapeutic interventions.
Collapse
Affiliation(s)
- Charlotte Y Dai
- Department of Radiation Oncology, UCSF Comprehensive Cancer Center, San Francisco, CA 94143, USA.
| | | | | |
Collapse
|
15
|
Sehgal I, Foster TP, Francis J. Prostate cancer cells show elevated urokinase receptor in a mouse model of metastasis. Cancer Cell Int 2006; 6:21. [PMID: 16928272 PMCID: PMC1560166 DOI: 10.1186/1475-2867-6-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 08/23/2006] [Indexed: 11/16/2022] Open
Abstract
Background The urokinase receptor (uPAR) governs several functions necessary during invasion and metastasis such as motility, degradation of the extracellular matrix and adhesion. This receptor has been recently associated with clinical prostate cancer progression. Experimentally, inhibition of uPAR reduces colonization of extra-prostatic sites in animal models. Our objective in this study was to compare uPAR expression in orthotopic vs. metastatic foci in vivo and to examine at the cellular level how uPAR might promote early stages of metastasis. Results We show that uPAR staining is significantly greater in regional lymph node metastases than in the intraprostatic tumor mass. Using transient over-expression, we found that uPAR increases in vitro motility and chemotactic invasion. Finally, we demonstrate that uPAR is up-regulated by a significant subpopulation prostate cancer cells following matrix detachment and maintenance in suspension and we provide evidence that prostate cancer cells with elevations in uPAR have an enhanced resistance to anoikis. Conclusion These data provide new evidence that uPAR can be induced by cancer cells during metastasis in vivo and that this elevated uPAR enhances resistance to anoikis in vitro.
Collapse
Affiliation(s)
- Inder Sehgal
- LSU Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Timothy P Foster
- LSU Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Joseph Francis
- LSU Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
16
|
Abstract
Functions of individual matrix metalloproteinases (MMPs) differentially expressed by tumor cells and stromal cells, are finely regulated by their spatial as well as temporal interactions with distinct cellular and extracellular components of the tumor microenvironment and also distant pre-metastatic sites. Certain aspects of MMP involvement in tumor metastasis such as tumor-induced angiogenesis, tumor invasion, and establishment of metastatic foci at the secondary site, have received extensive attention that resulted in an overwhelming amount of experimental and observational data in favor of critical roles of MMPs in these processes. In particular, dependency of tumor angiogenesis on the activity of MMPs, especially that of MMP-9, renders this step possibly the most effective target of synthetic MMP inhibitors. MMP functioning in other stages of metastasis, including the escape of individual tumor cells from the primary tumor, their intravasation, survival in circulation, and extravasation at the secondary site, have not yet received enough consideration, resulting in insufficient or controversial data. The major pieces of evidence that are most compelling and clearly determine the role and involvement of MMPs in the metastatic cascade are provided by molecular genetic studies employing knock-out or transgenic animals and tumor cell lines, modified to overexpress or downregulate a specific MMP. Findings from all of these studies implicate different functional mechanisms for both tumor and stromal MMPs during distinct steps of the metastatic cascade and indicate that MMPs can exhibit pro-metastatic as well as anti-metastatic roles depending on their nature and the experimental setting. This dual function of individual MMPs in metastasis has become a major focus of this review.
Collapse
Affiliation(s)
- Elena I Deryugina
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|