1
|
Zhang C, Lai G, Deng J, Li K, Chen L, Zhong X, Xie B. Integrating Machine Learning and Mendelian Randomization Determined a Functional Neurotrophin-Related Gene Signature in Patients with Lower-Grade Glioma. Mol Biotechnol 2024; 66:2620-2634. [PMID: 38261152 DOI: 10.1007/s12033-023-01045-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024]
Abstract
Recent researches reported that neurotrophins can promote glioma growth/invasion but the relevant model for predicting patients' survival in Lower-Grade Gliomas (LGGs) lacked. In this study, we adopted univariate Cox analysis, LASSO regression, and multivariate Cox analysis to determine a signature including five neurotrophin-related genes (NTGs), CLIC1, SULF2, TGIF1, TTF2, and WEE1. Two-sample Mendelian Randomization (MR) further explored whether these prognostic-related genes were genetic variants that increase the risk of glioma. A total of 1306 patients have been included in this study, and the results obtained from the training set can be verified by four independent validation sets. The low-risk subgroup had longer overall survival in five datasets, and its AUC values all reached above 0.7. The risk groups divided by the NTGs signature exhibited a distinct difference in targeted therapies from the copy-number variation, somatic mutation, LGG's surrounding microenvironment, and drug response. MR corroborated that TGIF1 was a potential causal target for increasing the risk of glioma. Our study identified a five-NTGs signature that presented an excellent survival prediction and potential biological function, providing new insight for the selection of LGGs therapy.
Collapse
Affiliation(s)
- Cong Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China
| | - Guichuan Lai
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China
| | - Jielian Deng
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China
| | - Kangjie Li
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China
| | - Liuyi Chen
- The Fifth People's Hospital of Chongqing, Renji Road, Chongqing, 400062, China
| | - Xiaoni Zhong
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China.
| | - Biao Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China.
| |
Collapse
|
2
|
Liu F, Wang JK, Ma WJ, Hu HJ, Lv TR, Jin YW, Li FY. The prognostic value of combined preoperative PLR and CA19-9 in patients with resectable gallbladder cancer. Updates Surg 2024; 76:1235-1245. [PMID: 38436922 DOI: 10.1007/s13304-024-01774-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
The platelet to lymphocyte ratio (PLR) is the marker of host inflammation and it is a potential significant prognostic indicator in various different tumors. The serum carbohydrate antigen 19-9 (CA19-9) is a tumor-associated antigen and it is associated with poor prognosis of gallbladder cancer (GBC). We aimed to analyze the prognostic value of the combination of preoperative PLR and CA19-9 in patients with GBC. A total of 287 GBC patients who underwent curative surgery in our institution was included. To analyze the relationship between PLR and CA19-9 and clinicopathological features. A receiver operating characteristic (ROC) curve was used to identify the optimal cutoff value for PLR and CA19-9. The Kaplan-Meier method was used to estimate the overall survival (OS). Meanwhile, the univariate and multivariate Cox regression models were used to assess the risk factors for OS. The cutoff values of 146.82 and 36.32U/ml defined as high PLR and high CA19-9, respectively. Furthermore, survival analysis showed that patients with PLR > 146.82 and CA19-9 > 36.32 U/ml had a worse prognosis than patients with PLR ≤ 146.82 and CA19-9 ≤ 36.32 U/ml, respectively. The multivariate analysis demonstrated that PLR (hazard ratio (HR) = 1.863, 95% CI: 1.366-2.542, P < 0.001) and CA19-9 (HR = 1.412, 95% CI: 1.021-1.952, P = 0.037) were independent prognostic factors in the GBC patients. When we combined these two parameters, the area under the ROC curve increased from 0.624 (PLR) and 0.661 (CA19-9) to 0.711. In addition, the 1-, 3-, and 5-year OS of group A (patients with PLR ≤ 146.82 and CA19-9 ≤ 36.32 U/ml), group B (patients with either of PLR > 146.82 or CA19-9 > 36.32 U/ml) and group C (patients with PLR > 146.82 and CA19-9 > 36.32 U/ml) were 83.6%, 58.6%, 22.5%, 52.4%, 19.5%, 11.5%, and 42.3%, 11.9%, 0%, respectively. The preoperative PLR and serum CA19-9 are associated with prognosis of patients with GBC. The combination of PLR and CA19-9 may serve as a significant prognostic biomarker for GBC patients superior to either PLR or CA19-9 alone.
Collapse
Affiliation(s)
- Fei Liu
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, China
| | - Jun-Ke Wang
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, China
| | - Wen-Jie Ma
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, China
| | - Hai-Jie Hu
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, China
| | - Tian-Run Lv
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, China
| | - Yan-Wen Jin
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, China.
| | - Fu-Yu Li
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, China.
| |
Collapse
|
3
|
Moreno-Corona NC, de León-Bautista MP, León-Juárez M, Hernández-Flores A, Barragán-Gálvez JC, López-Ortega O. Rab GTPases, Active Members in Antigen-Presenting Cells, and T Lymphocytes. Traffic 2024; 25:e12950. [PMID: 38923715 DOI: 10.1111/tra.12950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/25/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Processes such as cell migration, phagocytosis, endocytosis, and exocytosis refer to the intense exchange of information between the internal and external environment in the cells, known as vesicular trafficking. In eukaryotic cells, these essential cellular crosstalks are controlled by Rab GTPases proteins through diverse adaptor proteins like SNAREs complex, coat proteins, phospholipids, kinases, phosphatases, molecular motors, actin, or tubulin cytoskeleton, among others, all necessary for appropriate mobilization of vesicles and distribution of molecules. Considering these molecular events, Rab GTPases are critical components in specific biological processes of immune cells, and many reports refer primarily to macrophages; therefore, in this review, we address specific functions in immune cells, concretely in the mechanism by which the GTPase contributes in dendritic cells (DCs) and, T/B lymphocytes.
Collapse
Affiliation(s)
| | - Mercedes Piedad de León-Bautista
- Escuela de Medicina, Universidad Vasco de Quiroga, Morelia, Mexico
- Human Health, Laboratorio de Enfermedades Infecciosas y Genómica (INEX LAB), Morelia, Mexico
| | - Moises León-Juárez
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquimica, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | | | - Juan Carlos Barragán-Gálvez
- División de Ciencias Naturales y Exactas, Departamento de Farmacia, Universidad de Guanajuato, Guanajuato, Mexico
| | - Orestes López-Ortega
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institute Necker Enfants Malades, Paris, France
| |
Collapse
|
4
|
Liu F, Wang JK, Ma WJ, Hu HJ, Jin YW, Li FY. Prognostic value of combined preoperative inflammatory marker neutrophil-lymphocyte ratio and platelet distribution width in patients with gallbladder carcinoma. Langenbecks Arch Surg 2024; 409:51. [PMID: 38305889 DOI: 10.1007/s00423-024-03247-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND The neutrophil-lymphocyte ratio (NLR) and platelet distribution width (PDW) are associated with poor prognosis in various cancers. We aimed to analyze the prognostic value of the combination of preoperative NLR and PDW in patients with gallbladder carcinoma (GBC). METHODS A total of 287 GBC patients who underwent curative-intent surgery in our institution was included. The relationship between NLR and PDW and clinicopathological features were analyzed. The receiver operating characteristic (ROC) curves were used to determine the optimal cutoff value for NLR and PDW. Overall survival (OS) was estimated using the Kaplan-Meier method. Meanwhile, the univariate and multivariate Cox regression models were used to assess the risk factors for OS. RESULTS The optimal cutoff value of NLR and PDW was 3.00 and 14.76, respectively. In addition, survival analysis demonstrated that patients with NLR > 3.00 and PDW > 14.76 had a worse prognosis than patients with NLR ≤ 3.00 and PDW ≤ 14.76, respectively. The multivariate analysis showed that NLR and PDW were independent prognostic factors in the patients with GBC. When we combined NLR and PDW, the area under the ROC curve increased from 0.665 (NLR) and 0.632 (PDW) to 0.676. Moreover, the 1-, 3-, and 5-year OS of group A (patients with NLR ≤ 3.00 and PDW ≤ 14.76), group B (patients with either of NLR > 3.00 or PDW > 14.76) and group C (patients with NLR > 3.00 and PDW > 14.76) were 88.7%, 62.6%, 28.1%, 65.1%, 26.9%, 13.1%, and 34.8%, 8.3%, 0%, respectively. CONCLUSION The combination of NLR and PDW may serve as a significant prognostic biomarker for GBC patients superior to either NLR or PDW alone.
Collapse
Affiliation(s)
- Fei Liu
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Jun-Ke Wang
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Wen-Jie Ma
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Hai-Jie Hu
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Yan-Wen Jin
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China.
| | - Fu-Yu Li
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
5
|
Nong ZL, Zhao K, Wang Y, Yu Z, Wang CJ, Chen JQ. CLIC1-mediated autophagy confers resistance to DDP in gastric cancer. Anticancer Drugs 2024; 35:1-11. [PMID: 37104099 PMCID: PMC10720815 DOI: 10.1097/cad.0000000000001518] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/07/2023] [Indexed: 04/28/2023]
Abstract
Gastric cancer has been a constant concern to researchers as one of the most common malignant tumors worldwide. The treatment options for gastric cancer include surgery, chemotherapy and traditional Chinese medicine. Chemotherapy is an effective treatment for patients with advanced gastric cancer. Cisplatin (DDP) has been approved as a critical chemotherapy drug to treat various kinds of solid tumors. Although DDP is an effective chemotherapeutic agent, many patients develop drug resistance during treatment, which has become a severe problem in clinical chemotherapy. This study aims to investigate the mechanism of DDP resistance in gastric cancer. The results show that intracellular chloride channel 1 (CLIC1) expression was increased in AGS/DDP and MKN28/DDP, and as compared to the parental cells, autophagy was activated. In addition, the sensitivity of gastric cancer cells to DDP was decreased compared to the control group, and autophagy increased after overexpression of CLIC1. On the contrary, gastric cancer cells were more sensitive to cisplatin after transfection of CLIC1siRNA or treatment with autophagy inhibitors. These experiments suggest that CLIC1 could alter the sensitivity of gastric cancer cells to DDP by activating autophagy. Overall, the results of this study recommend a novel mechanism of DDP resistance in gastric cancer.
Collapse
Affiliation(s)
- Zhen-Liang Nong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region
- Guangxi Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer
- Guangxi Clinical Research Center for Enhanced Recovery after Surgery
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images
| | - Kun Zhao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Ye Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region
- Guangxi Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer
- Guangxi Clinical Research Center for Enhanced Recovery after Surgery
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images
| | - Zhu Yu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region
- Guangxi Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer
- Guangxi Clinical Research Center for Enhanced Recovery after Surgery
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images
| | - Cong-jun Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region
- Guangxi Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer
- Guangxi Clinical Research Center for Enhanced Recovery after Surgery
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images
| | - Jun-Qiang Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region
- Guangxi Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer
- Guangxi Clinical Research Center for Enhanced Recovery after Surgery
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images
| |
Collapse
|
6
|
Enríquez-Flores S, De la Mora-De la Mora I, García-Torres I, Flores-López LA, Martínez-Pérez Y, López-Velázquez G. Human Triosephosphate Isomerase Is a Potential Target in Cancer Due to Commonly Occurring Post-Translational Modifications. Molecules 2023; 28:6163. [PMID: 37630415 PMCID: PMC10459230 DOI: 10.3390/molecules28166163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/04/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer involves a series of diseases where cellular growth is not controlled. Cancer is a leading cause of death worldwide, and the burden of cancer incidence and mortality is rapidly growing, mainly in developing countries. Many drugs are currently used, from chemotherapeutic agents to immunotherapy, among others, along with organ transplantation. Treatments can cause severe side effects, including remission and progression of the disease with serious consequences. Increased glycolytic activity is characteristic of cancer cells. Triosephosphate isomerase is essential for net ATP production in the glycolytic pathway. Notably, some post-translational events have been described that occur in human triosephosphate isomerase in which functional and structural alterations are provoked. This is considered a window of opportunity, given the differences that may exist between cancer cells and their counterpart in normal cells concerning the glycolytic enzymes. Here, we provide elements that bring out the potential of triosephosphate isomerase, under post-translational modifications, to be considered an efficacious target for treating cancer.
Collapse
Affiliation(s)
- Sergio Enríquez-Flores
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (I.D.l.M.-D.l.M.); (I.G.-T.)
| | - Ignacio De la Mora-De la Mora
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (I.D.l.M.-D.l.M.); (I.G.-T.)
| | - Itzhel García-Torres
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (I.D.l.M.-D.l.M.); (I.G.-T.)
| | - Luis A. Flores-López
- Laboratorio de Biomoléculas y Salud Infantil, CONAHCYT-Instituto Nacional de Pediatría, Mexico City 04530, Mexico;
| | - Yoalli Martínez-Pérez
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Mexico City 14380, Mexico;
| | - Gabriel López-Velázquez
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (I.D.l.M.-D.l.M.); (I.G.-T.)
| |
Collapse
|
7
|
Ito M, Yajima S, Suzuki T, Oshima Y, Nanami T, Sumazaki M, Shiratori F, Wang H, Hu L, Takizawa H, Li SY, Iwadate Y, Hiwasa T, Shimada H. The combination of positive anti‑WDR1 antibodies with negative anti‑CFL1 antibodies in serum is a poor prognostic factor for patients with esophageal carcinoma. MEDICINE INTERNATIONAL 2023; 3:11. [PMID: 36875818 PMCID: PMC9983066 DOI: 10.3892/mi.2023.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/23/2023] [Indexed: 02/02/2023]
Abstract
WD repeat-containing protein 1 (WDR1) regulates the cofilin 1 (CFL1) activity, promotes cytoskeleton remodeling, and thus, facilitates cell migration and invasion. A previous study reported that autoantibodies against CFL1 and β-actin were useful biomarkers for diagnosing and predicting the prognosis of patients with esophageal carcinoma. Therefore, the present study aimed to evaluate the serum levels of anti-WDR1 antibodies (s-WDR1-Abs) combined with serum levels of anti-CFL1 antibodies (s-CFL1-Abs) in patients with esophageal carcinoma. Serum samples obtained from 192 patients with esophageal carcinoma and other solid cancers. And s-WDR1-Ab and s-CFL1-Ab titers were analyzed using the amplified luminescent proximity homogeneous assay-linked immunosorbent assay. Compared with those of healthy donors, the s-WDR1-Ab levels were significantly higher in the 192 patients with esophageal, whereas these were not significantly higher in the samples from patients with gastric, colorectal, lung, or breast cancer. In 91 patients treated with surgery, sex, tumor depth, lymph node metastasis, stage and C-reactive protein levels were significantly associated with overall survival, as determined using the log-rank test, whereas the squamous cell carcinoma antigen, p53 antibody and s-WDR1-Ab levels tended to be associated with a worse prognosis. Although no significant difference was observed in the survival between the positive and negative groups of s-WDR1-Abs or s-CFL1-Abs alone in the Kaplan-Meier test, the patients in the s-WDR1-Ab-positive and s-CFL1-Ab-negative groups exhibited a significantly poorer prognosis in the overall survival analysis. On the whole, the present study demonstrates that the combination of positive anti-WDR1 antibodies with negative anti-CFL1 antibodies in serum may be a poor prognostic factor for patients with esophageal carcinoma.
Collapse
Affiliation(s)
- Masaaki Ito
- Department of Clinical Oncology, Toho University Graduate School of Medicine, Tokyo 143-8541, Japan
| | - Satoshi Yajima
- Department of Gastroenterological Surgery, Toho University School of Medicine, Tokyo 143-8541, Japan
| | - Takashi Suzuki
- Department of Gastroenterological Surgery, Toho University School of Medicine, Tokyo 143-8541, Japan
| | - Yoko Oshima
- Department of Gastroenterological Surgery, Toho University School of Medicine, Tokyo 143-8541, Japan
| | - Tatsuki Nanami
- Department of Gastroenterological Surgery, Toho University School of Medicine, Tokyo 143-8541, Japan
| | - Makoto Sumazaki
- Department of Gastroenterological Surgery, Toho University School of Medicine, Tokyo 143-8541, Japan
| | - Fumiaki Shiratori
- Department of Gastroenterological Surgery, Toho University School of Medicine, Tokyo 143-8541, Japan
| | - Hao Wang
- Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China.,Department of Anesthesiology, Stroke Center, The First Affiliated Hospital and Health Science Center, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Liubing Hu
- Department of Anesthesiology, Stroke Center, The First Affiliated Hospital and Health Science Center, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Hirotaka Takizawa
- Port Square Kashiwado Clinic, Kashiwado Memorial Foundation, Chiba 260-0025, Japan
| | - Shu-Yang Li
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Yasuo Iwadate
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Takaki Hiwasa
- Department of Clinical Oncology, Toho University Graduate School of Medicine, Tokyo 143-8541, Japan.,Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Hideaki Shimada
- Department of Clinical Oncology, Toho University Graduate School of Medicine, Tokyo 143-8541, Japan.,Department of Gastroenterological Surgery, Toho University School of Medicine, Tokyo 143-8541, Japan
| |
Collapse
|
8
|
Jiang C, Li Y, Li Y, Liu L, Wang XA, Wu W, Bao R, Weng H, Li M, Geng Y, Shu Y, Liu Y. Fibrinogen promotes gallbladder cancer cell metastasis and extravasation by inducing ICAM1 expression. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:10. [PMID: 36352295 DOI: 10.1007/s12032-022-01874-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022]
Abstract
Fibrinogen plays an important role in tumor progression. Here, we explored the role of fibrinogen in gallbladder cancer (GBC) metastasis. The plasma fibrinogen level in M1 GBC patients was higher than in M0 GBC patients, indicating that fibrinogen may participate in GBC metastasis. Treatment of GBC cell lines with fibrinogen promoted metastasis and induced the expression of intercellular adhesion molecule 1 (ICAM1). ICAM1 overexpression promoted metastasis and knockdown inhibited it. The cell adhesion and transendothelial migration of GBC cells were enhanced by fibrinogen treatment and ICAM1 overexpression. In addition, the medium of fibrinogen-treated and overexpression-ICAM1 NOZ cells exhibited enhanced macrophages recruitment. This may work in concert to promote angiogenesis. Immunohistochemistry results on clinical specimens showed that higher fibrinogen levels, higher ICAM1 expression, higher blood vessel density, and higher macrophage levels were present simultaneously. Collectively, this study indicates fibrinogen promotes metastasis and extravasation by inducing ICAM1 expression to enhance tumor cell migration, cell adhesion, transendothelial migration and promote angiogenesis and increase vascular endothelial permeability.
Collapse
Affiliation(s)
- Chengkai Jiang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,State Key Laboratory for Oncogenes and Related Genes, Shanghai, 200127, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China
| | - Yang Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,State Key Laboratory for Oncogenes and Related Genes, Shanghai, 200127, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China
| | - Yongsheng Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,State Key Laboratory for Oncogenes and Related Genes, Shanghai, 200127, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China
| | - Liguo Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,State Key Laboratory for Oncogenes and Related Genes, Shanghai, 200127, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China
| | - Xu-An Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,State Key Laboratory for Oncogenes and Related Genes, Shanghai, 200127, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China
| | - Wenguang Wu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,State Key Laboratory for Oncogenes and Related Genes, Shanghai, 200127, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China
| | - Runfa Bao
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China.,Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Hao Weng
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China.,Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Maolan Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,State Key Laboratory for Oncogenes and Related Genes, Shanghai, 200127, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China
| | - Yajun Geng
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,State Key Laboratory for Oncogenes and Related Genes, Shanghai, 200127, China. .,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China. .,Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China.
| | - Yijun Shu
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China. .,Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China. .,Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,State Key Laboratory for Oncogenes and Related Genes, Shanghai, 200127, China. .,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China. .,Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China.
| |
Collapse
|
9
|
Effects of Long Noncoding RNA HOXA-AS2 on the Proliferation and Migration of Gallbladder Cancer Cells. JOURNAL OF ONCOLOGY 2022; 2022:6051512. [PMID: 36299503 PMCID: PMC9592229 DOI: 10.1155/2022/6051512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 01/17/2023]
Abstract
To explore the function and mechanism of lncRNA HOXA-AS2 in cancer-associated fibroblasts (CAFs)-derived exosomes in gallbladder cancer metastasis, and provide new research targets for the treatment of gallbladder cancer. At the same time, in order to clarify the early predictive value of lncRNA HOXA-AS2 for gallbladder cancer metastasis, and to provide a theoretical basis for clinical individualized treatment of gallbladder cancer. Methods. In our previous work, we used TCGA database analysis to find that lncRNA HOXA-AS2 was highly expressed in gallbladder cancer tissues compared with normal tissues. In this study, the expression levels of HOXA-AS2 in gallbladder cancer cell lines and control cells were first verified by QPCR and Western blot methods. Then, lentiviral tools were used to construct knockdown vectors (RNAi#1, RNAi#2) and negative control vectors targeting two different sites of HOXA-AS2, and the vectors were transfected into NOZ and OCUG-1 cells, respectively. Real-time PCR was used to detect knockdown efficiency. Then, the effects of silencing HOXA-AS2 on the proliferation, cell viability, cell migration, and invasion ability of gallbladder cancer cells were detected by MTT, plate cloning assay, Transwell migration chamber assay, and Transwell invasion chamber assay. Finally, the interaction between HOXA-AS2 and miR-6867 and the 3′UTR of YAP1 protein was detected by luciferase reporter gene. The results showed that the expression level of HOXA-AS2 in gallbladder cancer cell lines was higher than that in control cells. The expression of HOXA-AS2 in gallbladder carcinoma tissues was significantly higher than that in adjacent tissues (p < 0.05). After successful knockout of HOXA-AS2 by lentiviral transfection, the expression of HOXA-AS2 in gallbladder cancer cell lines was significantly decreased. Through cell proliferation and plate clone detection, it was found that silencing HOXA-AS2 inhibited cell proliferation and invasion. Through software prediction and fluorescein reporter gene detection, it was found that HOXA-AS2 has a binding site with miR-6867, and the two are negatively correlated, that is, the expression of miR-6867 is enhanced after the expression of HOXA-AS2 is downregulated. And the 3′UTR of YAP1 protein in the Hippo signaling pathway binds to miR-6867. Therefore, HOXA-AS2 may affect the expression of YAP1 protein by regulating miR-6867, thereby inhibiting the Hippo signaling pathway and promoting the proliferation and metastasis of gallbladder cancer cells. HOXA-AS2 is abnormally expressed in gallbladder cancer cells. HOXA-AS2 may promote the migration and invasion of gallbladder cancer cells by regulating the Hippo signaling pathway through miR-6867. HOXA-AS2 may serve as a potential diagnostic and therapeutic target for gallbladder cancer in clinic.
Collapse
|
10
|
Chen Z, Chen W, Huang R, Chen D, Li Z, Qi X, Sun L, Lin L, Zhang Z. Comprehensive analysis of clinical prognosis and CLIC1 immune invasion in lung adenocarcinoma. Medicine (Baltimore) 2022; 101:e30760. [PMID: 36181109 PMCID: PMC9524863 DOI: 10.1097/md.0000000000030760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Chloride intracellular channel 1 (CLIC1) plays an important role in the process of cell epithelial transport, and is also involved in tumor invasion and metastasis. Due to its aberrant expression in cancer, the mechanism of action of CLIC1 in cancer has been carefully studied. In this study, we tried to investigate the relationship between CLIC1 and lung adenocarcinoma (LUAD). METHODS The RNA-sequencing data and clinical information of CLIC1 in lung adenocarcinoma were collected from the the cancer genome altas (TCGA) database and analyzed with R software. Paired t test and Mann-Whitney U test were used to detect differences between LUAD tissue and adjacent normal tissue, and the pROC software package performed reactive oxygen species (ROC) curves to detect cutoff values for CLIC1. The expression of CLIC1 in normal human tissues was extracted from the human protein altas (HPA) database, and analyzed clinical proteomic tumor analysis consortium by using UALCAN programme. The relationship between CLIC1 and LUAD was explored by enrichment analysis using gene oncology and Kyoto encyclopedia of genes and genomes. The tumor immunity estimation resource (TIMER) and integrated repository portal for tumor-immune system interactions (TISIDB) databases were used to analyze the correlation between CLIC1 and LUAD immune cell infiltration. Survival analysis of CLIC1 in LUAD was assessed by the PrognoScan database. RESULTS Compared with normal tissues, both mRNA (messenger Ribose Nucleic Acid) and protein of CLIC1 were overexpressed in LUAD, which was associated with shorter overall survial (OS). In addition, CLIC1 expression was in connection with some clinical-pathological characteristics like tumor node metatasis stages and lymph node metastases. What's more, CLIC1 may play a role in the immune infiltration of LUAD. CONCLUSION In summary, CLIC1 is up-regulated in LUAD and is associated with tumor metastasis, tumor staging, and OS. It may be regarded as a novel marker for prognostic judgement in LUAD.
Collapse
Affiliation(s)
- Zhiqiang Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenmin Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruilan Huang
- Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Daman Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhuoyao Li
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiangjun Qi
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingling Sun
- The First Affiliated Hospital to Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lizhu Lin
- The First Affiliated Hospital to Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Zhiquan Zhang and Lizhu Lin, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, 16 Jichang Road, Guangzhou, Guangdong, 510405, China (e-mail: and )
| | - Zhiquan Zhang
- The First Affiliated Hospital to Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Zhiquan Zhang and Lizhu Lin, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, 16 Jichang Road, Guangzhou, Guangdong, 510405, China (e-mail: and )
| |
Collapse
|
11
|
GDH promotes isoprenaline-induced cardiac hypertrophy by activating mTOR signaling via elevation of α-ketoglutarate level. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:1373-1385. [PMID: 35904584 DOI: 10.1007/s00210-022-02252-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/01/2022] [Indexed: 10/16/2022]
Abstract
Numerous studies reveal that metabolism dysfunction contributes to the development of pathological cardiac hypertrophy. While the abnormal lipid and glucose utilization in cardiomyocytes responding to hypertrophic stimuli have been extensively studied, the alteration and implication of glutaminolysis are rarely discussed. In the present work, we provide the first evidence that glutamate dehydrogenase (GDH), an enzyme that catalyzes conversion of glutamate into ɑ-ketoglutarate (AKG), participates in isoprenaline (ISO)-induced cardiac hypertrophy through activating mammalian target of rapamycin (mTOR) signaling. The expression and activity of GDH were enhanced in cultured cardiomyocytes and rat hearts following ISO treatment. Overexpression of GDH, but not its enzymatically inactive mutant, provoked cardiac hypertrophy. In contrast, GDH knockdown could relieve ISO-triggered hypertrophic responses. The intracellular AKG level was elevated by ISO or GDH overexpression, which led to increased phosphorylation of mTOR and downstream effector ribosomal protein S6 kinase (S6K). Exogenous supplement of AKG also resulted in mTOR activation and cardiomyocyte hypertrophy. However, incubation with rapamycin, an mTOR inhibitor, attenuated hypertrophic responses in cardiomyocytes. Furthermore, GDH silencing protected rats from ISO-induced cardiac hypertrophy. These findings give a further insight into the role of GDH in cardiac hypertrophy and suggest it as a potential target for hypertrophy-related cardiomyopathy.
Collapse
|
12
|
MicroRNAs and osteosarcoma: Potential targets for inhibiting metastasis and increasing chemosensitivity. Biochem Pharmacol 2022; 201:115094. [PMID: 35588853 DOI: 10.1016/j.bcp.2022.115094] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022]
Abstract
Osteosarcoma (OS) is the third most common cancer in young adults after lymphoma and brain cancer. Metastasis, like other cellular events, is dependent on signaling pathways; a series of changes in some proteins and signaling pathways pave the way for OS cells to invade and migrate. Ezrin, TGF-β, Notch, RUNX2, matrix metalloproteinases (MMPs), Wnt/β-catenin, and phosphoinositide 3-kinase (PI3K)/AKT are among the most important of these proteins and signaling pathways. Despite the improvements in treating OS, the overall survival of patients suffering from the metastatic disease has not experienced any significant change after surgical treatments and chemotherapy and 5-years overall survival in patients with metastatic OS is about 20%. Studies have shown that overexpression or inhibition of some microRNAs (miRNAs) has significant effects in limiting the invasion and migration of OS cells. The results of these studies highlight the potential of the clinical application of some miRNA mimics and miRNA inhibitors (antagomiRs) to inhibit OS metastasis in the future. In addition, some studies have shown that miRNAs are associated with the most important drug resistance mechanisms in OS, and some miRNAs are highly effective targets to increase chemosensitivity. The results of these studies suggest that miRNA mimics and antagomiRs may be helpful to increase the efficacy of conventional chemotherapy drugs in the treatment of metastatic OS. In this article, we discussed the role of various signaling pathways and the involved miRNAs in the metastasis of OS, attempting to provide a comprehensive review of the literature on OS metastasis and chemosensitivity.
Collapse
|
13
|
Liu Y, Lyu Y, Wang H. TRP Channels as Molecular Targets to Relieve Endocrine-Related Diseases. Front Mol Biosci 2022; 9:895814. [PMID: 35573736 PMCID: PMC9095829 DOI: 10.3389/fmolb.2022.895814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/28/2022] [Indexed: 12/03/2022] Open
Abstract
Transient receptor potential (TRP) channels are polymodal channels capable of sensing environmental stimuli, which are widely expressed on the plasma membrane of cells and play an essential role in the physiological or pathological processes of cells as sensors. TRPs often form functional homo- or heterotetramers that act as cation channels to flow Na+ and Ca2+, change membrane potential and [Ca2+]i (cytosolic [Ca2+]), and change protein expression levels, channel attributes, and regulatory factors. Under normal circumstances, various TRP channels respond to intracellular and extracellular stimuli such as temperature, pH, osmotic pressure, chemicals, cytokines, and cell damage and depletion of Ca2+ reserves. As cation transport channels and physical and chemical stimulation receptors, TRPs play an important role in regulating secretion, interfering with cell proliferation, and affecting neural activity in these glands and their adenocarcinoma cells. Many studies have proved that TRPs are widely distributed in the pancreas, adrenal gland, and other glands. This article reviews the specific regulatory mechanisms of various TRP channels in some common glands (pancreas, salivary gland, lacrimal gland, adrenal gland, mammary gland, gallbladder, and sweat gland).
Collapse
|
14
|
Protein modifications throughout the lung cancer proteome unravel the cancer-specific regulation of glycolysis. Cell Rep 2021; 37:110137. [PMID: 34936872 DOI: 10.1016/j.celrep.2021.110137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/02/2021] [Accepted: 11/11/2021] [Indexed: 01/16/2023] Open
Abstract
Glycolytic reprogramming is a typical feature of cancer. However, the cancer-specific modulation of glycolytic enzymes requires systematic elucidation. Here, we report a range of dysregulated modifications in association with a family of enzymes specifically related to the glycolysis pathway by systematic identification of delta masses at the proteomic scale in human non-small-cell lung cancer. The most significant modification is the delta mass of 79.967 Da at serine 58 (Ser58) of triosephosphate isomerase (TPI), which is confirmed to be phosphorylation. Blocking TPI Ser58 phosphorylation dramatically inhibits glycolysis, cancer growth, and metastasis. The protein kinase PRKACA directly phosphorylates TPI Ser58, thereby enhancing TPI enzymatic activity and glycolysis. The upregulation of TPI Ser58 phosphorylation is detected in various human tumor specimens and correlates with poor survival. Therefore, our study identifies a number of cancer-specific protein modifications spanned on glycolytic enzymes and unravels the significance of TPI Ser58 phosphorylation in glycolysis and lung cancer development.
Collapse
|
15
|
Abstract
Annexin A3 (ANXA3), an annexin family member, contains 36 kDa and 33 kDa isoforms. Similar to other annexin members, ANXA3 plays an important role in the development of human diseases. Recent studies have reported that abnormal ANXA3 expression is closely associated with the development, progression, metastasis, drug resistance and prognosis of several malignant tumours, such as breast cancer, lung cancer and hepatocellular carcinoma. ANXA3 exerts its role by regulating cell proliferation, migration and apoptosis via the phosphatidylinositol-3 kinase/Akt, nuclear factor-κB (NF-κB), c-JUN N-terminal kinase, extracellular signal-regulated kinase and hypoxia-inducible factor-1 signalling pathways. ANXA3 may act as a novel target for the early diagnosis and treatment of tumours. The present review summarises the recent progress in the role of ANXA3 and its regulatory pathways in tumours.
Collapse
Affiliation(s)
- Chao Liu
- Clinical Laboratory, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Nannan Li
- Clinical Laboratory, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Guijian Liu
- Clinical Laboratory, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Xue Feng
- Clinical Laboratory, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| |
Collapse
|
16
|
Wang H, An J, He S, Liao C, Wang J, Tuo B. Chloride intracellular channels as novel biomarkers for digestive system tumors (Review). Mol Med Rep 2021; 24:630. [PMID: 34278487 DOI: 10.3892/mmr.2021.12269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/19/2021] [Indexed: 11/06/2022] Open
Abstract
Digestive system malignant tumors are common tumors, and the traditional treatment methods for these tumors include surgical resection, radiotherapy, chemotherapy, and molecularly targeted drugs. However, diagnosis remains challenging, and the early detection of postoperative recurrence is complicated. Therefore, it is necessary to explore novel biomarkers to facilitate clinical diagnosis and treatment. Accumulating evidence supports the crucial role of chloride channels in the development of multiple types of cancers. Given that chloride channels are widely expressed and involved in cell proliferation, apoptosis and cell cycle, among other processes, they may serve as a promising diagnostic and therapeutic target. Chloride intracellular channels (CLICs) are a class of chloride channels that are upregulated or downregulated in certain types of cancer. Furthermore, in certain cases, during cell cycle progression, the localization and function of the cytosolic form of the transmembrane proteins of CLICs are also altered, which may provide a key target for cancer therapy. The aim of the present review was to focus on CLICs as biomarkers for digestive system tumors.
Collapse
Affiliation(s)
- Hui Wang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Jiaxing An
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Suyu He
- The Fourth Department of the Digestive Disease Center, Suining Central Hospital, Suining, Sichuan 629000, P.R. China
| | - Chengcheng Liao
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, School of Stomatology, Zunyi Medical University, Zunyi, Guizhou 563006, P.R. China
| | - Juan Wang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
17
|
Qiu Y, Mao YT, Zhu JH, Zhao K, Wang JF, Huang JM, Chang GQ, Guan YT, Huang FY, Hu YJ, Chen JQ, Liu JL. CLIC1 knockout inhibits invasion and migration of gastric cancer by upregulating AMOT-p130 expression. Clin Transl Oncol 2021; 23:514-525. [PMID: 32656583 DOI: 10.1007/s12094-020-02445-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/25/2020] [Indexed: 01/13/2023]
Abstract
PURPOSE To explore the regulatory relationship between Chloride intracellular channel 1 (CLIC1) and Angiomotin (AMOT)-p130, and reveal the role of AMOT-p130 in gastric cancer (GC). METHODS Immunohistochemistry was performed to analyze the expression of CLIC1 and AMOT-p130 in GC tissues and adjacent tissues. The expression of AMOT-p130 upon CLIC1 silencing was analyzed using RT-PCR, western blot, and immunofluorescence in GC cells. Transwell and wound-healing assays were performed to detect migration and invasion in GC cells. The changes in EMT-related proteins were detected using western blot. RESULTS Our study found that high CLIC1 expression was significantly associated with low AMOT-p130 expression in GC tissues. Silencing CLIC1 expression in MGC-803 cells (MGC-803 CLIC1 KO) and AGS cells (AGS CLIC1 KO) decreased the invasive and migratory abilities of tumor cells, which were induced by the upregulation of AMOT-p130. Subsequently, we demonstrated that AMOT-p130 inhibits the invasive and migratory abilities of GC cells by inhibiting epithelial-mesenchymal transition. CONCLUSIONS Our study suggests that AMOT-p130 could inhibit epithelial-mesenchymal transition in GC cells. CLIC1 may participate in the metastatic progression of GC by downregulating the expression of AMOT-p130.
Collapse
Affiliation(s)
- Y Qiu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Y-T Mao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - J-H Zhu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - K Zhao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - J-F Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - J-M Huang
- The Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - G-Q Chang
- The Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Y-T Guan
- The Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - F-Y Huang
- The Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Y-J Hu
- The Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - J-Q Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| | - J-L Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
18
|
Peng JM, Lin SH, Yu MC, Hsieh SY. CLIC1 recruits PIP5K1A/C to induce cell-matrix adhesions for tumor metastasis. J Clin Invest 2021; 131:133525. [PMID: 33079727 DOI: 10.1172/jci133525] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 10/14/2020] [Indexed: 12/27/2022] Open
Abstract
Membrane protrusion and adhesion to the extracellular matrix, which involves the extension of actin filaments and formation of adhesion complexes, are the fundamental processes for cell migration, tumor invasion, and metastasis. How cancer cells efficiently coordinate these processes remains unclear. Here, we showed that membrane-targeted chloride intracellular channel 1 (CLIC1) spatiotemporally regulates the formation of cell-matrix adhesions and membrane protrusions through the recruitment of PIP5Ks to the plasma membrane. Comparative proteomics identified CLIC1 upregulated in human hepatocellular carcinoma (HCC) and associated with tumor invasiveness, metastasis, and poor prognosis. In response to migration-related stimuli, CLIC1 recruited PIP5K1A and PIP5K1C from the cytoplasm to the leading edge of the plasma membrane, where PIP5Ks generate a phosphatidylinositol 4,5-bisphosphate-rich (PIP2-rich) microdomain to induce the formation of integrin-mediated cell-matrix adhesions and the signaling for cytoskeleon extension. CLIC1 silencing inhibited the attachment of tumor cells to culture plates and the adherence and extravasation in the lung alveoli, resulting in suppressed lung metastasis in mice. This study reveals what we believe is an unrecognized mechanism that spatiotemporally coordinates the formation of both lamellipodium/invadopodia and nascent cell-matrix adhesions for directional migration and tumor invasion/metastasis. The unique traits of upregulation and membrane targeting of CLIC1 in cancer cells make it an excellent therapeutic target for tumor metastasis.
Collapse
Affiliation(s)
- Jei-Ming Peng
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Sheng-Hsuan Lin
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Ming-Chin Yu
- Department of General Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Sen-Yung Hsieh
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
19
|
Althurwi SI, Yu JQ, Beale P, Huq F. Sequenced Combinations of Cisplatin and Selected Phytochemicals towards Overcoming Drug Resistance in Ovarian Tumour Models. Int J Mol Sci 2020; 21:ijms21207500. [PMID: 33053689 PMCID: PMC7589098 DOI: 10.3390/ijms21207500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/27/2020] [Accepted: 10/09/2020] [Indexed: 12/19/2022] Open
Abstract
In the present study, cisplatin, artemisinin, and oleanolic acid were evaluated alone, and in combination, on human ovarian A2780, A2780ZD0473R, and A2780cisR cancer cell lines, with the aim of overcoming cisplatin resistance and side effects. Cytotoxicity was assessed by MTT reduction assay. Combination index (CI) values were used as a measure of combined drug effect. MALDI TOF/TOF MS/MS and 2-DE gel electrophoresis were used to identify protein biomarkers in ovarian cancer and to evaluate combination effects. Synergism from combinations was dependent on concentration and sequence of administration. Generally, bolus was most synergistic. Moreover, 49 proteins differently expressed by 2 ≥ fold were: CYPA, EIF5A1, Op18, p18, LDHB, P4HB, HSP7C, GRP94, ERp57, mortalin, IMMT, CLIC1, NM23, PSA3,1433Z, and HSP90B were down-regulated, whereas hnRNPA1, hnRNPA2/B1, EF2, GOT1, EF1A1, VIME, BIP, ATP5H, APG2, VINC, KPYM, RAN, PSA7, TPI, PGK1, ACTG and VDAC1 were up-regulated, while TCPA, TCPH, TCPB, PRDX6, EF1G, ATPA, ENOA, PRDX1, MCM7, GBLP, PSAT, Hop, EFTU, PGAM1, SERA and CAH2 were not-expressed in A2780cisR cells. The proteins were found to play critical roles in cell cycle regulation, metabolism, and biosynthetic processes and drug resistance and detoxification. Results indicate that appropriately sequenced combinations of cisplatin with artemisinin (ART) and oleanolic acid (OA) may provide a means to reduce side effects and circumvent platinum resistance.
Collapse
Affiliation(s)
- Safiah Ibrahim Althurwi
- School of Medical Sciences, University of Sydney, Sydney NSW 2006, Australia; (S.I.A.); (J.Q.Y.)
| | - Jun Q. Yu
- School of Medical Sciences, University of Sydney, Sydney NSW 2006, Australia; (S.I.A.); (J.Q.Y.)
| | - Philip Beale
- Department of Medical Oncology, Concord Repatriation General Hospital, Concord NSW 2137, Australia;
| | - Fazlul Huq
- Eman Research Ltd., Canberra ACT 2609, Australia
- Correspondence: ; Tel.: +61-411235462
| |
Collapse
|
20
|
Qin Y, Mi W, Huang C, Li J, Zhang Y, Fu Y. Downregulation of miR-575 Inhibits the Tumorigenesis of Gallbladder Cancer via Targeting p27 Kip1. Onco Targets Ther 2020; 13:3667-3676. [PMID: 32431517 PMCID: PMC7200254 DOI: 10.2147/ott.s229614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 02/18/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Gallbladder cancer (GBC) is the most common biliary tract malignant cancer worldwide. It has been reported that microRNA-575 (miR-575) was involved in the tumorigenesis of many cancers. However, the role of miR-575 during the progression of GBC remains largely unknown. METHODS The expression of miR-575 in GBC cells was detected by quantitative real-time polymerase chain reaction. The proliferation of GBC cells was examined by CCK-8 assay and Ki-67 staining. Apoptosis of GBC cells was measured by flow cytometry, and cell invasion was tested by transwell assay. Moreover, protein expressions in GBC cells were evaluated using Western blot. The target gene of miR-575 was predicted using Targetscan and miRDB. Finally, xenograft tumor model was established to verify the function of miR-575 in GBC in vivo. RESULTS Our findings indicated that miR-575 antagonist decreased the proliferation and invasion of GBC cells. In addition, miR-575 antagonist significantly induced apoptosis of GBC cells via inducing G1 arrest. Meanwhile, p27 Kip1 was found to be a direct target of miR-575 with luciferase reporter assay. Moreover, miR-575 antagonist significantly decreased the expressions of CDK1 and cyclin E1 and upregulated the levels of cleaved caspase3 and p27 Kip1 in GBC cells. Finally, miR-575 antagonist notably suppressed GBC tumor growth in vivo. CONCLUSION Downregulation of miR-575 significantly inhibited the tumorigenesis of GBC via targeting p27 Kip1. Thus, miR-575 might be a potential novel target for the treatment of GBC.
Collapse
Affiliation(s)
- Yiyu Qin
- Clinical Medical College, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu224005, People’s Republic of China
| | - Wunan Mi
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan450052, People’s Republic of China
| | - Cheng Huang
- Clinical Medical College, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu224005, People’s Republic of China
| | - Jian Li
- Clinical Medical College, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu224005, People’s Republic of China
| | - Yizheng Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan450052, People’s Republic of China
| | - Yang Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan450052, People’s Republic of China
| |
Collapse
|
21
|
Pekel G, Ari F. Therapeutic Targeting of Cancer Metabolism with Triosephosphate Isomerase. Chem Biodivers 2020; 17:e2000012. [PMID: 32180338 DOI: 10.1002/cbdv.202000012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/16/2020] [Indexed: 01/25/2023]
Abstract
The increase in glycolytic flux in cancer, known as aerobic glycolysis, is one of the most important hallmarks of cancer. Therefore, glycolytic enzymes have importance in understanding the molecular mechanism of cancer progression. Triosephosphate isomerase (TPI) is one of the key glycolytic enzymes. Furthermore, it takes a part in gluconeogenesis, pentose phosphate pathway and fatty acid biosynthesis. To date, it has been shown altered levels of TPI in various cancer types, especially in metastatic phenotype. According to other studies, TPI might be considered as a potential therapeutic target and a cancer-related biomarker in different types of cancer. However, its function in tumor formation and development has not been fully understood. Here, we reviewed the relationship between TPI and cancer for the first time.
Collapse
Affiliation(s)
- Gonca Pekel
- Department of Biology, Science and Art Faculty, Bursa Uludag University, 16059, Nilüfer, Bursa, Turkey
| | - Ferda Ari
- Department of Biology, Science and Art Faculty, Bursa Uludag University, 16059, Nilüfer, Bursa, Turkey
| |
Collapse
|
22
|
The Interplay of Dysregulated pH and Electrolyte Imbalance in Cancer. Cancers (Basel) 2020; 12:cancers12040898. [PMID: 32272658 PMCID: PMC7226178 DOI: 10.3390/cancers12040898] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer cells and tissues have an aberrant regulation of hydrogen ion dynamics driven by a combination of poor vascular perfusion, regional hypoxia, and increased the flux of carbons through fermentative glycolysis. This leads to extracellular acidosis and intracellular alkalinization. Dysregulated pH dynamics influence cancer cell biology, from cell transformation and tumorigenesis to proliferation, local growth, invasion, and metastasis. Moreover, this dysregulated intracellular pH (pHi) drives a metabolic shift to increased aerobic glycolysis and reduced mitochondrial oxidative phosphorylation, referred to as the Warburg effect, or Warburg metabolism, which is a selective feature of cancer. This metabolic reprogramming confers a thermodynamic advantage on cancer cells and tissues by protecting them against oxidative stress, enhancing their resistance to hypoxia, and allowing a rapid conversion of nutrients into biomass to enable cell proliferation. Indeed, most cancers have increased glucose uptake and lactic acid production. Furthermore, cancer cells have very dysregulated electrolyte balances, and in the interaction of the pH dynamics with electrolyte, dynamics is less well known. In this review, we highlight the interconnected roles of dysregulated pH dynamics and electrolytes imbalance in cancer initiation, progression, adaptation, and in determining the programming and reprogramming of tumor cell metabolism.
Collapse
|
23
|
Gururaja Rao S, Patel NJ, Singh H. Intracellular Chloride Channels: Novel Biomarkers in Diseases. Front Physiol 2020; 11:96. [PMID: 32116799 PMCID: PMC7034325 DOI: 10.3389/fphys.2020.00096] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/27/2020] [Indexed: 12/27/2022] Open
Abstract
Ion channels are integral membrane proteins present on the plasma membrane as well as intracellular membranes. In the human genome, there are more than 400 known genes encoding ion channel proteins. Ion channels are known to regulate several cellular, organellar, and physiological processes. Any mutation or disruption in their function can result in pathological disorders, both common or rare. Ion channels present on the plasma membrane are widely acknowledged for their role in various biological processes, but in recent years, several studies have pointed out the importance of ion channels located in intracellular organelles. However, ion channels located in intracellular organelles are not well-understood in the context of physiological conditions, such as the generation of cellular excitability and ionic homeostasis. Due to the lack of information regarding their molecular identity and technical limitations of studying them, intracellular organelle ion channels have thus far been overlooked as potential therapeutic targets. In this review, we focus on a novel class of intracellular organelle ion channels, Chloride Intracellular Ion Channels (CLICs), mainly documented for their role in cardiovascular, neurophysiology, and tumor biology. CLICs have a single transmembrane domain, and in cells, they exist in cytosolic as well as membranous forms. They are predominantly present in intracellular organelles and have recently been shown to be localized to cardiomyocyte mitochondria as well as exosomes. In fact, a member of this family, CLIC5, is the first mitochondrial chloride channel to be identified on the molecular level in the inner mitochondrial membrane, while another member, CLIC4, is located predominantly in the outer mitochondrial membrane. In this review, we discuss this unique class of intracellular chloride channels, their role in pathologies, such as cardiovascular, cancer, and neurodegenerative diseases, and the recent developments concerning their usage as theraputic targets.
Collapse
Affiliation(s)
- Shubha Gururaja Rao
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Neel J Patel
- Department of Cardiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Harpreet Singh
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
24
|
Shahrokh S, Razzaghi Z, Mansouri V, Ahmadi N. The Impact of Proteomic Investigations on the Development and Improvement of Skin Laser Therapy: A Review Article. J Lasers Med Sci 2019; 10:S90-S95. [PMID: 32021680 DOI: 10.15171/jlms.2019.s16] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Different molecular approaches have contributed to finding various responses of skin to external and internal tensions such as laser irradiation and many important mediators of skin disease have been identified through these approaches. However, different essential signals of skin biomarker pathways and proteins are partially detected or completely unknown. In the present study, the impact of proteomics on the evaluation of laser therapy for the treatment of skin diseases is investigated. Methods: The keywords of "Proteomics", "Laser therapy", "Skin", and "Skin disease" were searched in Google Scholar, Scopus and PubMed search engines. After screening, 53 documents were included in the study. Results: The global assessments revealed that different proteins in different signaling pathways of skin metabolism in terms of health or illness after laser therapy are expressed differentially. The results indicated that the application of proteomics is a useful method for promoting the results of laser interventions. Conclusion: This kind of research dealt with the practical proteomics of skin diseases and skin laser therapy.
Collapse
Affiliation(s)
- Shabnam Shahrokh
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Razzaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Mansouri
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nayebali Ahmadi
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Abstract
Gallbladder cancer (GBC) is a rare biliary malignancy. The relationship between red blood cell distribution width (RDW) and cancer prognosis has been confirmed by many studies, however, the relationship between RDW and gallbladder cancer is rarely reported. Therefore, we aimed to assess the correlation between RDW and the advancements of GBC in this study.A retrospective study was performed on 108 GBC patients and 119 age and gender-matched individuals who were admitted to the First Affiliated Hospital of Guangxi Medical University from January 2012 to December 2018.The GBC patients had significantly higher RDW(%) levels compared to the healthy controls group (15.7 ± 2.4 vs 13.5 ± 0.6; P = .000). In addition, GBC patients with stage III+IV had higher levels of RDW(%) than stage I+II (16.1 ± 2.5 vs 14.9 ± 2.0, P = .011). Correlation analysis showed that RDW had positive correlations with TNM stage (correlation coefficient = 0.302, P = .002). The cut-off value of RDW was observed to be 14.5% in patients with GBC (area under the curve = 0.757, 95% confidence interval = 0.677-0.838, P = .000). Univariate logistic regression and multivariate logistic regression analysis showed that RDW was an independent risk factor for GBC lymph node metastasis.Our results suggest that elevated levels of RDW are independently associated with GBC patients and may serve as potential markers for the advancements of GBC.
Collapse
Affiliation(s)
- Youjun Xie
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University
| | - Lingling Zhang
- Department of Clinical Laboratory, Children's Hospital, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Lingling Zhan
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University
| |
Collapse
|
26
|
Anderson KJ, Cormier RT, Scott PM. Role of ion channels in gastrointestinal cancer. World J Gastroenterol 2019; 25:5732-5772. [PMID: 31636470 PMCID: PMC6801186 DOI: 10.3748/wjg.v25.i38.5732] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/26/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023] Open
Abstract
In their seminal papers Hanahan and Weinberg described oncogenic processes a normal cell undergoes to be transformed into a cancer cell. The functions of ion channels in the gastrointestinal (GI) tract influence a variety of cellular processes, many of which overlap with these hallmarks of cancer. In this review we focus on the roles of the calcium (Ca2+), sodium (Na+), potassium (K+), chloride (Cl-) and zinc (Zn2+) transporters in GI cancer, with a special emphasis on the roles of the KCNQ1 K+ channel and CFTR Cl- channel in colorectal cancer (CRC). Ca2+ is a ubiquitous second messenger, serving as a signaling molecule for a variety of cellular processes such as control of the cell cycle, apoptosis, and migration. Various members of the TRP superfamily, including TRPM8, TRPM7, TRPM6 and TRPM2, have been implicated in GI cancers, especially through overexpression in pancreatic adenocarcinomas and down-regulation in colon cancer. Voltage-gated sodium channels (VGSCs) are classically associated with the initiation and conduction of action potentials in electrically excitable cells such as neurons and muscle cells. The VGSC NaV1.5 is abundantly expressed in human colorectal CRC cell lines as well as being highly expressed in primary CRC samples. Studies have demonstrated that conductance through NaV1.5 contributes significantly to CRC cell invasiveness and cancer progression. Zn2+ transporters of the ZIP/SLC39A and ZnT/SLC30A families are dysregulated in all major GI organ cancers, in particular, ZIP4 up-regulation in pancreatic cancer (PC). More than 70 K+ channel genes, clustered in four families, are found expressed in the GI tract, where they regulate a range of cellular processes, including gastrin secretion in the stomach and anion secretion and fluid balance in the intestinal tract. Several distinct types of K+ channels are found dysregulated in the GI tract. Notable are hERG1 upregulation in PC, gastric cancer (GC) and CRC, leading to enhanced cancer angiogenesis and invasion, and KCNQ1 down-regulation in CRC, where KCNQ1 expression is associated with enhanced disease-free survival in stage II, III, and IV disease. Cl- channels are critical for a range of cellular and tissue processes in the GI tract, especially fluid balance in the colon. Most notable is CFTR, whose deficiency leads to mucus blockage, microbial dysbiosis and inflammation in the intestinal tract. CFTR is a tumor suppressor in several GI cancers. Cystic fibrosis patients are at a significant risk for CRC and low levels of CFTR expression are associated with poor overall disease-free survival in sporadic CRC. Two other classes of chloride channels that are dysregulated in GI cancers are the chloride intracellular channels (CLIC1, 3 & 4) and the chloride channel accessory proteins (CLCA1,2,4). CLIC1 & 4 are upregulated in PC, GC, gallbladder cancer, and CRC, while the CLCA proteins have been reported to be down-regulated in CRC. In summary, it is clear, from the diverse influences of ion channels, that their aberrant expression and/or activity can contribute to malignant transformation and tumor progression. Further, because ion channels are often localized to the plasma membrane and subject to multiple layers of regulation, they represent promising clinical targets for therapeutic intervention including the repurposing of current drugs.
Collapse
Affiliation(s)
- Kyle J Anderson
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, United States
| | - Robert T Cormier
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, United States
| | - Patricia M Scott
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, United States
| |
Collapse
|
27
|
Overexpression of SNORA21 suppresses tumorgenesis of gallbladder cancer in vitro and in vivo. Biomed Pharmacother 2019; 118:109266. [PMID: 31401397 DOI: 10.1016/j.biopha.2019.109266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/24/2019] [Accepted: 07/24/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Gallbladder cancer (GBC) ranks fifth in the most common malignancy of the gastrointestinal tract worldwide. It is reported many small nucleolar RNAs (SNORNs) could regulate the progression of GBC. To identify potential therapeutic targets for GBC, we conducted microarray analysis in GBC tissues and adjacent normal tissues. We found that SNORA21 was downregulated most in gallbladder tumor samples. Therefore, this research aimed to investigate the role of SNORA21 during the tumorigenesis of GBC. METHODS The differential expression of SNORNs between GBC tissues and para-carcinoma tissues were examined by microarray analysis and that were confirmed by qRT-PCR. Cell proliferation was tested by CCK-8 and immunofluorescence. Cell apoptosis and cell cycle in GBC were detected by flow cytometry. Expression of proteins in GBC cells was measured by Western-blot. Transwell assay was used for testing the cell migration and invasion. Xenograft tumor model was established to verify the effect of SNORA21 overexpression on GBC in vivo. RESULTS The results revealed that SNORA21 overexpression inhibited the proliferation, migration and invasion of GBC cells. Moreover, overexpression of SNORA21 significantly increased the expression of E-cadherin and decreased the levels of N-cadherin and vimentin. Meanwhile, overexpression of SNORA21 significantly induced apoptosis and G1 arrest of GBC cells. Finally, SNORA21 overexpression significantly suppressed the growth of gallbladder tumors in vivo. CONCLUSION Overexpression of SNORA21 significantly suppressed the tumorigenesis of GBC in vitro and in vivo, which may serve as a potential novel target for the treatment of GBC.
Collapse
|
28
|
Yue X, Cui Y, You Q, Lu Y, Zhang J. MicroRNA‑124 negatively regulates chloride intracellular channel 1 to suppress the migration and invasion of liver cancer cells. Oncol Rep 2019; 42:1380-1390. [PMID: 31364737 PMCID: PMC6718097 DOI: 10.3892/or.2019.7250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/29/2019] [Indexed: 12/24/2022] Open
Abstract
The dysregulation of microRNAs (miRNAs) is associated with the development and progression of a variety of cancers, including liver cancer. Aberrant expression of miRNA (miR)-124 has been demonstrated in liver cancer, but its functional mechanism in liver cancer is still largely unknown. Metastasis of liver cancer is one of the most common causes of mortality. The present study showed that miR-124 inhibited the proliferation, migration and invasion of liver cancer cells. Furthermore, chloride intracellular channel 1 (CLIC1) was identified as a novel target of miR-124 in liver cancer cells. Overexpression of miR-124 reduced CLIC1 expression at both the protein and mRNA levels in liver cancer cells. Downregulation of CLIC1 decreased the migration and invasion of liver cancer cells without affecting cell proliferation. Taken together, these results showed that CLIC1 is a critical target for miR-124-mediated inhibitory effects on cell migration and invasion. Thus, miR-124 or suppression of CLIC1 may have diagnostic value and therapeutic potential for the treatment of human liver cancer.
Collapse
Affiliation(s)
- Xupeng Yue
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong 519041, P.R. China
| | - Yuanyuan Cui
- The Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99163, USA
| | - Qi You
- Medical and Nurse College, Sanmenxia Polytechnic, Sanmenxia, Henan 472000, P.R. China
| | - Yanxin Lu
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong 519041, P.R. China
| | - Jufeng Zhang
- School of Life Science, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
29
|
Lee JR, Lee JY, Kim HJ, Hahn MJ, Kang JS, Cho H. The inhibition of chloride intracellular channel 1 enhances Ca 2+ and reactive oxygen species signaling in A549 human lung cancer cells. Exp Mol Med 2019; 51:1-11. [PMID: 31316050 PMCID: PMC6802611 DOI: 10.1038/s12276-019-0279-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/22/2019] [Accepted: 03/18/2019] [Indexed: 01/22/2023] Open
Abstract
Chloride intracellular channel 1 (CLIC1) is a promising therapeutic target in cancer due to its intrinsic characteristics; it is overexpressed in specific tumor types and its localization changes from cytosolic to surface membrane depending on activities and cell cycle progression. Ca2+ and reactive oxygen species (ROS) are critical signaling molecules that modulate diverse cellular functions, including cell death. In this study, we investigated the function of CLIC1 in Ca2+ and ROS signaling in A549 human lung cancer cells. Depletion of CLIC1 via shRNAs in A549 cells increased DNA double-strand breaks both under control conditions and under treatment with the putative anticancer agent chelerythrine, accompanied by a concomitant increase in the p-JNK level. CLIC1 knockdown greatly increased basal ROS levels, an effect prevented by BAPTA-AM, an intracellular calcium chelator. Intracellular Ca2+ measurements clearly showed that CLIC1 knockdown significantly increased chelerythrine-induced Ca2+ signaling as well as the basal Ca2+ level in A549 cells compared to these levels in control cells. Suppression of extracellular Ca2+ restored the basal Ca2+ level in CLIC1-knockdown A549 cells relative to that in control cells, implying that CLIC1 regulates [Ca2+]i through Ca2+ entry across the plasma membrane. Consistent with this finding, the L-type Ca2+ channel (LTCC) blocker nifedipine reduced the basal Ca2+ level in CLIC1 knockdown cells to that in control cells. Taken together, our results demonstrate that CLIC1 knockdown induces an increase in the intracellular Ca2+ level via LTCC, which then triggers excessive ROS production and consequent JNK activation. Thus, CLIC1 is a key regulator of Ca2+ signaling in the control of cancer cell survival.
Collapse
Affiliation(s)
- Jae-Rin Lee
- 0000 0001 2181 989Xgrid.264381.aDepartment of Molecular Cell Biology, Sungkyunkwan University, Suwon, Korea ,0000 0001 2181 989Xgrid.264381.aSingle Cell Network Research Center, Sungkyunkwan University, Suwon, Korea
| | - Jong-Yoon Lee
- 0000 0001 2181 989Xgrid.264381.aSingle Cell Network Research Center, Sungkyunkwan University, Suwon, Korea ,0000 0001 2181 989Xgrid.264381.aDepartment of Physiology, Sungkyunkwan University, Suwon, Korea
| | - Hyun-Ji Kim
- 0000 0001 2181 989Xgrid.264381.aSingle Cell Network Research Center, Sungkyunkwan University, Suwon, Korea ,0000 0001 2181 989Xgrid.264381.aDepartment of Physiology, Sungkyunkwan University, Suwon, Korea
| | - Myong-Joon Hahn
- 0000 0001 2181 989Xgrid.264381.aDepartment of Molecular Cell Biology, Sungkyunkwan University, Suwon, Korea
| | - Jong-Sun Kang
- 0000 0001 2181 989Xgrid.264381.aDepartment of Molecular Cell Biology, Sungkyunkwan University, Suwon, Korea ,0000 0001 2181 989Xgrid.264381.aSingle Cell Network Research Center, Sungkyunkwan University, Suwon, Korea
| | - Hana Cho
- 0000 0001 2181 989Xgrid.264381.aSingle Cell Network Research Center, Sungkyunkwan University, Suwon, Korea ,0000 0001 2181 989Xgrid.264381.aDepartment of Physiology, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
30
|
Shen Y, Bian R, Li Y, Gao Y, Liu Y, Xu Y, Song X, Zhang Y. Liensinine induces gallbladder cancer apoptosis and G2/M arrest by inhibiting ZFX-induced PI3K/AKT pathway. Acta Biochim Biophys Sin (Shanghai) 2019; 51:607-614. [PMID: 31074773 DOI: 10.1093/abbs/gmz041] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Indexed: 01/18/2023] Open
Abstract
Gallbladder carcinoma (GBC) is the most common and aggressive cancer of the biliary tract. Liensinine has been proved to have hypotensive effect. However, the effect of liensinine on GBC is still unknown. The aim of this study is to investigate the effect and mechanism of liensinine in human GBC cells. Cell viability assay and colony formation assay were performed to assess cell growth and proliferation. Flow cytometry analysis was used to investigate cell cycle apoptosis in vitro. Hoechst 33342 staining was also used to evaluate cell apoptosis. Western blot analysis was used to determine the expression of proteins corresponding to the related cell cycle and apoptosis. The effect of liensinine treatment in vivo was experimented with xenografted tumors. We found that liensinine significantly inhibited the growth of GBC cells both in vivo and in vitro. In vitro, cell growth and proliferation were significantly suppressed by liensinine in a dose- and time-dependent manner. In vivo, liensinine inhibited tumor growth. Liensinine could induce GBC cells G2/M phase arrest by up-regulating the levels of Cyclin B1 and CDK1 proteins. Liensinine also affected GBC cell cycle progression and induced apoptosis by down-regulating phosphorylated protein kinase B (AKT), phosphorylated protein kinase B (p-AKT), phosphatidylinositol 3-kinase (PI3K), and Zinc finger X-chromosomal protein (ZFX) proteins. Liensinine induced G2/M arrest and apoptosis in gallbladder cancer, suggesting that liensinine might represent a novel and effective agent against gallbladder cancer.
Collapse
Affiliation(s)
- Yitong Shen
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Kent School, Kent, CT, USA
| | - Rui Bian
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaxiong Li
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Gao
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingbin Liu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuzhen Xu
- Department of Gastrointestinal Surgery, Xuzhou Central Hospital, Xuzhou, China
| | - Xiaoling Song
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yijian Zhang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
31
|
Carvalho TM, Cardoso HJ, Figueira MI, Vaz CV, Socorro S. The peculiarities of cancer cell metabolism: A route to metastasization and a target for therapy. Eur J Med Chem 2019; 171:343-363. [PMID: 30928707 DOI: 10.1016/j.ejmech.2019.03.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023]
Abstract
The last decade has witnessed the peculiarities of metabolic reprogramming in tumour onset and progression, and their relevance in cancer therapy. Also, it has been indicated that the metastatic process may depend on the metabolic rewiring and adaptation of cancer cells to the pressure of tumour microenvironment and limiting nutrient availability. The present review gatherers the existent knowledge on the influence of tumour microenvironment and metabolic routes driving metastasis. A focus will be given to glycolysis, fatty acid metabolism, glutaminolysis, and amino acid handling. In addition, the role of metabolic waste driving metastasization will be explored. Finally, we discuss the status of cancer treatment approaches targeting metabolism. This knowledge revision will highlight the critical metabolic targets in metastasis and the chemicals already used in preclinical studies and clinical trials, providing clues that would be further exploited in medicinal chemistry research.
Collapse
Affiliation(s)
- Tiago Ma Carvalho
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Henrique J Cardoso
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Marília I Figueira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Cátia V Vaz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Sílvia Socorro
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
32
|
Barbieri F, Verduci I, Carlini V, Zona G, Pagano A, Mazzanti M, Florio T. Repurposed Biguanide Drugs in Glioblastoma Exert Antiproliferative Effects via the Inhibition of Intracellular Chloride Channel 1 Activity. Front Oncol 2019; 9:135. [PMID: 30918838 PMCID: PMC6424887 DOI: 10.3389/fonc.2019.00135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/14/2019] [Indexed: 12/12/2022] Open
Abstract
The lack of in-depth knowledge about the molecular determinants of glioblastoma (GBM) occurrence and progression, combined with few effective and BBB crossing-targeted compounds represents a major challenge for the discovery of novel and efficacious drugs for GBM. Among relevant molecular factors controlling the aggressive behavior of GBM, chloride intracellular channel 1 (CLIC1) represents an emerging prognostic and predictive biomarker, as well as a promising therapeutic target. CLIC1 is a metamorphic protein, co-existing as both soluble cytoplasmic and membrane-associated conformers, with the latter acting as chloride selective ion channel. CLIC1 is involved in several physiological cell functions and its abnormal expression triggers tumor development, favoring tumor cell proliferation, invasion, and metastasis. CLIC1 overexpression is associated with aggressive features of various human solid tumors, including GBM, in which its expression level is correlated with poor prognosis. Moreover, increasing evidence shows that modification of microglia ion channel activity, and CLIC1 in particular, contributes to the development of different neuropathological states and brain tumors. Intriguingly, CLIC1 is constitutively active within cancer stem cells (CSCs), while it seems less relevant for the survival of non-CSC GBM subpopulations and for normal cells. CSCs represent GBM development and progression driving force, being endowed with stem cell-like properties (self-renewal and differentiation), ability to survive therapies, to expand and differentiate, causing tumor recurrence. Downregulation of CLIC1 results in drastic inhibition of GBM CSC proliferation in vitro and in vivo, making the control of the activity this of channel a possible innovative pharmacological target. Recently, drugs belonging to the biguanide class (including metformin) were reported to selectively inhibit CLIC1 activity in CSCs, impairing their viability and invasiveness, but sparing normal stem cells, thus representing potential novel antitumor drugs with a safe toxicological profile. On these premises, we review the most recent insights into the biological role of CLIC1 as a potential selective pharmacological target in GBM. Moreover, we examine old and new drugs able to functionally target CLIC1 activity, discussing the challenges and potential development of CLIC1-targeted therapies.
Collapse
Affiliation(s)
- Federica Barbieri
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica, Università di Genoa, Genoa, Italy
| | - Ivan Verduci
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Valentina Carlini
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Gianluigi Zona
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili, Università di Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Aldo Pagano
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Dipartimento di Medicina Sperimentale, Università di Genoa, Genoa, Italy
| | - Michele Mazzanti
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Tullio Florio
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica, Università di Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
33
|
Rodríguez-Bolaños M, Perez-Montfort R. Medical and Veterinary Importance of the Moonlighting Functions of Triosephosphate Isomerase. Curr Protein Pept Sci 2019; 20:304-315. [DOI: 10.2174/1389203719666181026170751] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 12/13/2022]
Abstract
Triosephosphate isomerase is the fifth enzyme in glycolysis and its canonical function is the
reversible isomerization of glyceraldehyde-3-phosphate and dihydroxyacetone phosphate. Within the
last decade multiple other functions, that may not necessarily always involve catalysis, have been described.
These include variations in the degree of its expression in many types of cancer and participation
in the regulation of the cell cycle. Triosephosphate isomerase may function as an auto-antigen and
in the evasion of the immune response, as a factor of virulence of some organisms, and also as an important
allergen, mainly in a variety of seafoods. It is an important factor to consider in the cryopreservation
of semen and seems to play a major role in some aspects of the development of Alzheimer's disease. It
also seems to be responsible for neurodegenerative alterations in a few cases of human triosephosphate
isomerase deficiency. Thus, triosephosphate isomerase is an excellent example of a moonlighting protein.
Collapse
Affiliation(s)
- Mónica Rodríguez-Bolaños
- Departamento de Bioquimica y Biologia Estructural, Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico, Av. Universidad 3000, Coyoacan, 04510 Mexico DF, Mexico
| | - Ruy Perez-Montfort
- Departamento de Bioquimica y Biologia Estructural, Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico, Av. Universidad 3000, Coyoacan, 04510 Mexico DF, Mexico
| |
Collapse
|
34
|
Liu F, Hu HJ, Ma WJ, Yang Q, Wang JK, Li FY. Prognostic significance of neutrophil-lymphocyte ratio and carbohydrate antigen 19-9 in patients with gallbladder carcinoma. Medicine (Baltimore) 2019; 98:e14550. [PMID: 30813165 PMCID: PMC6407978 DOI: 10.1097/md.0000000000014550] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The neutrophil-lymphocyte ratio (NLR) is an immune response-related indicator and it is associated with poor prognosis of various cancers. The carbohydrate antigen19-9 (CA19-9) is a tumor-associated antigen and it has prognostic relevance in gallbladder carcinoma (GBC). We aimed to analyze whether preoperative NLR and serum CA19-9 were associated with outcomes of GBC patients after surgery with curative intent.Between January 2010 and May 2015, 90 resectable GBC patients who underwent curative surgery in our institution were included. All final diagnoses were confirmed by pathologic examination. The demographics, clinical, and histopathology data were analyzed. The Cox regression proportional hazard model and Kaplan-Meier method were used to assess prognostic factors.The cutoff values of 4.33 and 250.90 U/mL were defined as high NLR and high CA19-9, respectively. The univariate analyses showed that TNM stage, lymph node metastasis, the degree of tumor differentiation, margin status, combined hepatectomy, CA19-9, NLR, and PNI were all associated with overall survival (P < .05). According to the multivariable analysis, NLR (hazard ratio (HR) 3.840, 95% confidence interval (95% CI): 2.122-6.947, P < .001), CA19-9 (HR 2.230, 95% CI: 1.297-3.835, P = .004), TNM stage (HR 3.864, 95% CI: 1.819-8.207, P < .001), lymph node metastasis (HR 1.679, 95% CI: 1.005-2.805, P = .048), and margin status (HR 1.873, 95% CI: 1.063-3.300, P = .030) were independent prognostic factors. The median survival time in low NLR and CA19-9 group was better than high NLR and CA19-9 group (P < .05).The preoperative NLR and serum CA19-9 are associated with prognosis of patients with GBC. High NLR and high CA19-9 were predictors of poor long-term outcome among patients with GBC undergoing curative surgery.
Collapse
|
35
|
Xu Y, Xu J, Feng J, Li J, Jiang C, Li X, Zou S, Wang Q, Li Y. Expression of CLIC1 as a potential biomarker for oral squamous cell carcinoma: a preliminary study. Onco Targets Ther 2018; 11:8073-8081. [PMID: 30519049 PMCID: PMC6239106 DOI: 10.2147/ott.s181936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose CLIC1, a member of the highly conserved class ion-channel protein family, is frequently upregulated in multiple human malignancies and has been demonstrated to play a critical role in cell proliferation, apoptosis, and invasion. However, limited is known about its expression, biological functions, and action mechanism in oral malignancies. We aimed to evaluate whether CLIC1 could be a biomarker for oral squamous cell carcinoma (OSCC). Methods Immunohistochemistry was used to analyze the expression of CLIC1 in tissue. CLIC1 protein and mRNA were measured through Western immunoblotting and quantitative real-time PCR. CLIC1 protein expression in plasma was detected via ELISA. A total of 72 OSCC specimens were recruited in this study for evaluation of correlations of CLIC1 with clinicopathological features and survival. Results CLIC1 was significantly overexpressed in tissue and plasma of OSCC patients. It was found that upregulated CLIC1 was distinctly correlated with histological grade, TNM stage, and tumor size. Meanwhile, Kaplan–Meier survival analysis showed that OSCC patients with high CLIC1 expression had remarkably poorer overall survival rate than those with low CLIC1 expression. Multivariate Cox regression analysis revealed that CLIC1 was the independent prognostic factor for overall survival rate of OSCC patients. In addition, Pearson correlation analysis showed that CLIC1 was associated with multiple tumor-associated genes. Conclusion These results indicated that CLIC1 acts as a molecular target in OSCC and may present a novel diagnostic marker and therapeutic target for OSCC.
Collapse
Affiliation(s)
- Ying Xu
- College of Stomatology, Chongqing Medical University, Chongqing, China, .,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China, .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,
| | - Jie Xu
- College of Stomatology, Chongqing Medical University, Chongqing, China, .,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China, .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,
| | - Jiali Feng
- College of Stomatology, Chongqing Medical University, Chongqing, China, .,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China, .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,
| | - Jie Li
- College of Stomatology, Chongqing Medical University, Chongqing, China, .,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China, .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,
| | - Chao Jiang
- College of Stomatology, Chongqing Medical University, Chongqing, China, .,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China, .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,
| | - Xian Li
- College of Stomatology, Chongqing Medical University, Chongqing, China, .,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China, .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,
| | - Sihai Zou
- College of Stomatology, Chongqing Medical University, Chongqing, China, .,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China, .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,
| | - Qian Wang
- College of Stomatology, Chongqing Medical University, Chongqing, China, .,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China, .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,
| | - Yong Li
- College of Stomatology, Chongqing Medical University, Chongqing, China, .,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China, .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,
| |
Collapse
|
36
|
Yuan B, Zhang R, Hu J, Liu Z, Yang C, Zhang T, Zhang C. WDR1 Promotes Cell Growth and Migration and Contributes to Malignant Phenotypes of Non-small Cell Lung Cancer through ADF/cofilin-mediated Actin Dynamics. Int J Biol Sci 2018; 14:1067-1080. [PMID: 29989053 PMCID: PMC6036740 DOI: 10.7150/ijbs.23845] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/05/2018] [Indexed: 12/18/2022] Open
Abstract
The characteristic of carcinoma is cell migration and invasion, which involve in strong actin dynamics. Regulations of actin dynamics have been implicated in cancer cell migration and tumor progression. WDR1 (WD-repeat domain 1) is a major cofactor of the actin depolymerizing factor (ADF)/cofilin, strongly accelerating ADF/cofilin-mediated actin disassembly. The role of WDR1 in non-small cell lung cancer (NSCLC) progression has been unknown. Here, we show that the expression levels of WDR1 are increased in human NSCLC tissues compared with adjacent non-tumor tissues, and high WDR1 level correlates with poor prognosis in NSCLC patients. Knockdown of WDR1 in NSCLC cells significantly inhibits cell migration, invasion, EMT process and tumor cell growth in vitro and in vivo. Otherwise, overexpression of WDR1 promotes NSCLC cell proliferation and migration. Mechanically, our data suggested WDR1 regulated tumor cells proliferation and migration might through actin cytoskeleton-mediated regulation of YAP, and we demonstrated that WDR1 contributes to NSCLC progression through ADF/cofilin-mediated actin disassembly. Our findings implicate that the ADF/cofilin-WDR1-actin axis as an activator of malignant phenotype that will be a promising therapeutic target in lung cancer.
Collapse
Affiliation(s)
- Baiyin Yuan
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081, China
| | - Ruirui Zhang
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081, China
| | - Jisheng Hu
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081, China
| | - Zhongying Liu
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081, China
| | - Chao Yang
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081, China
| | - Tongcun Zhang
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081, China
| | - Chenxi Zhang
- Central Laboratory, Nanjing Chest Hospital, Medical School of Southeast University, Nanjing, Jiangsu Province 210029, P.R. China
| |
Collapse
|
37
|
Kobayashi T, Shiozaki A, Nako Y, Ichikawa D, Kosuga T, Shoda K, Arita T, Konishi H, Komatsu S, Kubota T, Fujiwara H, Okamoto K, Kishimoto M, Konishi E, Marunaka Y, Otsuji E. Chloride intracellular channel 1 as a switch among tumor behaviors in human esophageal squamous cell carcinoma. Oncotarget 2018; 9:23237-23252. [PMID: 29796185 PMCID: PMC5955400 DOI: 10.18632/oncotarget.25296] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/10/2018] [Indexed: 01/15/2023] Open
Abstract
Background: Recent studies have reported important roles for chloride intracellular channel 1 (CLIC1) in various cancers; however, its involvement in esophageal squamous cell carcinoma (ESCC) remains unclear. The aim of the present study was to investigate the role of CLIC1 in human ESCC. Methods: CLIC1 expression in human ESCC cell lines was analyzed by Western blotting. Knockdown experiments were conducted with CLIC1 siRNA, and their effects on cell proliferation, the cell cycle, apoptosis, migration, and invasion were analyzed. The gene expression profiles of cells were analyzed using a microarray analysis. An immunohistochemical analysis was performed on 61 primary tumor samples obtained from ESCC patients who underwent esophagectomy. Results: ESCC cells strongly expressed CLIC1. The depletion of CLIC1 using siRNA inhibited cell proliferation, induced apoptosis, and promoted cell migration and invasion. The results of the microarray analysis revealed that the depletion of CLIC1 regulated apoptosis via the TLR2/JNK pathway. Immunohistochemistry showed that CLIC1 was present in the cytoplasm of carcinoma cells, and that the very strong or very weak expression of CLIC1 was an independent poor prognostic factor. Conclusions: The present results suggest that the very strong expression of CLIC1 enhances tumor survival, while its very weak expression promotes cellular movement. The present study provides an insight into the role of CLIC1 as a switch among tumor behaviors in ESCC.
Collapse
Affiliation(s)
- Toshiyuki Kobayashi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yoshito Nako
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Daisuke Ichikawa
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
- Department of Gastrointestinal, Breast & Endocrine Surgery, Faculty of Medicine, University of Yamanashi, Chuo, 409-3898, Japan
| | - Toshiyuki Kosuga
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Katsutoshi Shoda
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Tomohiro Arita
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Takeshi Kubota
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Kazuma Okamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Mitsuo Kishimoto
- Department of Pathology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Eiichi Konishi
- Department of Pathology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yoshinori Marunaka
- Departments of Molecular Cell Physiology and Bio-Ionomics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
- Japan Institute for Food Education and Health, St. Agnes’ University, Kyoto, 602-8013, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| |
Collapse
|
38
|
Gebhard C, Miller I, Hummel K, Neschi née Ondrovics M, Schlosser S, Walter I. Comparative proteome analysis of monolayer and spheroid culture of canine osteosarcoma cells. J Proteomics 2018; 177:124-136. [DOI: 10.1016/j.jprot.2018.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/20/2017] [Accepted: 01/04/2018] [Indexed: 12/13/2022]
|
39
|
Gururaja Rao S, Ponnalagu D, Patel NJ, Singh H. Three Decades of Chloride Intracellular Channel Proteins: From Organelle to Organ Physiology. CURRENT PROTOCOLS IN PHARMACOLOGY 2018; 80:11.21.1-11.21.17. [PMID: 30040212 PMCID: PMC6060641 DOI: 10.1002/cpph.36] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular organelles are membranous structures central for maintaining cellular physiology and the overall health of the cell. To maintain cellular function, intracellular organelles are required to tightly regulate their ionic homeostasis. Any imbalance in ionic concentrations can disrupt energy production (mitochondria), protein degradation (lysosomes), DNA replication (nucleus), or cellular signaling (endoplasmic reticulum). Ionic homeostasis is also important for volume regulation of intracellular organelles and is maintained by cation and anion channels as well as transporters. One of the major classes of ion channels predominantly localized to intracellular membranes is chloride intracellular channel proteins (CLICs). They are non-canonical ion channels with six homologs in mammals, existing as either soluble or integral membrane protein forms, with dual functions as enzymes and channels. Provided in this overview is a brief introduction to CLICs, and a summary of recent information on their localization, biophysical properties, and physiological roles. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Shubha Gururaja Rao
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Devasena Ponnalagu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Neel J Patel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Harpreet Singh
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
40
|
Mentel M, Ionescu AE, Puscalau-Girtu I, Helm MS, Badea RA, Rizzoli SO, Szedlacsek SE. WDR1 is a novel EYA3 substrate and its dephosphorylation induces modifications of the cellular actin cytoskeleton. Sci Rep 2018; 8:2910. [PMID: 29440662 PMCID: PMC5811557 DOI: 10.1038/s41598-018-21155-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 01/31/2018] [Indexed: 12/12/2022] Open
Abstract
Eyes absent (EYA) proteins are unusual proteins combining in a single polypeptide chain transactivation, threonine phosphatase, and tyrosine phosphatase activities. They play pivotal roles in organogenesis and are involved in a variety of physiological and pathological processes including innate immunity, DNA damage repair or cancer metastasis. The molecular targets of EYA tyrosine phosphatase activity are still elusive. Therefore, we sought to identify novel EYA substrates and also to obtain further insight into the tyrosine-dephosphorylating role of EYA proteins in various cellular processes. We show here that Src kinase phosphorylates tyrosine residues in two human EYA family members, EYA1 and EYA3. Both can autodephosphorylate these residues and their nuclear and cytoskeletal localization seems to be controlled by Src phosphorylation. Next, using a microarray of phosphotyrosine-containing peptides, we identified a phosphopeptide derived from WD-repeat-containing protein 1 (WDR1) that is dephosphorylated by EYA3. We further demonstrated that several tyrosine residues on WDR1 are phosphorylated by Src kinase, and are efficiently dephosphorylated by EYA3, but not by EYA1. The lack of phosphorylation generates major changes to the cellular actin cytoskeleton. We, therefore, conclude that WDR1 is an EYA3-specific substrate, which implies that EYA3 is a key modulator of the cytoskeletal reorganization.
Collapse
Affiliation(s)
- Mihaela Mentel
- Department of Enzymology, Institute of Biochemistry of the Romanian Academy, Spl. Independentei 296, Bucharest, 060031, Romania
| | - Aura E Ionescu
- Department of Enzymology, Institute of Biochemistry of the Romanian Academy, Spl. Independentei 296, Bucharest, 060031, Romania
| | - Ioana Puscalau-Girtu
- Department of Enzymology, Institute of Biochemistry of the Romanian Academy, Spl. Independentei 296, Bucharest, 060031, Romania
| | - Martin S Helm
- Department for Neuro- and Sensory Physiology, University Medical Center Göttingen, and Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Cluster of Excellence 171, Humboldtalle 23, Göttingen, 37073, Germany.,Max-Planck Research School Molecular Biology, Göttingen, 37077, Germany
| | - Rodica A Badea
- Department of Enzymology, Institute of Biochemistry of the Romanian Academy, Spl. Independentei 296, Bucharest, 060031, Romania
| | - Silvio O Rizzoli
- Department for Neuro- and Sensory Physiology, University Medical Center Göttingen, and Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Cluster of Excellence 171, Humboldtalle 23, Göttingen, 37073, Germany
| | - Stefan E Szedlacsek
- Department of Enzymology, Institute of Biochemistry of the Romanian Academy, Spl. Independentei 296, Bucharest, 060031, Romania.
| |
Collapse
|
41
|
MRTF-A-miR-206-WDR1 form feedback loop to regulate breast cancer cell migration. Exp Cell Res 2017; 359:394-404. [DOI: 10.1016/j.yexcr.2017.08.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/05/2017] [Accepted: 08/16/2017] [Indexed: 01/07/2023]
|
42
|
Zhou N, Cheng W, Peng C, Liu Y, Jiang B. Decreased expression of hsa‑miR‑372 predicts poor prognosis in patients with gallbladder cancer by affecting chloride intracellular channel 1. Mol Med Rep 2017; 16:7848-7854. [PMID: 28944858 DOI: 10.3892/mmr.2017.7520] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/28/2017] [Indexed: 11/06/2022] Open
Abstract
It has been reported that hsa‑microRNA (miRNA/miR)‑372 functions as a tumor suppressor or oncogene in various digestive system tumors, however, its roles in gallbladder cancer (GBC) are yet to be established. The present study aimed to determine the expression and clinical relevance of hsa‑miR‑372 in GBC. The expression of hsa‑miR‑372 in 80 pairs of human GBC tissues and adjacent normal gallbladder tissues was measured by reverse transcription‑quantitative polymerase chain reaction. Subsequently, the associations between hsa‑miR‑372 expression levels and the clinicopathological characteristics of patients with GBC were determined using χ2 test. Furthermore, Kaplan‑Meier method and Cox regression analysis were performed to evaluate the association between hsa‑miR‑372 expression and the prognosis of patients with GBC. Furthermore, a dual‑luciferase reporter assay and western blot analysis were performed to predict and verify the target gene of hsa‑miR‑372. The results demonstrated that markedly lower hsa‑miR‑372 expression was observed in GBC tissues, which was associated with poor prognosis in patients with GBC. Downregulated expression of hsa‑miR‑372 was negatively associated with tumor histological grade, tumor‑node‑metastasis stage, lymph node metastasis and distant metastasis, however, no association was observed between reduced hsa‑miR‑372 expression and patient gender, age, tumor size and gallbladder stones. Multivariate Cox regression analysis revealed that hsa‑miR‑372 expression, histological grade and lymph node metastasis were independent prognostic factors for overall survival in patients with GBC. Chloride intracellular channel 1 (CLIC1) was previously reported to be an effective biomarker for predicting the prognosis of GBC. Notably, the results of the present study indicated that CLIC1 may be a direct target gene of hsa‑miR‑372. In conclusion, the current study provides the first statistically convincing evidence that downregulation of hsa‑miR‑372 may occur in GBC tissues, which may be associated with aggressive and progressive tumor behavior by affecting CLIC1 expression.
Collapse
Affiliation(s)
- Ning Zhou
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410011, P.R. China
| | - Wei Cheng
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410011, P.R. China
| | - Chuang Peng
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410011, P.R. China
| | - Yi Liu
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410011, P.R. China
| | - Bo Jiang
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
43
|
Chen T, Huang Z, Tian Y, Wang H, Ouyang P, Chen H, Wu L, Lin B, He R. Role of triosephosphate isomerase and downstream functional genes on gastric cancer. Oncol Rep 2017; 38:1822-1832. [PMID: 28737830 DOI: 10.3892/or.2017.5846] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/14/2017] [Indexed: 12/22/2022] Open
Abstract
Triosephosphate isomerase (TPI) is highly expressed in many types of human tumors and is involved in migration and invasion of cancer cells. However, TPI clinicopathological significance and malignant function in gastric cancer (GC) have not been well defined. The present study aimed to examine TPI expression in GC tissue and its biological functions. Furthermore, we investigated its downstream genes by gene chip technology. Our results showed that TPI expression was higher in gastric cancer tissues than adjacent tissues, although no statistical differences were found between TPI expression and clinicopathological factors. TPI overexpression in human gastric carcinoma cell line BGC-823 enhanced cell proliferation, invasion and migration, but did not change cell cycle distribution, while TPI knockdown suppressed proliferation, invasion and migration, induced apoptosis and increased G2/M arrest of human gastric carcinoma cell line MGC-803. Since the cell division cycle associated 5 (CDCA5) was identified as the one with the most decreased expression after TPI knockdown, we investigated its role in MGC-803 cells. The results showed that CDCA5 knockdown also inhibited proliferation, migration, induced apoptosis and increased G2/M arrest similarly to TPI knockdown. CDCA5 overexpression promoted MGC-803 cell proliferation, clone formation and migration abilities. These results indicated that TPI expression level might affect GC cell behavior, suggesting that both TPI and CDCA5 might be considered as potential tumor markers related with GC development and might be potential new targets in GC treatment.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, P.R. China
| | - Zhigang Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, P.R. China
| | - Yunxiao Tian
- Department of Pathology, Handan Central Hospital, Handan, Hebei, P.R. China
| | - Haiwei Wang
- Department of Pathology, Handan Central Hospital, Handan, Hebei, P.R. China
| | - Ping Ouyang
- Scientific Research Centre, Guangdong Medical University, Dongguan, Guangdong, P.R. China
| | - Haoqin Chen
- Department of Internal Medicine, Dalang Hospital of Dongguan City, Dongguan, Guangdong, P.R. China
| | - Lili Wu
- Department of Internal Medicine, Dalang Hospital of Dongguan City, Dongguan, Guangdong, P.R. China
| | - Bode Lin
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, P.R. China
| | - Rongwei He
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, P.R. China
| |
Collapse
|
44
|
Liu Y, Wang Z, Li M, Ye Y, Xu Y, Zhang Y, Yuan R, Jin Y, Hao Y, Jiang L, Hu Y, Chen S, Liu F, Zhang Y, Wu W, Liu Y. Chloride intracellular channel 1 regulates the antineoplastic effects of metformin in gallbladder cancer cells. Cancer Sci 2017; 108:1240-1252. [PMID: 28378944 PMCID: PMC5480064 DOI: 10.1111/cas.13248] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/27/2017] [Accepted: 03/31/2017] [Indexed: 12/14/2022] Open
Abstract
Metformin is the most commonly used drug for type 2 diabetes and has potential benefit in treating and preventing cancer. Previous studies indicated that membrane proteins can affect the antineoplastic effects of metformin and may be crucial in the field of cancer research. However, the antineoplastic effects of metformin and its mechanism in gallbladder cancer (GBC) remain largely unknown. In this study, the effects of metformin on GBC cell proliferation and viability were evaluated using the Cell Counting Kit-8 (CCK-8) assay and an apoptosis assay. Western blotting was performed to investigate related signaling pathways. Of note, inhibition, knockdown and upregulation of the membrane protein Chloride intracellular channel 1 (CLIC1) can affect GBC resistance in the presence of metformin. Our data demonstrated that metformin apparently inhibits the proliferation and viability of GBC cells. Metformin promoted cell apoptosis and increased the number of early apoptotic cells. We found that metformin can exert growth-suppressive effects on these cell lines via inhibition of p-Akt activity and the Bcl-2 family. Notably, either dysfunction or downregulation of CLIC1 can partially decrease the antineoplastic effects of metformin while upregulation of CLIC1 can increase drug sensitivity. Our findings provide experimental evidence for using metformin as an antitumor treatment for gallbladder carcinoma.
Collapse
Affiliation(s)
- Yongchen Liu
- Department of General Surgery and Laboratory of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zheng Wang
- Department of General Surgery and Laboratory of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Maolan Li
- Department of General Surgery and Laboratory of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuanyuan Ye
- Department of General Surgery and Laboratory of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yi Xu
- Department of General Surgery and Laboratory of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yichi Zhang
- Department of General Surgery and Laboratory of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ruiyan Yuan
- Department of General Surgery and Laboratory of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yunpeng Jin
- Department of General Surgery and Laboratory of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yajuan Hao
- Department of General Surgery and Laboratory of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lin Jiang
- Department of General Surgery and Laboratory of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yunping Hu
- Department of General Surgery and Laboratory of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shili Chen
- Department of General Surgery and Laboratory of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fatao Liu
- Department of General Surgery and Laboratory of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yijian Zhang
- Department of General Surgery and Laboratory of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenguang Wu
- Department of General Surgery and Laboratory of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yingbin Liu
- Department of General Surgery and Laboratory of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
45
|
Chen T, Huang Z, Tian Y, Lin B, He R, Wang H, Ouyang P, Chen H, Wu L. Clinical significance and prognostic value of Triosephosphate isomerase expression in gastric cancer. Medicine (Baltimore) 2017; 96:e6865. [PMID: 28489783 PMCID: PMC5428617 DOI: 10.1097/md.0000000000006865] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Triosephosphate isomerase (TPI) is highly expressed in many human cancers and is involved in migration and invasion of cancer cells. However, TPI clinicopathological significance and prognostic value in gastric cancer (GC) are not yet well defined. The aim of the present work was to evaluate TPI expression in GC tissue and its prognostic value in GC patients.TPI expression was analyzed in 92 primary GC tissues and 80 adjacent normal mucosa tissues from GC patients undergoing gastrectomy by immunohistochemical analysis of tissue microarrays (TMAs). Univariate and multivariate analyses were performed to investigate TPI prognostic significance in GC patients.Immunohistochemical staining score showed that TPI expression in cancer tissues was significantly higher than in adjacent normal mucosa (P < .001). Univariate analysis revealed that TPI expression, depth of invasion, lympho node metastasis, tumor node metastasis (TNM) stage, and tumor diameter were associated with negative prognostic predictors for overall survival in GC patients (P < .05). High TPI expression represented a significant predictor of shorter survival in GC patients with positive lymphatic metastasis (P = .022) and tumor diameter >5 cm (P = .018). Cox multivariate analysis identified TPI expression, TNM stage, and tumor diameter as independent prognostic factors in GC patients.TPI expression might be considered as a novel prognostic factor to evaluate GC patients' survival.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Guangdong
| | - Zhigang Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Guangdong
- Dongguan Key Laboratory of Environmental Medicine, Guangdong
| | - Yunxiao Tian
- Department of Pathology, Handan Central Hospital, Hebei
| | - Bode Lin
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Guangdong
| | - Rongwei He
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Guangdong
| | - Haiwei Wang
- Department of Pathology, Handan Central Hospital, Hebei
| | - Ping Ouyang
- Scientific Research Centre, Guangdong Medical University, Guangdong
| | - Haoqin Chen
- Department of Internal Medicine, Dalang Hospital of Dongguan City, Guangdong, China
| | - Lili Wu
- Department of Internal Medicine, Dalang Hospital of Dongguan City, Guangdong, China
| |
Collapse
|
46
|
Pattern-based sensing of triple negative breast cancer cells with dual-ligand cofunctionalized gold nanoclusters. Biomaterials 2016; 116:21-33. [PMID: 27914264 DOI: 10.1016/j.biomaterials.2016.11.050] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/08/2016] [Accepted: 11/24/2016] [Indexed: 01/05/2023]
Abstract
Early detection of breast cancer is a critical component in patient prognosis and establishing effective therapy regimens. Here, we developed an easily accessible yet potentially powerful sensor to detect cancer cell targets by utilizing seven dual-ligand cofunctionalized gold nanoclusters (AuNCs) as both effective cell recognition elements and signal transducers. On the basis of this AuNC multichannel sensor, we have successfully distinguished healthy, cancerous and metastatic human breast cells with excellent reproducibility and high sensitivity. Triple negative breast cancer cells (TNBCs), which exhibit low expression of the estrogen receptor, progesterone receptor, and human epidermal growth factor receptor-2, were identified. The high accuracy of the blind breast cell sample tests further validates the practical application of the sensor array. In addition, the versatility of the sensor array is further justified by identifying amongst distinct cell types, different cell concentrations and cell mixtures. Notably, the drug-resistant cancer cells can also be efficiently discriminated. Furthermore, the dual-ligand cofunctionalized AuNCs can efficiently differentiate different cells from the peripheral blood of tumor-free and tumor-bearing mice. Taken together, this fluorescent AuNCs based array provides a powerful cell analysis tool with potential applications in biomedical diagnostics.
Collapse
|
47
|
Xu Y, Zhu J, Hu X, Wang C, Lu D, Gong C, Yang J, Zong L. CLIC1 Inhibition Attenuates Vascular Inflammation, Oxidative Stress, and Endothelial Injury. PLoS One 2016; 11:e0166790. [PMID: 27861612 PMCID: PMC5115793 DOI: 10.1371/journal.pone.0166790] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 11/03/2016] [Indexed: 01/26/2023] Open
Abstract
Endothelial dysfunction, which includes endothelial oxidative damage and vascular inflammation, is a key initiating step in the pathogenesis of atherosclerosis (AS) and an independent risk factor for this disorder. Intracellular chloride channel 1 (CLIC1), a novel metamorphic protein, acts as a sensor of cell oxidation and is involved in inflammation. In this study, we hypothesize that CLIC1 plays an important role in AS. Apolipoprotein E-deficient mice were supplied with a normal diet or a high-fat and high-cholesterol diet for 8 weeks. Overexpressed CLIC1 was associated with the accelerated atherosclerotic plaque development, amplified oxidative stress, and in vivo release of inflammatory cytokines. We subsequently examined the underlying molecular mechanisms through in vitro experiments. Treatment of cultured human umbilical vein endothelial cells (HUVECs) with H2O2 induced endothelial oxidative damage and enhanced CLIC1 expression. Suppressing CLIC1 expression through gene knocked-out (CLIC1-/-) or using the specific inhibitor indanyloxyacetic acid-94 (IAA94) reduced ROS production, increased SOD enzyme activity, and significantly decreased MDA level. CLIC1-/- HUVECs exhibited significantly reduced expression of TNF-α and IL-1β as well as ICAM-1 and VCAM-1 at the protein levels. In addition, H2O2 promoted CLIC1 translocation to the cell membrane and insertion into lipid membranes, whereas IAA94 inhibited CLIC1 membrane translocation induced by H2O2. By contrast, the majority of CLIC1 did not aggregate on the cell membrane in normal HUVECs, and this finding is consistent with the changes in cytoplasmic chloride ion concentration. This study demonstrates for the first time that CLIC1 is overexpressed during AS development both in vitro and in vivo and can regulate the accumulation of inflammatory cytokines and production of oxidative stress. Our results also highlight that deregulation of endothelial functions may be associated with the membrane translocation of CLIC1 and active chloride-selective ion channels in endothelial cells.
Collapse
Affiliation(s)
- Yingling Xu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ji Zhu
- Clinical Laboratory, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiao Hu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cui Wang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dezhao Lu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
- * E-mail:
| | - Chenxue Gong
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinhuan Yang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lei Zong
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
48
|
Li Y, Li D, Chen J, Wang S. A polysaccharide from Pinellia ternata inhibits cell proliferation and metastasis in human cholangiocarcinoma cells by targeting of Cdc42 and 67kDa Laminin Receptor (LR). Int J Biol Macromol 2016; 93:520-525. [PMID: 27576948 DOI: 10.1016/j.ijbiomac.2016.08.069] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/14/2016] [Accepted: 08/25/2016] [Indexed: 12/13/2022]
Abstract
In this study, we isolated and purified a polysaccharide (PTPA) from the tubers of Pinellia ternate. We aimed to evaluate the cytotoxic effects of PTPA on human cholangiocarcinoma (CCA) cell lines and to identify the underlying molecular mechanism. PTPA at the dose from 25 to 200μg/mL showed significant inhibitory effect on the proliferation of four cancer cell lines (SNU-245, CL-6, Sk-ChA-1 and MZ-ChA-1), among which Sk-ChA-1 was a most sensitive cell line to PTPA treatment via induction of apoptosis. Interestingly, RNA interference of Sk-ChA-1 cells with 67LR or Cdc42-targeted shRNAs resulted a similar potency in decreasing cell viability and causing apoptotic death. Moreover, PTPA (100μg/mL) or 67LR or Cdc42 special shRNAs increased the ratio of pro-apoptotic Bax to anti-apoptotic Bcl-2, induced the activation of caspase-9 and caspase-3, but not caspsase-8, and inhibited the expression of 67LR or Cdc42 protein in Sk-ChA-1 cells. Taken together, the inhibitory effect of PTPA on the cell growth of Sk-ChA-1 cells was at least in part mediated via the activation of the intrinsic mitochondrial apoptotic pathway and the downregulation of 67LR or Cdc42 protein expression. Thus, PTPA may be developed as a promising candidate for chemopreventive agent in the prevention and treatment of human CCA.
Collapse
Affiliation(s)
- Yong Li
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Dajiang Li
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jian Chen
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shuguang Wang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
49
|
Setti M, Osti D, Richichi C, Ortensi B, Del Bene M, Fornasari L, Beznoussenko G, Mironov A, Rappa G, Cuomo A, Faretta M, Bonaldi T, Lorico A, Pelicci G. Extracellular vesicle-mediated transfer of CLIC1 protein is a novel mechanism for the regulation of glioblastoma growth. Oncotarget 2016; 6:31413-27. [PMID: 26429879 PMCID: PMC4741615 DOI: 10.18632/oncotarget.5105] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/18/2015] [Indexed: 01/09/2023] Open
Abstract
Little progresses have been made in the treatment of glioblastoma (GBM), the most aggressive and lethal among brain tumors. Recently we have demonstrated that Chloride Intracellular Channel-1 (CLIC1) is overexpressed in GBM compared to normal tissues, with highest expression in patients with poor prognosis. Moreover, CLIC1-silencing in cancer stem cells (CSCs) isolated from human GBM patients negatively influences proliferative capacity and self-renewal properties in vitro and impairs the in vivo tumorigenic potential. Here we show that CLIC1 exists also as a circulating protein, secreted via extracellular vesicles (EVs) released by either cell lines or GBM-derived CSCs. Extracellular vesicles (EVs), comprising exosomes and microvesicles based on their composition and biophysical properties, have been shown to sustain tumor growth in a variety of model systems, including GBM. Interestingly, treatment of GBM cells with CLIC1-containing EVs stimulates cell growth both in vitro and in vivo in a CLIC1-dose dependent manner. EVs derived from CLIC1-overexpressing GBM cells are strong inducers of proliferation in vitro and tumor engraftment in vivo. These stimulations are significantly attenuated by treatment of GBM cells with EVs derived from CLIC1-silenced cells. However, CLIC1 modulation appears to have no direct role in EV structure, biogenesis and secretion. These findings reveal that, apart from the function of CLIC1 cellular reservoir, CLIC1 contained in EVs is a novel regulator of GBM growth.
Collapse
Affiliation(s)
- Matteo Setti
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Daniela Osti
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Cristina Richichi
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Barbara Ortensi
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Massimiliano Del Bene
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Lorenzo Fornasari
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Galina Beznoussenko
- Institute of Molecular Oncology (IFOM) of The Italian Foundation for Cancer Research (FIRC), Milan, Italy
| | - Alexandre Mironov
- Institute of Molecular Oncology (IFOM) of The Italian Foundation for Cancer Research (FIRC), Milan, Italy
| | - Germana Rappa
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Alessandro Cuomo
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Mario Faretta
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Aurelio Lorico
- Cancer Research Center, Roseman University of Health Sciences with Roseman University College of Medicine, Las Vegas, NV, USA
| | - Giuliana Pelicci
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy.,Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
50
|
Lee JH, Kim JE, Kim BG, Han HH, Kang S, Cho NH. STAT3-induced WDR1 overexpression promotes breast cancer cell migration. Cell Signal 2016; 28:1753-60. [PMID: 27521604 DOI: 10.1016/j.cellsig.2016.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/05/2016] [Accepted: 08/09/2016] [Indexed: 01/05/2023]
Abstract
WD repeat domain 1 (WDR1), a protein that assists cofilin-mediated actin filament disassembly, is overexpressed in the invading front of invasive ductal carcinoma (IDC), but its implication of overexpression and how to be regulated have not been studied. In our study, we demonstrated that STAT3 bound to the 5' upstream sequence (-1971 to -1964), a putative promoter region, of WDR1 gene, and its activation induced WDR1 overexpression in breast cancer cells. The exogenous overexpression of WDR1 increased the migration of MDA-MB-231, which was attenuated by WDR1 knockdown. In the analysis of breast cancer patients, WDR1 overexpression was associated with a shorter distant metastasis-free survival (DMFS), more specifically in basal-like tumors.
Collapse
Affiliation(s)
- Joo Hyun Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Republic of Korea; Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Eun Kim
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Republic of Korea; Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Baek Gil Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Ho Han
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Republic of Korea; Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Suki Kang
- The Severance Biomedical Science Institute, Seoul, Republic of Korea
| | - Nam Hoon Cho
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Republic of Korea; Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea; The Severance Biomedical Science Institute, Seoul, Republic of Korea.
| |
Collapse
|