1
|
Zada S, Bahar ME, Kim W, Kim DR. Chlorogenic Acid Enhances Beta-Lapachone-Induced Cell Death by Suppressing Autophagy in NQO1-Positive Cancer Cells. Cell Biol Int 2025; 49:555-569. [PMID: 40014262 PMCID: PMC11994878 DOI: 10.1002/cbin.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/21/2025] [Accepted: 02/16/2025] [Indexed: 02/28/2025]
Abstract
Resistance to apoptosis-inducing drugs frequently occurs in cancer cells, limiting their usefulness in ongoing cancer treatment. Despite ongoing efforts to overcome drug resistance, a definitive solution remains elusive. However, autophagy inhibition has been shown to enhance the effectiveness of some anticancer drugs and is a possible strategy for overcoming drug resistance. In this study, we demonstrate that chlorogenic acid (CGA), a natural antioxidant, significantly enhances beta-lapachone (β-Lap)-induced cell death in cancer cells. The augmented apoptosis induced by CGA is associated with activation of protein kinase A (PKA) in β-Lap-treated cells, independent of the antioxidant properties of CGA. As a result, PKA activation in cancer cells co-treated with β-Lap and CGA effectively inhibits autophagy. Notably, PKA activation leads to phosphorylation of microtubule-associated protein 1 A/1B-light chain 3 (LC3) at the serine 12 residue, causing autophagy suppression irrespective of mTORC activity. Importantly, the cell death induced by β-Lap and CGA in NQO1-overexpressing breast or lung cancers is closely linked to autophagy inhibition. These findings suggest that combining β-Lap and CGA might be a novel strategy for cancer therapy, particularly for overcoming drug resistance caused by autophagy induction in cancer cells.
Collapse
Affiliation(s)
- Sahib Zada
- Department of Biochemistry and Convergence Medical Science, Institute of Medical ScienceGyeongsang National University College of MedicineJinJuRepublic of Korea
| | - Md Entaz Bahar
- Department of Biochemistry and Convergence Medical Science, Institute of Medical ScienceGyeongsang National University College of MedicineJinJuRepublic of Korea
| | - Wanil Kim
- Department of Biochemistry and Convergence Medical Science, Institute of Medical ScienceGyeongsang National University College of MedicineJinJuRepublic of Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Science, Institute of Medical ScienceGyeongsang National University College of MedicineJinJuRepublic of Korea
| |
Collapse
|
2
|
Wang H, Du X, Liu W, Zhang C, Li Y, Hou J, Yu Y, Li G, Wang Q. Combination of betulinic acid and EGFR-TKIs exerts synergistic anti-tumor effects against wild-type EGFR NSCLC by inducing autophagy-related cell death via EGFR signaling pathway. Respir Res 2024; 25:215. [PMID: 38764025 PMCID: PMC11103851 DOI: 10.1186/s12931-024-02844-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of lung cancer patients with mutated EGFR. However, the efficacy of EGFR-TKIs in wild-type EGFR tumors has been shown to be marginal. Methods that can sensitize EGFR-TKIs to EGFR wild-type NSCLC remain rare. Hence, we determined whether combination treatment can maximize the therapeutic efficacy of EGFR-TKIs. METHODS We established a focused drug screening system to investigate candidates for overcoming the intrinsic resistance of wild-type EGFR NSCLC to EGFR-TKIs. Molecular docking assays and western blotting were used to identify the binding mode and blocking effect of the candidate compounds. Proliferation assays, analyses of drug interactions, colony formation assays, flow cytometry and nude mice xenograft models were used to determine the effects and investigate the molecular mechanism of the combination treatment. RESULTS Betulinic acid (BA) is effective at targeting EGFR and synergizes with EGFR-TKIs (gefitinib and osimertinib) preferentially against wild-type EGFR. BA showed inhibitory activity due to its interaction with the ATP-binding pocket of EGFR and dramatically enhanced the suppressive effects of EGFR-TKIs by blocking EGFR and modulating the EGFR-ATK-mTOR axis. Mechanistic studies revealed that the combination strategy activated EGFR-induced autophagic cell death and that the EGFR-AKT-mTOR signaling pathway was essential for completing autophagy and cell cycle arrest. Activation of the mTOR pathway or blockade of autophagy by specific chemical agents markedly attenuated the effect of cell cycle arrest. In vivo administration of the combination treatment caused marked tumor regression in the A549 xenografts. CONCLUSIONS BA is a potential wild-type EGFR inhibitor that plays a critical role in sensitizing EGFR-TKI activity. BA combined with an EGFR-TKI effectively suppressed the proliferation and survival of intrinsically resistant lung cancer cells via the inhibition of EGFR as well as the induction of autophagy-related cell death, indicating that BA combined with an EGFR-TKI may be a potential therapeutic strategy for overcoming the primary resistance of wild-type EGFR-positive lung cancers.
Collapse
Affiliation(s)
- Han Wang
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
- Guangzhou women and children's medical center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Xiaohui Du
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Wenwen Liu
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Congcong Zhang
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Ying Li
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Jingwen Hou
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Yi Yu
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Guiru Li
- The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| | - Qi Wang
- The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
3
|
Leung PY, Chen W, Sari AN, Sitaram P, Wu PK, Tsai S, Park JI. Erlotinib combination with a mitochondria-targeted ubiquinone effectively suppresses pancreatic cancer cell survival. World J Gastroenterol 2024; 30:714-727. [PMID: 38515951 PMCID: PMC10950623 DOI: 10.3748/wjg.v30.i7.714] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/13/2023] [Accepted: 01/17/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Pancreatic cancer is a leading cause of cancer-related deaths. Increased activity of the epidermal growth factor receptor (EGFR) is often observed in pancreatic cancer, and the small molecule EGFR inhibitor erlotinib has been approved for pancreatic cancer therapy by the food and drug administration. Nevertheless, erlotinib alone is ineffective and should be combined with other drugs to improve therapeutic outcomes. We previously showed that certain receptor tyrosine kinase inhibitors can increase mitochondrial membrane potential (Δψm), facilitate tumor cell uptake of Δψm-sensitive agents, disrupt mitochondrial homeostasis, and subsequently trigger tumor cell death. Erlotinib has not been tested for this effect. AIM To determine whether erlotinib can elevate Δψm and increase tumor cell uptake of Δψm-sensitive agents, subsequently triggering tumor cell death. METHODS Δψm-sensitive fluorescent dye was used to determine how erlotinib affects Δψm in pancreatic adenocarcinoma (PDAC) cell lines. The viability of conventional and patient-derived primary PDAC cell lines in 2D- and 3D cultures was measured after treating cells sequentially with erlotinib and mitochondria-targeted ubiquinone (MitoQ), a Δψm-sensitive MitoQ. The synergy between erlotinib and MitoQ was then analyzed using SynergyFinder 2.0. The preclinical efficacy of the two-drug combination was determined using immune-compromised nude mice bearing PDAC cell line xenografts. RESULTS Erlotinib elevated Δψm in PDAC cells, facilitating tumor cell uptake and mitochondrial enrichment of Δψm-sensitive agents. MitoQ triggered caspase-dependent apoptosis in PDAC cells in culture if used at high doses, while erlotinib pretreatment potentiated low doses of MitoQ. SynergyFinder suggested that these drugs synergistically induced tumor cell lethality. Consistent with in vitro data, erlotinib and MitoQ combination suppressed human PDAC cell line xenografts in mice more effectively than single treatments of each agent. CONCLUSION Our findings suggest that a combination of erlotinib and MitoQ has the potential to suppress pancreatic tumor cell viability effectively.
Collapse
Affiliation(s)
- Pui-Yin Leung
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Wenjing Chen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Anissa N Sari
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Poojitha Sitaram
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Pui-Kei Wu
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Susan Tsai
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Jong-In Park
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| |
Collapse
|
4
|
Pan Q, Lu Y, Xie L, Wu D, Liu R, Gao W, Luo K, He B, Pu Y. Recent Advances in Boosting EGFR Tyrosine Kinase Inhibitors-Based Cancer Therapy. Mol Pharm 2023; 20:829-852. [PMID: 36588471 DOI: 10.1021/acs.molpharmaceut.2c00792] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Epidermal growth factor receptor (EGFR) plays a key role in signal transduction pathways associated with cell proliferation, growth, and survival. Its overexpression and aberrant activation in malignancy correlate with poor prognosis and short survival. Targeting inhibition of EGFR by small-molecular tyrosine kinase inhibitors (TKIs) is emerging as an important treatment model besides of chemotherapy, greatly reshaping the landscape of cancer therapy. However, they are still challenged by the off-targeted toxicity, relatively limited cancer types, and drug resistance after long-term therapy. In this review, we summarize the recent progress of oral, pulmonary, and injectable drug delivery systems for enhanced and targeting TKI delivery to tumors and reduced side effects. Importantly, EGFR-TKI-based combination therapies not only greatly broaden the applicable cancer types of EGFR-TKI but also significantly improve the anticancer effect. The mechanisms of TKI resistance are summarized, and current strategies to overcome TKI resistance as well as the application of TKI in reversing chemotherapy resistance are discussed. Finally, we provide a perspective on the future research of EGFR-TKI-based cancer therapy.
Collapse
Affiliation(s)
- Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Yao Lu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Li Xie
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Di Wu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Rong Liu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
5
|
Zhou C, Dong X, Wang M, Qian X, Hu M, Liang K, Liang Y, Zhang R, Huang Y, Lyu H, Xiao S, Tang Y, Ali DW, Michalak M, Chen XZ, Tang J. Phosphorylated STYK1 restrains the inhibitory role of EGFR in autophagy initiation and EGFR-TKIs sensitivity. CELL INSIGHT 2022; 1:100045. [PMID: 37192859 PMCID: PMC10120315 DOI: 10.1016/j.cellin.2022.100045] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 05/18/2023]
Abstract
Epidermal growth factor receptor (EGFR) plays critical roles in cell proliferation and tumorigenesis. Autophagy has emerged as a potential mechanism involved in the acquired resistance to anti-EGFR treatments, however, the molecular mechanisms has not been fully addressed. In this study, we identified EGFR interacts with STYK1, a positive autophagy regulator, in EGFR kinase activity dependent manner. We found that EGFR phosphorylates STYK1 at Y356 site and STYK1 inhibits activated EGFR mediated Beclin1 tyrosine phosphorylation and interaction between Bcl2 and Beclin1, thus enhances PtdIns3K-C1 complex assembly and autophagy initiation. We also demonstrated that STYK1 depletion increased the sensitivity of NSCLC cells to EGFR-TKIs in vitro and in vivo. Moreover, EGFR-TKIs induced activation of AMPK phosphorylates STYK1 at S304 site. STYK1 S304 collaborated with Y356 phosphorylation to enhance the EGFR-STYK1 interaction and reverse the inhibitory effects of EGFR to autophagy flux. Collectively, these data revealed new roles and cross-talk between STYK1 and EGFR in autophagy regulation and EGFR-TKIs sensitivity in NSCLC.
Collapse
Affiliation(s)
- Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Xueying Dong
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Ming Wang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xuehong Qian
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Miao Hu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Kai Liang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Yanyan Liang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Yuan Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Hao Lyu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Shuai Xiao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Yongfei Tang
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Declan William Ali
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| |
Collapse
|
6
|
An Z, Chiang WC, Fernández ÁF, Franco LH, He C, Huang SY, Lee E, Liu Y, Sebti S, Shoji-Kawata S, Sirasanagandla S, Wang RC, Wei Y, Zhao Y, Vega-Rubin-de-Celis S. Beth Levine’s Legacy: From the Discovery of BECN1 to Therapies. A Mentees’ Perspective. Front Cell Dev Biol 2022; 10:891332. [PMID: 35832792 PMCID: PMC9273008 DOI: 10.3389/fcell.2022.891332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
With great sadness, the scientific community received the news of the loss of Beth Levine on 15 June 2020. Dr. Levine was a pioneer in the autophagy field and work in her lab led not only to a better understanding of the molecular mechanisms regulating the pathway, but also its implications in multiple physiological and pathological conditions, including its role in development, host defense, tumorigenesis, aging or metabolism. This review does not aim to provide a comprehensive view of autophagy, but rather an outline of some of the discoveries made by the group of Beth Levine, from the perspective of some of her own mentees, hoping to honor her legacy in science.
Collapse
Affiliation(s)
- Zhenyi An
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Wei-Chung Chiang
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Álvaro F. Fernández
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Luis H. Franco
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - CongCong He
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Shu-Yi Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Eunmyong Lee
- InnoCure Therapeutics Inc., Gyeonggi-do, South Korea
| | - Yang Liu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| | - Salwa Sebti
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | | | | | - Richard C. Wang
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yongjie Wei
- Cancer Research Institute, Guangzhou Medical University, Guangzhou, China
| | - Yuting Zhao
- Institute of Future Agriculture, Northwest A&F University, Yangling, China
| | - Silvia Vega-Rubin-de-Celis
- Institute for Cell Biology (Cancer Research), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Silvia Vega-Rubin-de-Celis, ,
| |
Collapse
|
7
|
Hatat AS, Benoit-Pilven C, Pucciarelli A, de Fraipont F, Lamothe L, Perron P, Rey A, Giaj Levra M, Toffart AC, Auboeuf D, Eymin B, Gazzeri S. Altered splicing of ATG16-L1 mediates acquired resistance to tyrosine kinase inhibitors of EGFR by blocking autophagy in non-small cell lung cancer. Mol Oncol 2022; 16:3490-3508. [PMID: 35593080 PMCID: PMC9533692 DOI: 10.1002/1878-0261.13229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/25/2022] [Accepted: 05/18/2022] [Indexed: 11/11/2022] Open
Abstract
Despite the initial efficacy of using tyrosine kinase inhibitors of epidermal growth factor receptor (EGFR-TKIs) for treating patients with non-small cell lung cancer (NSCLC), resistance inevitably develops. Recent studies highlight a link between alternative splicing and cancer drug response. Therefore, we aimed to identify deregulated splicing events that play a role in resistance to EGFR-TKI. By using RNA sequencing, reverse transcription PCR (RT-PCR) and RNA interference, we showed that overexpression of a splice variant of the autophagic gene ATG16-L1 that retains exon 8 and encodes the β-isoform of autophagy-related protein 16-1 (ATG16-L1-β) concurs acquired resistance to EGFR-TKI in NSCLC cells. Using matched biopsies, we found increased levels of ATG16-L1-β at the time of progression in 3 of 11 NSCLC patients treated with EGFR-TKI. Mechanistically, gefitinib-induced autophagy was impaired in resistant cells that accumulated ATG16-L1-β. Neutralization of ATG16-L1-β restored autophagy in response to gefitinib, induced apoptosis and inhibited the growth of in ovo tumor xenografts. Conversely, overexpression of ATG16-L1-β in parental sensitive cells prevented gefitinib-induced autophagy and increased cell survival. These results support a role for defective autophagy in acquired resistance to EGFR-TKIs and identify splicing regulation of ATG16-L1 as a therapeutic vulnerability that could be explored for improving EGFR-targeted cancer therapy.
Collapse
Affiliation(s)
- Anne-Sophie Hatat
- Team "RNA splicing, cell signaling and response to therapies", Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France
| | - Clara Benoit-Pilven
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie, Site Jacques Monod, F-69007, Lyon, France
| | - Amélie Pucciarelli
- Team "RNA splicing, cell signaling and response to therapies", Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France
| | - Florence de Fraipont
- Team "RNA splicing, cell signaling and response to therapies", Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France.,Molecular Genetic Unit, Grenoble-Alpes University Hospital, Grenoble, France
| | - Lucie Lamothe
- Team "RNA splicing, cell signaling and response to therapies", Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France
| | - Pascal Perron
- Team "RNA splicing, cell signaling and response to therapies", Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France
| | - Amandine Rey
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie, Site Jacques Monod, F-69007, Lyon, France
| | - Matteo Giaj Levra
- Team "RNA splicing, cell signaling and response to therapies", Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France.,Thoracic Oncology Unit, Grenoble-Alpes University Hospital, Grenoble, France
| | - Anne-Claire Toffart
- Team "RNA splicing, cell signaling and response to therapies", Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France.,Thoracic Oncology Unit, Grenoble-Alpes University Hospital, Grenoble, France
| | - Didier Auboeuf
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie, Site Jacques Monod, F-69007, Lyon, France
| | - Beatrice Eymin
- Team "RNA splicing, cell signaling and response to therapies", Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France
| | - Sylvie Gazzeri
- Team "RNA splicing, cell signaling and response to therapies", Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France
| |
Collapse
|
8
|
Guo W, Du K, Luo S, Hu D. Recent Advances of Autophagy in Non-Small Cell Lung Cancer: From Basic Mechanisms to Clinical Application. Front Oncol 2022; 12:861959. [PMID: 35600411 PMCID: PMC9115384 DOI: 10.3389/fonc.2022.861959] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/04/2022] [Indexed: 12/27/2022] Open
Abstract
Lung cancer is characterized by the most common oncological disease and leading cause of cancer death worldwide, of which a group of subtypes known as non-small cell lung cancer (NSCLC) accounts for approximately 85%. In the past few decades, important progression in the therapies of NSCLC has enhanced our understanding of the biology and progression mechanisms of tumor. The application of immunotherapy and small molecule tyrosine kinase inhibitors has brought significant clinical benefits in certain patients. However, early metastasis and the emergence of resistance to antitumor therapy have resulted in the relatively low overall cure and survival rates for NSCLC. Autophagy is a conserved process that allows cells to recycle unused or damaged organelles and cellular components. It has been reported to be related to the progression of NSCLC and resistance to targeted therapy and cytotoxic chemotherapy. Therefore, autophagy is considered as a potential therapeutic target for NSCLC. Mounting results have been reported about the combination of tyrosine kinase inhibitors and inhibitors of autophagy in models of NSCLC. This review aims to provide a comprehensive review on the roles of autophagy in NSCLC, focusing on related clinical data of agents that regulate autophagy in NSCLC. Furthermore, this study will provide a theoretical basis for further improvement of autophagy-based cancer therapy.
Collapse
Affiliation(s)
- Weina Guo
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Keye Du
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, China
- Department of immunology, Hubei Clinical Research Center of Cancer Immunotherapy, Wuhan, China
| |
Collapse
|
9
|
Mi XJ, Choi HS, Perumalsamy H, Shanmugam R, Thangavelu L, Balusamy SR, Kim YJ. Biosynthesis and cytotoxic effect of silymarin-functionalized selenium nanoparticles induced autophagy mediated cellular apoptosis via downregulation of PI3K/Akt/mTOR pathway in gastric cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:154014. [PMID: 35247670 DOI: 10.1016/j.phymed.2022.154014] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/08/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Silymarin, a blend of flavonolignans isolated from plant Silybum marianum L., has long been used as an herbal medicine. Biogenic routes especially the plant-based synthesis of selenium nanoparticles (SeNPs) is safe, eco-friendly, nontoxic and being considered as one of the best strategies for treatment of cancer. PURPOSE Silymarin-mediated green synthesis of SeNPs and their possibility as an anticancer agent have not been reported to date. Therefore, our present study was aimed to synthesize and characterize the selenium mediated silymarin nanoparticles (Si-SeNPs) from silymarin and investigate their possibility as an anticancer agent. METHODS The physicochemical characteristics of Si-SeNPs were analyzed using various analytical techniques, such as HPLC, field emission-transmission electron microscope, energy-dispersive X-ray spectrometer, and thermogravimetric analysis. The underlying molecular mechanism were evaluated using AGS gastric cancer cells. RESULTS Compared with silymarin, the Si-SeNPs exhibited significantly increased cytotoxic effect of AGS cells without exhibiting toxicity on normal cells. Real time PCR and western blotting analysis indicated that Si-SeNPs induced expression of Bax/Bcl-2, cytochrome c, and cleavage of caspase proteins, which is associated with mitochondria-mediated apoptosis signaling in AGS cells. Moreover, agonist assay using PI3K activator indicated that Si-SeNPs-inhibited PI3K/AKT/mTOR pathways were significantly associated as an autophagy and apoptosis signaling in AGS cells. CONCLUSION Our study demonstrated the improved anticancer efficacy of Si-SeNPs- induced apoptosis and autophagy pathways, and therefore recommended Si-SeNPs as a novel anticancer agent after in vivo studies.
Collapse
Affiliation(s)
- Xiao-Jie Mi
- Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si, 17104, Gyeonggi-do, Republic of Korea
| | - Han Sol Choi
- Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si, 17104, Gyeonggi-do, Republic of Korea
| | - Haribalan Perumalsamy
- Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si, 17104, Gyeonggi-do, Republic of Korea; Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Rajeshkumar Shanmugam
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha University, SIMATS, Chennai 600077, TN, India
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha University, SIMATS, Chennai 600077, TN, India
| | - Sri Renukadevi Balusamy
- Department of Food Science and Biotechnology, Sejong University, Gwangjin-gu, Seoul, 05006, Republic of Korea.
| | - Yeon-Ju Kim
- Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si, 17104, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
10
|
Sanaei MJ, Razi S, Pourbagheri-Sigaroodi A, Bashash D. The PI3K/Akt/mTOR pathway in lung cancer; oncogenic alterations, therapeutic opportunities, challenges, and a glance at the application of nanoparticles. Transl Oncol 2022; 18:101364. [PMID: 35168143 PMCID: PMC8850794 DOI: 10.1016/j.tranon.2022.101364] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/15/2022] [Accepted: 02/05/2022] [Indexed: 12/20/2022] Open
Abstract
Lung cancer is the most common and deadliest human malignancies. The alterations of PI3K/Akt/mTOR pathway are related to lung cancer progression. PI3K axis regulates proliferation, apoptosis, metastasis, and EMT of lung cancer. Agents inhibiting components of PI3K axis diminish lung tumor growth and invasion. Low efficacy and off-target toxicity could be improved by nanoparticle application.
Lung cancer is the leading cause of cancer-related mortality worldwide. Although the PI3K/Akt/mTOR signaling pathway has recently been considered as one of the most altered molecular pathways in this malignancy, few articles reviewed the task. In this review, we aim to summarize the original data obtained from international research laboratories on the oncogenic alterations in each component of the PI3K/Akt/mTOR pathway in lung cancer. This review also responds to questions on how aberrant activation in this axis contributes to uncontrolled growth, drug resistance, sustained angiogenesis, as well as tissue invasion and metastatic spread. Besides, we provide a special focus on pharmacologic inhibitors of the PI3K/Akt/mTOR axis, either as monotherapy or in a combined-modal strategy, in the context of lung cancer. Despite promising outcomes achieved by using these agents, however, the presence of drug resistance as well as treatment-related adverse events is the other side of the coin. The last section allocates a general overview of the challenges associated with the inhibitors of the PI3K pathway in lung cancer patients. Finally, we comment on the future research aspects, especially in which nano-based drug delivery strategies might increase the efficacy of the therapy in this malignancy.
Collapse
|
11
|
Targeting autophagy, oxidative stress, and ER stress for neurodegenerative diseases treatment. J Control Release 2022; 345:147-175. [DOI: 10.1016/j.jconrel.2022.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 12/13/2022]
|
12
|
Ganthala PD, Alavala S, Chella N, Andugulapati SB, Bathini NB, Sistla R. Co-encapsulated nanoparticles of Erlotinib and Quercetin for targeting lung cancer through nuclear EGFR and PI3K/AKT inhibition. Colloids Surf B Biointerfaces 2022; 211:112305. [PMID: 34998178 DOI: 10.1016/j.colsurfb.2021.112305] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022]
Abstract
Erlotinib-based EGFR targeted therapy has proven significant clinical improvement against non-small cell lung cancer (NSCLC). However, the anticancer activity of Erlotinib (Ertb) is limited by the development of Ertb resistance and possess a challenge to clinicians and patients. To explore a better therapeutic strategy, we evaluated Ertb in combinations with different natural products. We identified that Ertb and Quercetin (Quer) combination is more synergistic against A549 and NCI H460 cells compared to Ertb with Fisetin/Carnosic acid/Luteolin. To further improve the efficacy and overcome the limitation of free therapeutics, Ertb and Quer loaded solid lipid nanoparticles (EQNPs) were prepared using Chitosan-MA-TPGS polymer by hot homogenization method. The drug-loaded nanoparticles (NPs) have shown high encapsulation efficiency (77% Ertb and 71.4% Quer) as well as small particle size of 87.3 ± 0.78 nm and positive zeta potential + 13.4 ± 1.12 mV. At pH 5.5, Ertb and Quer were released at their highest levels. We found that, EQNPs decreased the expression of P-glycoprotein (P-gp) and nuclear epidermal growth factor receptor (nEGFR). EQNPs increased the uptake of Ertb and Quer, and apoptosis induction in Ertb resistant A549/ER cells. Further, in vivo EQNPs formulation have shown increased uptake of nanoparticles in the lung tissue and significantly reduced the expression of nEGFR. Thus, EQNPs may be developed as a targeted medicine with minimum side effects for treatment of NSCLC to improve the quality of life and survival of NSCLC patients.
Collapse
Affiliation(s)
- Parimala Devi Ganthala
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India; Department of Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Sateesh Alavala
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500007, India
| | - Naveen Chella
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research, Guwahati, Assam 781101, India
| | - Sai Balaji Andugulapati
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500007, India
| | - Nagendra Babu Bathini
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India; Department of Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
| | - Ramakrishna Sistla
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
13
|
Ji X, Ma H, Du Y. Role and mechanism of action of LAPTM4B in EGFR‑mediated autophagy (Review). Oncol Lett 2022; 23:109. [PMID: 35242237 DOI: 10.3892/ol.2022.13229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/17/2022] [Indexed: 12/09/2022] Open
Affiliation(s)
- Xiaokun Ji
- Department of Cytology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Hua Ma
- Department of Cytology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yun Du
- Department of Cytology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
14
|
Salimi-Jeda A, Ghabeshi S, Gol Mohammad Pour Z, Jazaeri EO, Araiinejad M, Sheikholeslami F, Abdoli M, Edalat M, Abdoli A. Autophagy Modulation and Cancer Combination Therapy: A Smart Approach in Cancer Therapy. Cancer Treat Res Commun 2022; 30:100512. [PMID: 35026533 DOI: 10.1016/j.ctarc.2022.100512] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/03/2021] [Accepted: 01/04/2022] [Indexed: 12/15/2022]
Abstract
The autophagy pathway is the process whereby cells keep cellular homeostasis and respond to stress via recycling their damaged cellular proteins, organelles, and other cellular components. In the context of cancer, autophagy is a dual-edge sword pro- and anti-tumorigenic role depending on the oncogenic context and stage of tumorigenesis. Cancer cells have a higher dependency on autophagy compared with normal cells because of cellular damages and high demands for energy. The carbon, nitrogen, and molecular oxygen are building blocks for highly proliferative cancer cells which extremely depend on glutaminolysis and aerobic glycolysis; when a cancer cell is restricted to glucose and glutamine, it initiates to activate a stress response pathway using autophagy. Oncogenic tyrosine kinases (OncTKs) and receptor tyrosine kinases (RTKs) activation result in autophagy modulation through activation of the PI3K/AKT/mTORC1 and RAS/MAPK signaling pathways. Targeted inhibition of tyrosine kinases (TKs) and RTKs have recently been considered as cancer therapy but drug resistance and cancer relapse continue to be a major limitation of tyrosine kinase inhibitors (TKIs). Manipulation of autophagy pathway along with TKIs may be a promising strategy to circumvent unknown existing drug-resistance mechanisms that may emerge in a treated patient. In this way, clinical trials are ongoing to modulate autophagy to treat cancer. This review aims to summarize the combination therapy of autophagy affecting compounds with anticancer drugs which target cell signaling pathways, metabolism mechanisms, and epigenetics modification to improve therapeutic efficacy against cancers.
Collapse
Affiliation(s)
- Ali Salimi-Jeda
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Soad Ghabeshi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ehsan Ollah Jazaeri
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, 13169-43551, Iran
| | - Mehrdad Araiinejad
- WHO Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran Iran
| | - Farzaneh Sheikholeslami
- WHO Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran Iran
| | - Mohsen Abdoli
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Edalat
- Department of medical laboratory sciences, Paramedical Sciences, Tabriz University of medical sciences, Tabriz, Iran
| | - Asghar Abdoli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, 13169-43551, Iran.
| |
Collapse
|
15
|
Karaca B, Bakır E, Yerer MB, Cumaoğlu A, Hamurcu Z, Eken A. Doxazosin and erlotinib have anticancer effects in the endometrial cancer cell and important roles in ERα and Wnt/β-catenin signaling pathways. J Biochem Mol Toxicol 2021; 35:e22905. [PMID: 34463000 DOI: 10.1002/jbt.22905] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/23/2021] [Accepted: 08/20/2021] [Indexed: 12/27/2022]
Abstract
ERα and Wnt/β-catenin pathways are critical for the progression of most endometrial cancers. We aimed to investigate the cytotoxic and apoptotic effects of tamoxifen and quinazoline derivative drugs of doxazosin and erlotinib, and their roles in ERα and Wnt/β-catenin signaling pathways in human endometrial cancer RL 95-2 cell. 3-(4,5-Dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide assay and xCELLigence systems were performed to evaluate cytotoxicity. Furthermore, apoptotic induction was tested by Annexin V analysis. Caspase-3 and -9 activity and changes in the mitochondrial membrane potential were evaluated. The level of reactive oxygen species was measured by incubating with dichlorofluorescein diacetate. Protein ratios of p-ERα/ERα, GSK3β/p-GSK3β, and p-β-catenin/β-catenin and expression levels of ESR1, EGFR, c-Myc genes were evaluated to elucidate mechanisms in signaling pathways. We found that the tested drugs showed cytotoxic and apoptotic effects in the cells. Doxazosin significantly reduced ESR1 expression, slightly reduced the p-β-catenin/β-catenin ratio and c-Myc expression. Erlotinib significantly increased c-Myc expression while significantly decreasing the p-β-catenin/β-catenin and p-ERα/ERα ratio, and ESR1 expression. However, we observed that the cells develop resistance to erlotinib over a certain concentration, suggesting that ERα, ESR1, EGFR, and c-Myc may be a new target for overcoming drug resistance in the treatment of endometrial cancer. We also observed that erlotinib and doxazosin play an important role in the ERα signaling pathway and can act as potent inhibitors of PKA and/or tyrosine kinase in the Wnt/β-catenin signaling pathway in RL 95-2 cell. In conclusion, doxazosin and erlotinib may have a possible therapeutic potential in human endometrial cancer.
Collapse
Affiliation(s)
- Büşra Karaca
- Hakan Çetinsaya Good Clinical Practice and Research Center, Erciyes University, Kayseri, Turkey
| | - Elçin Bakır
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Mükerrem Betül Yerer
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Ahmet Cumaoğlu
- Department of Biochemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Zuhal Hamurcu
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Turkey.,Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Ayşe Eken
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| |
Collapse
|
16
|
Chen CH, Wang BW, Hsiao YC, Wu CY, Cheng FJ, Hsia TC, Chen CY, Wang Y, Weihua Z, Chou RH, Tang CH, Chen YJ, Wei YL, Hsu JL, Tu CY, Hung MC, Huang WC. PKCδ-mediated SGLT1 upregulation confers the acquired resistance of NSCLC to EGFR TKIs. Oncogene 2021; 40:4796-4808. [PMID: 34155348 PMCID: PMC8298203 DOI: 10.1038/s41388-021-01889-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 05/18/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023]
Abstract
The tyrosine kinase inhibitors (TKIs) targeting epidermal growth factor receptor (EGFR) have been widely used for non-small cell lung cancer (NSCLC) patients, but the development of acquired resistance remains a therapeutic hurdle. The reduction of glucose uptake has been implicated in the anti-tumor activity of EGFR TKIs. In this study, the upregulation of the active sodium/glucose co-transporter 1 (SGLT1) was found to confer the development of acquired EGFR TKI resistance and was correlated with the poorer clinical outcome of the NSCLC patients who received EGFR TKI treatment. Blockade of SGLT1 overcame this resistance in vitro and in vivo by reducing glucose uptake in NSCLC cells. Mechanistically, SGLT1 protein was stabilized through the interaction with PKCδ-phosphorylated (Thr678) EGFR in the TKI-resistant cells. Our findings revealed that PKCδ/EGFR axis-dependent SGLT1 upregulation was a critical mechanism underlying the acquired resistance to EGFR TKIs. We suggest co-targeting PKCδ/SGLT1 as a potential strategy to improve the therapeutic efficacy of EGFR TKIs in NSCLC patients.
Collapse
Affiliation(s)
- Chia-Hung Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
- Department of Respiratory Therapy, China Medical University, Taichung, Taiwan
| | - Bo-Wei Wang
- Center for Molecular Medicine, Research Center for Cancer Biology, and Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Drug Development Center, China Medical University, Taichung, Taiwan
| | - Yu-Chun Hsiao
- Center for Molecular Medicine, Research Center for Cancer Biology, and Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Drug Development Center, China Medical University, Taichung, Taiwan
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan
| | - Chun-Yi Wu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Fang-Ju Cheng
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Te-Chun Hsia
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Respiratory Therapy, China Medical University, Taichung, Taiwan
- Department of Internal Medicine, Hyperbaric Oxygen Therapy Center, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Yi Chen
- Division of Thoracic Surgery, Department of Surgery, Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Zhang Weihua
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Ruey-Hwang Chou
- Center for Molecular Medicine, Research Center for Cancer Biology, and Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan
| | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Yun-Ju Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
- School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
- Department of Pharmacy, E-Da Hospital, Kaohsiung, Taiwan
| | - Ya-Ling Wei
- Center for Molecular Medicine, Research Center for Cancer Biology, and Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Jennifer L Hsu
- Center for Molecular Medicine, Research Center for Cancer Biology, and Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chih-Yen Tu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan.
- School of Medicine, China Medical University, Taichung, Taiwan.
| | - Mien-Chie Hung
- Center for Molecular Medicine, Research Center for Cancer Biology, and Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Drug Development Center, China Medical University, Taichung, Taiwan.
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan.
| | - Wei-Chien Huang
- Center for Molecular Medicine, Research Center for Cancer Biology, and Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Drug Development Center, China Medical University, Taichung, Taiwan.
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan.
| |
Collapse
|
17
|
Shu YH, Yuan HH, Xu MT, Hong YT, Gao CC, Wu ZP, Han HT, Sun X, Gao RL, Yang SF, Li SX, Tian JK, Zhang JB. A novel Diels-Alder adduct of mulberry leaves exerts anticancer effect through autophagy-mediated cell death. Acta Pharmacol Sin 2021; 42:780-790. [PMID: 32814819 PMCID: PMC8115316 DOI: 10.1038/s41401-020-0492-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/22/2020] [Indexed: 02/01/2023]
Abstract
Guangsangon E (GSE) is a novel Diels-Alder adduct isolated from leaves of Morus alba L, a traditional Chinese medicine widely applied in respiratory diseases. It is reported that GSE has cytotoxic effect on cancer cells. In our research, we investigated its anticancer effect on respiratory cancer and revealed that GSE induces autophagy and apoptosis in lung and nasopharyngeal cancer cells. We first observed that GSE inhibits cell proliferation and induces apoptosis in A549 and CNE1 cells. Meanwhile, the upregulation of autophagosome marker LC3 and increased formation of GFP-LC3 puncta demonstrates the induction of autophagy in GSE-treated cells. Moreover, GSE increases the autophagy flux by enhancing lysosomal activity and the fusion of autophagosomes and lysosomes. Next, we investigated that endoplasmic reticulum (ER) stress is involved in autophagy induction by GSE. GSE activates the ER stress through reactive oxygen species (ROS) accumulation, which can be blocked by ROS scavenger NAC. Finally, inhibition of autophagy attenuates GSE-caused cell death, termed as "autophagy-mediated cell death." Taken together, we revealed the molecular mechanism of GSE against respiratory cancer, which demonstrates great potential of GSE in the treatment of representative cancer.
Collapse
Affiliation(s)
- Yu-Han Shu
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310058, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Hua-Hua Yuan
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310058, China
| | - Meng-Ting Xu
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310058, China
| | - Ye-Ting Hong
- Hangzhou Medical College, Hangzhou, 310053, China
| | - Cheng-Cheng Gao
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310058, China
| | - Zhi-Pan Wu
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310058, China
| | - Hao-Te Han
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310058, China
| | - Xin Sun
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Rui-Lan Gao
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Si-Fu Yang
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Shou-Xin Li
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang-Malaysia Joint Research Center for Traditional Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jing-Kui Tian
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang-Malaysia Joint Research Center for Traditional Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Jian-Bin Zhang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China.
| |
Collapse
|
18
|
Gu Y, Lai S, Dong Y, Fu H, Song L, Chen T, Duan Y, Zhang Z. AZD9291 Resistance Reversal Activity of a pH-Sensitive Nanocarrier Dual-Loaded with Chloroquine and FGFR1 Inhibitor in NSCLC. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002922. [PMID: 33511016 PMCID: PMC7816715 DOI: 10.1002/advs.202002922] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/10/2020] [Indexed: 05/03/2023]
Abstract
AZD9291 can effectively prolong survival of non-small cell lung cancer (NSCLC) patients. Unfortunately, the mechanism of its acquired drug resistance is largely unknown. This study shows that autophagy and fibroblast growth factor receptor 1 signaling pathways are both activated in AZD9291 resistant NSCLC, and inhibition of them, respectively, by chloroquine (CQ) and PD173074 can synergistically reverse AZD9291 resistance. Herein, a coloaded CQ and PD173074 pH-sensitive shell-core nanoparticles CP@NP-cRGD is developed to reverse AZD9291 resistance in NSCLC. CP@NP-cRGD has a high encapsulation rate and stability, and can effectively prevent the degradation of drugs in circulation process. CP@NP-cRGD can target tumor cells by enhanced permeability and retention effect and the cRGD peptide. The pH-sensitive CaP shell can realize lysosome escape and then release drugs successively. The combination of CP@NP-cRGD and AZD9291 significantly induces a higher rate of apoptosis, more G0/G1 phase arrest, and reduces proliferation of resistant cell lines by downregulation of p-ERK1/2 in vitro. CQ in CP@NP-cRGD can block protective autophagy induced by both AZD9291 and PD173074. CP@NP-cRGD combined with AZD9291 shows adequate tumor enrichment, low toxicity, and excellent antitumor effect in nude mice. It provides a novel multifunctional nanoparticle to overcome AZD9291 resistance for potential clinical applications.
Collapse
Affiliation(s)
- Yu Gu
- Department of Radiation OncologyFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Songtao Lai
- Department of Radiation OncologyFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Yang Dong
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Hao Fu
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Liwei Song
- Shanghai Lung Cancer CenterShanghai Chest HospitalShanghai Jiao Tong UniversityShanghai200030China
| | - Tianxiang Chen
- Shanghai Lung Cancer CenterShanghai Chest HospitalShanghai Jiao Tong UniversityShanghai200030China
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Zhen Zhang
- Department of Radiation OncologyFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| |
Collapse
|
19
|
Silva VR, Neves SP, Santos LDS, Dias RB, Bezerra DP. Challenges and Therapeutic Opportunities of Autophagy in Cancer Therapy. Cancers (Basel) 2020; 12:cancers12113461. [PMID: 33233671 PMCID: PMC7699739 DOI: 10.3390/cancers12113461] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Autophagy is a physiological process characterized by the degradation of the cell components through lysosomes due to stimuli/stress. In this study, we review the challenges and therapeutic opportunities that autophagy presents in the treatment of cancer. We discussed the results of several studies that evaluated autophagy as a therapeutic strategy in cancer, both through the modulation of therapeutic resistance and the death of cancer cells. Moreover, we discussed the role of autophagy in the biology of cancer stem cells and the inhibition of this process as a strategy to overcome resistance and progression of cancer stem cells. Abstract Autophagy is a physiological cellular process that is crucial for development and can occurs in response to nutrient deprivation or metabolic disorders. Interestingly, autophagy plays a dual role in cancer cells—while in some situations, it has a cytoprotective effect that causes chemotherapy resistance, in others, it has a cytotoxic effect in which some compounds induce autophagy-mediated cell death. In this review, we summarize strategies aimed at autophagy for the treatment of cancer, including studies of drugs that can modulate autophagy-mediated resistance, and/or drugs that cause autophagy-mediated cancer cell death. In addition, the role of autophagy in the biology of cancer stem cells has also been discussed.
Collapse
|
20
|
Tong CWS, Wu MMX, Yan VW, Cho WCS, To KKW. Repurposing loperamide to overcome gefitinib resistance by triggering apoptosis independent of autophagy induction in KRAS mutant NSCLC cells. Cancer Treat Res Commun 2020; 25:100229. [PMID: 33152554 DOI: 10.1016/j.ctarc.2020.100229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/17/2020] [Accepted: 10/23/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND Gefitinib is an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) approved for first-line treatment of non-small cell lung cancer (NSCLC) with sensitizing EGFR mutations. However, NSCLC patients bearing mutant KRAS are inherently unresponsive to gefitinib. Defective autophagy was proposed to mediate resistance to EGFR-TKIs. In this study, the reversal of primary resistance to gefitinib in NSCLC by putative autophagy inducers was investigated. MATERIALS AND METHODS A few putative autophagy inducers were investigated in NSCLC cells harboring KRAS or EGFR mutations. Quantitative real-time PCR and Western blot analysis were used to evaluate expression of autophagy-related genes and proteins. Sulforhodamine B assay was used to evaluate cytotoxicity of drug combinations. Flow cytometric asssays were used to study apoptotic and cell cycle effects. RESULTS The antidiarrheal agent loperamide was identified as an autophagy inducer. Loperamide promoted the formation of autophagosomes and it potentiated the cytotoxic effect of gefitinib specifically in NSCLC cells bearing mutant KRAS and wild-type EGFR. Gefitinib-loperamide combination enhanced apoptosis and G1 cell cycle arrest, both of which could not be reversed by pharmacological autophagy inhibitor (3-methyladenine). Moreover, synergistic anticancer effect of gefitinib-loperamide combination was observed in both autophagy-proficient (Atg5-wild type) and -deficient (Atg5-knockout) mouse embryonic fibroblasts. Loperamide overcome gefitinib resistance in NSCLC harboring mutant KRAS and wild-type EGFR through increased apoptosis but independent of autophagy induction. CONCLUSION Loperamide could be repurposed to overcome primary resistance to gefitinib in KRAS-mutation bearing NSCLC as it also helps relieve the common side effect of diarrhea caused by EGFR-TKIs.
Collapse
Affiliation(s)
- Christy W S Tong
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Mia M X Wu
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Vivi W Yan
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
21
|
Ashrafizadeh M, Najafi M, Makvandi P, Zarrabi A, Farkhondeh T, Samarghandian S. Versatile role of curcumin and its derivatives in lung cancer therapy. J Cell Physiol 2020; 235:9241-9268. [PMID: 32519340 DOI: 10.1002/jcp.29819] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/24/2020] [Accepted: 05/12/2020] [Indexed: 12/24/2022]
Abstract
Lung cancer is a main cause of death all over the world with a high incidence rate. Metastasis into neighboring and distant tissues as well as resistance of cancer cells to chemotherapy demand novel strategies in lung cancer therapy. Curcumin is a naturally occurring nutraceutical compound derived from Curcuma longa (turmeric) that has great pharmacological effects, such as anti-inflammatory, neuroprotective, and antidiabetic. The excellent antitumor activity of curcumin has led to its extensive application in the treatment of various cancers. In the present review, we describe the antitumor activity of curcumin against lung cancer. Curcumin affects different molecular pathways such as vascular endothelial growth factors, nuclear factor-κB (NF-κB), mammalian target of rapamycin, PI3/Akt, microRNAs, and long noncoding RNAs in treatment of lung cancer. Curcumin also can induce autophagy, apoptosis, and cell cycle arrest to reduce the viability and proliferation of lung cancer cells. Notably, curcumin supplementation sensitizes cancer cells to chemotherapy and enhances chemotherapy-mediated apoptosis. Curcumin can elevate the efficacy of radiotherapy in lung cancer therapy by targeting various signaling pathways, such as epidermal growth factor receptor and NF-κB. Curcumin-loaded nanocarriers enhance the bioavailability, cellular uptake, and antitumor activity of curcumin. The aforementioned effects are comprehensively discussed in the current review to further direct studies for applying curcumin in lung cancer therapy.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (CNR), Naples, Italy
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, Turkey
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
22
|
Eisenberg L, Eisenberg-Bord M, Eisenberg-Lerner A, Sagi-Eisenberg R. Metabolic alterations in the tumor microenvironment and their role in oncogenesis. Cancer Lett 2020; 484:65-71. [PMID: 32387442 DOI: 10.1016/j.canlet.2020.04.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/30/2020] [Accepted: 04/11/2020] [Indexed: 12/19/2022]
Abstract
Metabolic reprogramming is a characteristic feature of both cancer cells and their neighbouring cells in the tumor microenvironment (TME). The latter include stroma fibroblasts and adipocytes, that respectively differentiate to become cancer associated fibroblasts (CAFs) and cancer associated adipocytes (CAAs), and infiltrated immune cells, that collaborate with the stromal cells to provide the tumor a pro-tumorigenic niche. Here we discuss the association between the reprogramming of glucose metabolism in the TME and oncogenic signaling and its reflection in the non-canonical functions of metabolic enzymes. We also discuss the non-canonical actions of oncometabolites and the contribution to oncogenesis of external metabolites that accumulate in the TME as result of crosstalk between the tumor and the TME. Special emphasis is given in this regard to lysophosphatidic acid (LPA) and adenosine, two powerful metabolites, the concentrations of which rise in the TME due to altered metabolism of the tumor and its surrounding cells, allowing their action as external signals.
Collapse
Affiliation(s)
- Lihie Eisenberg
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Michal Eisenberg-Bord
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | - Ronit Sagi-Eisenberg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
23
|
Yu JJ, Zhou DD, Cui B, Zhang C, Tan FW, Chang S, Li K, Lv XX, Zhang XW, Shang S, Xiang YJ, Chen F, Yu JM, Liu SS, Wang F, Hu ZW, Hua F. Disruption of the EGFR-SQSTM1 interaction by a stapled peptide suppresses lung cancer via activating autophagy and inhibiting EGFR signaling. Cancer Lett 2020; 474:23-35. [PMID: 31931029 DOI: 10.1016/j.canlet.2020.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/22/2019] [Accepted: 01/06/2020] [Indexed: 12/17/2022]
Abstract
Despite the success of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in the treatment of non-small cell lung cancer (NSCLC) harboring EGFR-activating mutations, intrinsic or acquired resistance remains the major obstacle to long-term disease remission. Defective autophagy has been reported as an EGFR-TKI resistance mechanism. However, how EGFR regulate autophagic flux are still not fully understood. Here we found that EGFR-stimulated phosphorylation of SQSTM1 at tyrosine 433 induces dimerization of its UBA domain, which disturbs the sequestration function of SQSTM1 and causes autophagic flux blocking. SAH-EJ2, a staple optimized EGFR-derived peptide, showed enhanced in vitro and in vivo antitumor activity against NSCLC than the prototype regardless of EGFR mutation status. Mechanistically, SAH-EJ2 disrupts the EGFR-SQSTM1 interaction and protects against EGFR-induced SQSTM1 phosphorylation, which hinders the dimerization of the SQSTM1 UBA domains and restores SQSTM1 cargo function. Moreover, SAH-EJ2 suppresses EGFR activity by blocking its dimerization and reducing its protein stability, which reciprocally activates the core autophagy machinery. Our observations reveal that disturbing the EGFR-SQSTM1 interaction by SAH-EJ2 confers a potential strategy in the treatment of NSCLC through suppressing EGFR signalling and activating autophagy simultaneously.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis
- Autophagy
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Proliferation
- Drug Resistance, Neoplasm
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Mutation
- Peptide Fragments/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Protein Multimerization
- Sequestosome-1 Protein/antagonists & inhibitors
- Sequestosome-1 Protein/metabolism
- Signal Transduction
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Jiao-Jiao Yu
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Dan-Dan Zhou
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Bing Cui
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Cheng Zhang
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Feng-Wei Tan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Shan Chang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, 213000, PR China
| | - Ke Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Xiao-Xi Lv
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Xiao-Wei Zhang
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Shuang Shang
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Yu-Jin Xiang
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Fei Chen
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Jin-Mei Yu
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Shan-Shan Liu
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Feng Wang
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Zhuo-Wei Hu
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China.
| | - Fang Hua
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China.
| |
Collapse
|
24
|
Piergies N, Oćwieja M, Paluszkiewicz C, Kwiatek WM. Spectroscopic insights into the effect of pH, temperature, and stabilizer on erlotinib adsorption behavior onto Ag nanosurface. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117737. [PMID: 31757706 DOI: 10.1016/j.saa.2019.117737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
In this study, surface - enhanced Raman spectroscopy (SERS) was applied at the first time for estimation of how pH, temperature, and nanoparticle (NP) stabilizer affect an adsorption behavior of erlotinib (drug approved in a non-small cell lung cancer therapy) onto citrate-stabilized silver nanoparticles (AgNPs). Novel approach to improve cancer therapy assumes application of NPs as an efficient drug delivery system. This strategy requires designing stable drug/nanocarrier conjugates that can effectively interact in the target site. It is also important to perform deeply characterization of a drug orientation on the potential carrier surface and estimation how stable the appeared interaction is. Performed analysis, indicates that pH, temperature, presence of NP stabilizers, and time of incubation have an influence on the occurring adsorption geometry of the drug. However, the observed erlotinib/AgNP interaction remains stable regardless of the applied conditions. These considerations were supported by insightful physicochemical characteristics of the AgNPs and the erlotinib/AgNP conjugates by conducting transmission electron microscopy (TEM) imaging, determination of colloid stability conducted with the use of dynamic light scattering technique (DLS) and measurements of electrophoretic mobility. Such complex approach allows a better understanding of the stability of the erlotinib/AgNP conjugates and provides information how the investigated interaction is affected by the induced perturbations.
Collapse
Affiliation(s)
- Natalia Piergies
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342, Krakow, Poland.
| | - Magdalena Oćwieja
- Jerzy Haber Institute of Catalysis and Surface Chemisty, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | | | - Wojciech M Kwiatek
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342, Krakow, Poland
| |
Collapse
|
25
|
Wu M, Zhang P. EGFR-mediated autophagy in tumourigenesis and therapeutic resistance. Cancer Lett 2020; 469:207-216. [DOI: 10.1016/j.canlet.2019.10.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022]
|
26
|
Tavakol S, Ashrafizadeh M, Deng S, Azarian M, Abdoli A, Motavaf M, Poormoghadam D, Khanbabaei H, Afshar EG, Mandegary A, Pardakhty A, Yap CT, Mohammadinejad R, Kumar AP. Autophagy Modulators: Mechanistic Aspects and Drug Delivery Systems. Biomolecules 2019; 9:E530. [PMID: 31557936 PMCID: PMC6843293 DOI: 10.3390/biom9100530] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/14/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
Autophagy modulation is considered to be a promising programmed cell death mechanism to prevent and cure a great number of disorders and diseases. The crucial step in designing an effective therapeutic approach is to understand the correct and accurate causes of diseases and to understand whether autophagy plays a cytoprotective or cytotoxic/cytostatic role in the progression and prevention of disease. This knowledge will help scientists find approaches to manipulate tumor and pathologic cells in order to enhance cellular sensitivity to therapeutics and treat them. Although some conventional therapeutics suffer from poor solubility, bioavailability and controlled release mechanisms, it appears that novel nanoplatforms overcome these obstacles and have led to the design of a theranostic-controlled drug release system with high solubility and active targeting and stimuli-responsive potentials. In this review, we discuss autophagy modulators-related signaling pathways and some of the drug delivery strategies that have been applied to the field of therapeutic application of autophagy modulators. Moreover, we describe how therapeutics will target various steps of the autophagic machinery. Furthermore, nano drug delivery platforms for autophagy targeting and co-delivery of autophagy modulators with chemotherapeutics/siRNA, are also discussed.
Collapse
Affiliation(s)
- Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Milad Ashrafizadeh
- Department of basic science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Shuo Deng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Maryam Azarian
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autónoma de Barcelona, Barcelona, Spain.
| | - Asghar Abdoli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| | - Mahsa Motavaf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Delaram Poormoghadam
- Department of Medical Nanotechnology, Faculty of Advanced Sciences & Technology, Pharmaceutical Sciences Branch, Islamic Azad University, (IAUPS), Tehran, Iran.
| | - Hashem Khanbabaei
- Medical Physics Department, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Elham Ghasemipour Afshar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Ali Mandegary
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Abbas Pardakhty
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Celestial T Yap
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.
| |
Collapse
|
27
|
Meng L, Liu S, Ding P, Chang S, Sang M. Circular RNA ciRS-7 inhibits autophagy of ESCC cells by functioning as miR-1299 sponge to target EGFR signaling. J Cell Biochem 2019; 121:1039-1049. [PMID: 31490018 DOI: 10.1002/jcb.29339] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/05/2019] [Indexed: 01/01/2023]
Abstract
Autophagy is a kind of intracellular degradation pathway which could be regulated by many noncoding RNAs. ciRS-7, also called CDR1as, is a circular RNA that is relatively well studied at present. In our recent study, we have found that the expression of ciRS-7 is abnormally increased in the esophageal squamous cell carcinoma (ESCC), and may function as an oncogene to accelerate ESCC progression through sponging miR-876-5p. Meanwhile, another study showed that ciRS-7 is highly expressed in the triple-negative breast cancer (TNBC) and may function as a competing endogenous RNA of miR-1299 to maintain the high migration and invasive capacity of TNBC cells. Of interest, in the present work, we observed that ciRS-7 could inhibit starvation or rapamycin-induced autophagy of ESCC cells and miR-1299 promotes starvation or rapamycin-induced autophagy of ESCC cells. Mechanically, miR-1299 could directly bind to the 3'-untranslated region of epidermal growth factor receptor (EGFR) and then affects its downstream Akt-mTOR pathway in ESCC cells. Consistent with our past findings, ciRS-7 could also sponge miR-1299 in ESCC cells. Taken together, this study has shed light on that circular RNA ciRS-7 inhibits autophagy of ESCC cells by functioning as miR-1299 sponge to target EGFR signaling.
Collapse
Affiliation(s)
- Lingjiao Meng
- Research Center and Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Sihua Liu
- Research Center and Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Pingan Ding
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Sheng Chang
- Research Center and Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Meixiang Sang
- Research Center and Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
28
|
Chen P, Huang HP, Wang Y, Jin J, Long WG, Chen K, Zhao XH, Chen CG, Li J. Curcumin overcome primary gefitinib resistance in non-small-cell lung cancer cells through inducing autophagy-related cell death. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:254. [PMID: 31196210 PMCID: PMC6567416 DOI: 10.1186/s13046-019-1234-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 05/15/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are being wildly used as target therapy in non-small-cell lung cancer (NSCLC). However, NSCLC patients with wild-type EGFR and KRAS mutation are primary resistant to EGFR-TKIs such as gefitinib. Curcumin has been known as a potential therapeutic agent for several major human cancers. In this study, we investigated the effect of curcumin on the reversal of gefitinib resistance in NSCLC cells as well as their molecular bases. METHODS H157 (wild-type EGFR and KARS mutation) and H1299 (wild-type EGFR and HRAS mutation) cells were treated with gefitinib or curcumin alone, or the two combination, and then cell viability, EGFR activity, expressions of Sp1 and Sp1-dependent proteins and receptor tyrosine kinases, markers of autophagy and apoptosis were examined by using CCK-8, colony formation, immunoblot, quantitative PCR, immunofluoscence, and flow cytometry assays. Also xenograft experiments were conduced to test the synergism of curcumin to gefitinib. RESULTS Our results showed that curcumin significantly enhanced inhibitory effect of gefitinib on primary gefitinib-resistant NSCLC cell lines H157 and H1299. Combination treatment with curcumin and gefitinib markedly downregulated EGFR activity through suppressing Sp1 and blocking interaction of Sp1 and HADC1, and markedly suppressed receptor tyrosine kinases as well as ERK/MEK and AKT/S6K pathways in the resistant NSCLC cells. Meanwhile, combination treatment of curcumin and gefitinib caused dramatic autophagy induction, autophagic cell death and autophagy-mediated apoptosis, compared to curcumin or gefitinib treatment alone, as evidenced by the findings that curcumin and gefitinib combination treatment-produced synergistic growth inhibition and apoptosis activation can be reversed by pharmacological autophagy inhibitors (Baf A1 or 3-MA) or knockdown of Beclin-1 or ATG7, also can be partially returned by pan-caspase inhibitor (Z-VAD-FMK) in H157 and H1299 cells. Xenograft experiments in vivo yielded similar results. CONCLUSIONS These data indicate that the synergism of curcumin on gefitinib was autophagy dependent. Curcumin can be used as a sensitizer to enhance the efficacy of EGFR-TKIs and overcome the EGFR-TKI resistance in NSCLC patients with wild-type EGFR and/or KRAS mutation.
Collapse
Affiliation(s)
- Ping Chen
- grid.452247.2Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjing, 212001 China
| | - Han-Peng Huang
- grid.452247.2Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjing, 212001 China
| | - Yi Wang
- grid.452247.2Center of Medical Experimental, Affiliated Hospital of Jiangsu University, Zhenjing, 212001 China
| | - Jun Jin
- grid.452247.2Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjing, 212001 China
| | - Wei-Guo Long
- grid.452247.2Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjing, 212001 China
| | - Kan Chen
- grid.452247.2Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjing, 212001 China
| | - Xiao-Hui Zhao
- grid.452247.2Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjing, 212001 China
| | - Chen-Guo Chen
- grid.452247.2Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjing, 212001 China
| | - Jian Li
- grid.452247.2Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjing, 212001 China
| |
Collapse
|
29
|
Autophagy as a molecular target for cancer treatment. Eur J Pharm Sci 2019; 134:116-137. [PMID: 30981885 DOI: 10.1016/j.ejps.2019.04.011] [Citation(s) in RCA: 254] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 12/22/2022]
Abstract
Autophagy is an evolutionarily conserved catabolic mechanism, by which eukaryotic cells recycle or degrades internal constituents through membrane-trafficking pathway. Thus, autophagy provides the cells with a sustainable source of biomolecules and energy for the maintenance of homeostasis under stressful conditions such as tumor microenvironment. Recent findings revealed a close relationship between autophagy and malignant transformation. However, due to the complex dual role of autophagy in tumor survival or cell death, efforts to develop efficient treatment strategies targeting the autophagy/cancer relation have largely been unsuccessful. Here we review the two-faced role of autophagy in cancer as a tumor suppressor or as a pro-oncogenic mechanism. In this sense, we also review the shared regulatory pathways that play a role in autophagy and malignant transformation. Finally, anti-cancer therapeutic agents used as either inhibitors or inducers of autophagy have been discussed.
Collapse
|
30
|
Wang Q, Shen B, Qin X, Liu S, Feng J. Akt/mTOR and AMPK signaling pathways are responsible for liver X receptor agonist GW3965-enhanced gefitinib sensitivity in non-small cell lung cancer cell lines. Transl Cancer Res 2019; 8:66-76. [PMID: 35116735 PMCID: PMC8797756 DOI: 10.21037/tcr.2018.12.34] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/14/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND This study was to systemically analyze the mechanism of LXR ligand GW3965-induced sensitivity to EGFR-TKI in EGFR-TKI-resistant non-small cell lung cancer (NSCLC) cell lines. METHODS Gefitinib-resistant PC9 cell line (EGFR exon 19 deletion) was treated with single and combined treatment with GW3965 and gefitinib. Cell viability, apoptosis and autophagy were detected using MTT, flow cytometric analysis and immunofluorescent analysis, respectively. Autophagy-related signaling pathways were detected using Western blot analysis. RESULTS Inhibited cell viability by single and combined treatment with gefitinib and GW3965 were observed. Combined treatment with gefitinib and GW3965 increased LC3 II/I ratio and Beclin 1 expression. Synergistic effect of gefitinib and GW3965 on apoptosis and autophagosome accumulation as well as on the inhibition of Akt/mTOR signaling and activation of AMP-activated protein kinase (AMPK) was observed in gefitinib-resistant PC9 cells. AMPK expression showed similar profile with apoptosis and autophagy of PC9 cells. CONCLUSIONS We confirmed that GW3965 and gefitinib showed synergistic effect on Akt/mTOR inhibition, apoptosis and autophagy of lung cancer cells. Gefitinib sensitivity in PC9 cell line might be mediated by Akt/mTOR, AMPK and JNK signaling pathways.
Collapse
Affiliation(s)
- Qingbo Wang
- The Fourth Clinical School of Nanjing Medical University, Nanjing 210029, China
| | - Bo Shen
- Department of Chemotherapy, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing 210009, China
| | - Xiaobing Qin
- The Fourth Clinical School of Nanjing Medical University, Nanjing 210029, China
| | - Siwen Liu
- Department of Chemotherapy, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing 210009, China
| | - Jifeng Feng
- Department of Chemotherapy, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing 210009, China
| |
Collapse
|
31
|
Zhang Y, Whaley-Connell AT, Sowers JR, Ren J. Autophagy as an emerging target in cardiorenal metabolic disease: From pathophysiology to management. Pharmacol Ther 2018; 191:1-22. [PMID: 29909238 PMCID: PMC6195437 DOI: 10.1016/j.pharmthera.2018.06.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/05/2018] [Indexed: 12/16/2022]
Abstract
Although advances in medical technology and health care have improved the early diagnosis and management for cardiorenal metabolic disorders, the prevalence of obesity, insulin resistance, diabetes, hypertension, dyslipidemia, and kidney disease remains high. Findings from numerous population-based studies, clinical trials, and experimental evidence have consolidated a number of theories for the pathogenesis of cardiorenal metabolic anomalies including resistance to the metabolic action of insulin, abnormal glucose and lipid metabolism, oxidative and nitrosative stress, endoplasmic reticulum (ER) stress, apoptosis, mitochondrial damage, and inflammation. Accumulating evidence has recently suggested a pivotal role for proteotoxicity, the unfavorable effects of poor protein quality control, in the pathophysiology of metabolic dysregulation and related cardiovascular complications. The ubiquitin-proteasome system (UPS) and autophagy-lysosomal pathways, two major although distinct cellular clearance machineries, govern protein quality control by degradation and clearance of long-lived or damaged proteins and organelles. Ample evidence has depicted an important role for protein quality control, particularly autophagy, in the maintenance of metabolic homeostasis. To this end, autophagy offers promising targets for novel strategies to prevent and treat cardiorenal metabolic diseases. Targeting autophagy using pharmacological or natural agents exhibits exciting new strategies for the growing problem of cardiorenal metabolic disorders.
Collapse
Affiliation(s)
- Yingmei Zhang
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA.
| | - Adam T Whaley-Connell
- Research Service, Harry S Truman Memorial Veterans' Hospital, University of Missouri-Columbia School of Medicine, Columbia, MO, USA; Diabetes and Cardiovascular Center, Department of Medicine, University of Missouri-Columbia School of Medicine, Columbia, MO, USA
| | - James R Sowers
- Research Service, Harry S Truman Memorial Veterans' Hospital, University of Missouri-Columbia School of Medicine, Columbia, MO, USA; Diabetes and Cardiovascular Center, Department of Medicine, University of Missouri-Columbia School of Medicine, Columbia, MO, USA
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA.
| |
Collapse
|
32
|
Dai CH, Shu Y, Chen P, Wu JN, Zhu LH, Yuan RX, Long WG, Zhu YM, Li J. YM155 sensitizes non-small cell lung cancer cells to EGFR-tyrosine kinase inhibitors through the mechanism of autophagy induction. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3786-3798. [PMID: 30315932 DOI: 10.1016/j.bbadis.2018.10.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/13/2018] [Accepted: 10/08/2018] [Indexed: 12/14/2022]
Abstract
Resistance to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs), such as erlotinib and gefitinib, is a major clinical problem in the treatment of patients with non-small cell lung cancer (NSCLC). YM155 is a survivin small molecule inhibitor and has been demonstrated to induce cancer cell apoptosis and autophagy. EGFR-TKIs have been known to induce cancer cell autophagy. In this study, we showed that YM155 markedly enhanced the sensitivity of erlotinib to EGFR-TKI resistant NSCLC cell lines H1650 (EGFR exon 19 deletion and PTEN loss) and A549 (EGFR wild type and KRAS mutation) through inducing autophagy-dependent apoptosis and autophagic cell death. The effects of YM155 combined with erlotinib on apoptosis and autophagy inductions were more obvious than those of YM155 in combination with survivin knockdown by siRNA transfection, suggesting that YM155 induced autophagy and apoptosis in the NSCLC cells partially depend on survivin downregulation. Meanwhile, we found that the AKT/mTOR pathway is involved in modulation of survivin downregulation and autophagy induction caused by YM155. In addition, YM155 can induce DNA damage in H1650 and A549 cell lines. Moreover, combining erlotinib further augmented DNA damage by YM155, which were retarded by autophagy inhibitor 3MA, or knockdown of autophagy-related protein Beclin 1, revealing that YM155 induced DNA damage is autophagy-dependent. Similar results were also observed in vivo xenograft experiments. Therefore, combination of YM155 and erlotinib offers a promising therapeutic strategy in NSCLC with EGFR-TKI resistant phenotype.
Collapse
Affiliation(s)
- Chun-Hua Dai
- Department of Radiation Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yang Shu
- Center of Medical Experiment, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ping Chen
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jian-Nong Wu
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Li-Haun Zhu
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Rong-Xia Yuan
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wei-Guo Long
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yu-Min Zhu
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jian Li
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
33
|
Sooro MA, Zhang N, Zhang P. Targeting EGFR-mediated autophagy as a potential strategy for cancer therapy. Int J Cancer 2018; 143:2116-2125. [DOI: 10.1002/ijc.31398] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/05/2018] [Accepted: 03/12/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Mopa Alina Sooro
- Jiangsu Key Laboratory of New Drug Screening; China Pharmaceutical University; Nanjing 210009 China
| | - Ni Zhang
- Jiangsu Key Laboratory of New Drug Screening; China Pharmaceutical University; Nanjing 210009 China
| | - Pinghu Zhang
- Medical College, Institute of Translational Medicine, Yangzhou University; Yangzhou 225001 China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases; Medical College, Yangzhou University; Yangzhou 225001 China
| |
Collapse
|
34
|
Ryu JW, Choe SS, Ryu SH, Park EY, Lee BW, Kim TK, Ha CH, Lee SW. Paradoxical induction of growth arrest and apoptosis by EGF via the up-regulation of PTEN by activating Redox factor-1/Egr-1 in human lung cancer cells. Oncotarget 2018; 8:4181-4195. [PMID: 27935858 PMCID: PMC5354822 DOI: 10.18632/oncotarget.13809] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/24/2016] [Indexed: 12/12/2022] Open
Abstract
Epidermal growth factor (EGF) signaling promotes cell proliferation and survival in several types of cancer. Here, however, we showed that EGF inhibits proliferation and promotes programmed cell death in non-small cell lung cancer (NSCLC) cells. In A549 cells, EGF increased redox factor-1 (Ref-1) expression and the association of Ref-1 with zinc finger-containing transcriptional regulator (EGR1) via activation of p22phox, RAC1, and an NADPH oxidase subunit. EGF increased p22phox and RAC1 expression through activation of purinergic receptors (P2Y). Elevated Ref-1/EGR1 levels increased phosphatase and tensin homolog (PTEN) levels, leading to inhibition of the Akt pathway. EGF-induced PTEN upregulation increased apoptosis and autophagy-induced damage in A549 cells, whereas Ref-1 knockdown blocked EGF-induced PTEN upregulation in an NADPH oxidase p22phox subunit-independent manner. In addition, p22phox knockdown restored EGF-induced effects, implying that changes in P2Y activity caused by EGF, which activates NADPH oxidase via RAC1, influenced Ref-1-mediated redox regulation. Finally, EGF similarly attenuated cell proliferation and promoted autophagy and apoptosis in vivo in a xenograft model using A549 cells. These findings reveal that EGF-induced redox signaling is linked to Ref-1-induced death in NSCLC cells.
Collapse
Affiliation(s)
- Je-Won Ryu
- Department of Radiation Oncology, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung Sik Choe
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, National Creative Research Institutive Center for Adipose Tissue Remodeling, Seoul National University, Seoul, Republic of Korea
| | - Seung-Hee Ryu
- Department of Radiation Oncology, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eun-Young Park
- Department of Radiation Oncology, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Byoung Wook Lee
- Asan Institute for Life Science, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Tae Keun Kim
- Department of Life Science, College of Natural Science, Hallym University, Kyeongki Province, Republic of Korea
| | - Chang Hoon Ha
- Asan Institute for Life Science, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang-Wook Lee
- Department of Radiation Oncology, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
35
|
To KKW, Wu WKK, Loong HHF. PPARgamma agonists sensitize PTEN-deficient resistant lung cancer cells to EGFR tyrosine kinase inhibitors by inducing autophagy. Eur J Pharmacol 2018; 823:19-26. [PMID: 29378193 DOI: 10.1016/j.ejphar.2018.01.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/09/2018] [Accepted: 01/23/2018] [Indexed: 01/25/2023]
Abstract
We aimed to develop novel drug combination strategy to overcome drug resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) in the treatment of non-small cell lung cancer (NSCLC). Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor, which upon activation upregulates phosphatase and tensin homolog (PTEN) to inhibit cell signaling downstream of PI3K to mediate apoptosis. To this end, PTEN loss is a known mechanism contributing to resistance to EGFR TKIs. Therefore, PPARγ agonists are hypothesized to overcome EGFR TKI resistance. Using human NSCLC cell models with PTEN deficiency, the potentiation of EGFR TKI anticancer activity by PPARγ agonists was evaluated. PPARγ agonists were found to upregulate PTEN, subsequently inhibiting the PI3K-Akt signaling pathway, and thus enhancing the anticancer activity of gefitinib (a first generation EGFR TKI). Chemical and genetic inhibition of PPARγ were shown to prevent this potentiation of anticancer activity by PPARγ agonists, thus confirming the crucial role played by PPARγ activation. Interestingly, the tested PPARγ agonists were also found to induce autophagy, as evidenced by the increased expression of an autophagy marker LC3-II and the autophagic degradation of p62/SQSTM1. PPARγ agonists-induced autophagic cell death was believed to contribute to the circumvention of resistance in PTEN-deficient cells because the genetic silencing of ATG5 (an autophagy mediator) was found to eliminate the drug potentiation effect by the PPARγ agonists. Our findings thus provide the basis for the rational and personalized use of PPARγ agonists in combination with EGFR TKIs in lung cancer patients.
Collapse
Affiliation(s)
- Kenneth K W To
- School of Pharmacy, Faculty of Medicine, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Room 801N, Area 39, Shatin, New Territories, Hong Kong, China.
| | - William K K Wu
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Herbert H F Loong
- Department of Clinical Oncology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
36
|
Zhang Y, Luo Q, Zheng W, Wang Z, Lin Y, Zhang E, Lü S, Xiang J, Zhao Y, Wang F. Luminescent cyclometallated platinum(ii) complexes: highly promising EGFR/DNA probes and dual-targeting anticancer agents. Inorg Chem Front 2018. [DOI: 10.1039/c7qi00346c] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cyclometallated platinum complexes bearing 4-anilinoquinazolines exhibit high potential as luminescent probes for EGFR/DNA in living cells and dual-targeting anticancer agents.
Collapse
|
37
|
Gao H, Yin Z, Cao Z, Zhang L. Developing an Agent-Based Drug Model to Investigate the Synergistic Effects of Drug Combinations. Molecules 2017; 22:molecules22122209. [PMID: 29240712 PMCID: PMC6149923 DOI: 10.3390/molecules22122209] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 12/20/2022] Open
Abstract
The growth and survival of cancer cells are greatly related to their surrounding microenvironment. To understand the regulation under the impact of anti-cancer drugs and their synergistic effects, we have developed a multiscale agent-based model that can investigate the synergistic effects of drug combinations with three innovations. First, it explores the synergistic effects of drug combinations in a huge dose combinational space at the cell line level. Second, it can simulate the interaction between cells and their microenvironment. Third, it employs both local and global optimization algorithms to train the key parameters and validate the predictive power of the model by using experimental data. The research results indicate that our multicellular system can not only describe the interactions between the microenvironment and cells in detail, but also predict the synergistic effects of drug combinations.
Collapse
Affiliation(s)
- Hongjie Gao
- College of Computer and Information Science, Southwest University, Chongqing 400715, China.
| | - Zuojing Yin
- School of Life and Technology, Tongji University, Shanghai 200092, China.
| | - Zhiwei Cao
- School of Life and Technology, Tongji University, Shanghai 200092, China.
| | - Le Zhang
- College of Computer and Information Science, Southwest University, Chongqing 400715, China.
- College of Computer Science, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
38
|
Yuan H, Li ZM, Shao J, Ji WX, Xia W, Lu S. FGF2/FGFR1 regulates autophagy in FGFR1-amplified non-small cell lung cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:72. [PMID: 28558758 PMCID: PMC5450166 DOI: 10.1186/s13046-017-0534-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/25/2017] [Indexed: 12/03/2022]
Abstract
Background Autophagy is a conserved catabolic process to degrade cellular organelles. The role of autophagy in cancer development is complex. Amplification of fibroblast growth factor receptor 1 (FGFR1) is one of the most frequent targets in lung squamous cell carcinoma (SQCC). Whether fibroblast growth factor 2 (FGF2)/FGFR1 contributes to the regulation of autophagy remains elusive. Methods Autophagic activity was evaluated by immunoblotting for microtubule-associated protein 1 light chain 3 (LC3), formation of GFP-LC3 puncta, and monodansylcadaverine (MDC) staining. The effect of autophagy inhibition on cell survival was assessed by cell viability and apoptosis assays. Results We elucidated that FGFR1 activation suppressed autophagy. Pharmacological or genetic inhibition of FGFR1 by AZD4547 or FGFR1 short hairpin RNA (shRNA) induced autophagy in FGFR1-amplified non-small cell lung cancer (NSCLC) cells, H1581 and H520 cells. Mechanistic study revealed that the induction of autophagy by FGFR1 inhibition was mediated through inhibiting the ERK/MAPK pathway not by AKT pathway, accompanied by upregulation of beclin-1. Furthermore, activation of ERK/MAPK by transfection with a constitutively active MEK1 (caMEK1) construct or knockdown of beclin-1 by RNAi could attenuate autophagy induced by FGFR1 inhibition. Beclin-1 expression was inversely correlated with MEK1 phosphorylation. Inhibition of autophagy by beclin-1 silencing could enhance apoptosis after AZD4547 treatment in H1581 and H520 cells. High levels of LC3B mRNA was a marker of poor prognosis in NSCLC patients. Conclusions Simultaneously inhibiting FGFR1 and autophagy could enhance cell death which should be further explored in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0534-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hong Yuan
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Zi-Ming Li
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jiaxiang Shao
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Wen-Xiang Ji
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Weiliang Xia
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
39
|
Liu G, Pei F, Yang F, Li L, Amin AD, Liu S, Buchan JR, Cho WC. Role of Autophagy and Apoptosis in Non-Small-Cell Lung Cancer. Int J Mol Sci 2017; 18:E367. [PMID: 28208579 PMCID: PMC5343902 DOI: 10.3390/ijms18020367] [Citation(s) in RCA: 269] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/22/2017] [Accepted: 02/03/2017] [Indexed: 02/07/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) constitutes 85% of all lung cancers, and is the leading cause of cancer-related death worldwide. The poor prognosis and resistance to both radiation and chemotherapy warrant further investigation into the molecular mechanisms of NSCLC and the development of new, more efficacious therapeutics. The processes of autophagy and apoptosis, which induce degradation of proteins and organelles or cell death upon cellular stress, are crucial in the pathophysiology of NSCLC. The close interplay between autophagy and apoptosis through shared signaling pathways complicates our understanding of how NSCLC pathophysiology is regulated. The apoptotic effect of autophagy is controversial as both inhibitory and stimulatory effects have been reported in NSCLC. In addition, crosstalk of proteins regulating both autophagy and apoptosis exists. Here, we review the recent advances of the relationship between autophagy and apoptosis in NSCLC, aiming to provide few insights into the discovery of novel pathogenic factors and the development of new cancer therapeutics.
Collapse
Affiliation(s)
- Guangbo Liu
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA.
| | - Fen Pei
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA.
| | - Fengqing Yang
- Department of Obstetrics and Gynecology, Dong'e No. 4 People's Hospital, Liaocheng 252200, China.
| | - Lingxiao Li
- Department of Medicine, Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Amit Dipak Amin
- Department of Medicine, Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Songnian Liu
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - J Ross Buchan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China.
| |
Collapse
|
40
|
Zhang Q, Xu K. [Advances in the Research of Autophagy in EGFR-TKI Treatment and Resistance
in Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2016; 19:607-14. [PMID: 27666552 PMCID: PMC5972950 DOI: 10.3779/j.issn.1009-3419.2016.09.09] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
表皮生长因子受体激酶抑制剂(epidermal growth factor receptor-tyrosine kinase inhibitor, EGFR-TKI)是一类针对肿瘤细胞中EGFR的异常活化而开发的肿瘤靶向药物,可以有效抑制带有EGFR敏感突变的肿瘤细胞的生长。然而先天性以及获得性耐药严重制约了该类药物的使用。近些年的研究发现自噬(autophagy),作为一个细胞编码的高度保守的应对压力的存活机制,其与肿瘤的发生发展及抗肿瘤药物的耐药密切相关。EGFR的激活可以通过多条通路调控自噬。EGFR-TKI也可以诱导自噬,且自噬在EGFR-TKI的治疗和产生耐药性的过程中发挥着双刃剑的作用:一方面EGFR-TKI诱导的自噬是肿瘤细胞的一个保护机制,联合使用自噬抑制剂可以增强药物的细胞毒性效果;同时还有研究证明EGFR-TKI诱导的高水平自噬可以在凋亡缺陷的细胞中造成自噬性死亡,这种情况下联合使用自噬诱导剂则可能产生更好的效果。因此,针对不同的情况通过调控自噬以提高EGFR-TKI的治疗效果是一个颇具前景的治疗方案。本文对EGFR-TKI和自噬相关的信号通路进行了阐述,并对自噬在EGFR-TKI类药物对肺癌的治疗和耐药中作用的最新研究进展进行了总结,为设计联合方案提高EGFR-TKI的抑制效果,降低耐药性提供线索。
Collapse
Affiliation(s)
- Qicheng Zhang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ke Xu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
41
|
Saleh T, Cuttino L, Gewirtz DA. Autophagy is not uniformly cytoprotective: a personalized medicine approach for autophagy inhibition as a therapeutic strategy in non-small cell lung cancer. Biochim Biophys Acta Gen Subj 2016; 1860:2130-6. [PMID: 27316314 DOI: 10.1016/j.bbagen.2016.06.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/07/2016] [Accepted: 06/12/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related death worldwide. In addition to surgical resection, which is considered first-line treatment at early stages of the disease, chemotherapy and radiation are widely used when the disease is advanced. Of multiple responses that may occur in the tumor cells in response to cancer therapy, the functional importance of autophagy remains equivocal; this is likely to restrict current efforts to sensitize this malignancy to chemotherapy and/or radiation by pharmacological interference with the autophagic response. SCOPE OF REVIEW In this review, we attempt to summarize the current state of knowledge based on studies that evaluated the function of autophagy in non-small cell lung cancer (NSCLC) cells in response to radiation and the most commonly used chemotherapeutic agents. MAJOR CONCLUSIONS In addition to the expected prosurvival function of autophagy, where autophagy inhibition enhances the response to therapy, autophagy appears also to have a "non-cytoprotective" function, where autophagy blockade does not affect cell viability, clonogenicity or tumor volume in response to therapy. In other cases, autophagy may actually mediate drug action via expression of its cytotoxic function. GENERAL SIGNIFICANCE These observations emphasize the complexity of autophagy function when examined in different tumor cell lines and in response to different chemotherapeutic agents. A more in-depth understanding of the conditions that promote the unique functions of autophagy is required in order to translate preclinical findings of autophagy inhibition to the clinic for the purpose of improving patient response to chemotherapy and radiation.
Collapse
Affiliation(s)
- Tareq Saleh
- Department of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, United States
| | - Laurie Cuttino
- Department of Radiation Oncology, Virginia Commonwealth University, Henrico Doctor's Hospital, 1602 Skipwith Rd, Richmond, VA 23229, United States
| | - David A Gewirtz
- Department of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, United States; Department of Medicine, Massey Cancer Center, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, United States.
| |
Collapse
|
42
|
Lv J, Wang J, Chang S, Liu M, Pang X. The greedy nature of mutant RAS: a boon for drug discovery targeting cancer metabolism? Acta Biochim Biophys Sin (Shanghai) 2016; 48:17-26. [PMID: 26487443 DOI: 10.1093/abbs/gmv102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 07/20/2015] [Indexed: 12/13/2022] Open
Abstract
RAS oncogene mutations are frequently detected in human cancers. Among RAS-mediated tumorigenesis, KRAS-driven cancers are the most frequently diagnosed and resistant to current therapies. Despite more than three decades of intensive efforts, there are still no specific therapies for mutant RAS proteins. While trying to block those well-established downstream pathways, such as the RAF-MAPK pathway and the PI3K-AKT pathway, attentions have been paid to potential effects of RAS on metabolic pathways and the feasibility for targeting these pathways. Recent studies have proved that RAS not only promotes aerobic glycolysis and glutamine metabolism reprograming to provide energy, but it also facilitates branched metabolism pathways, autophagy, and macropinocytosis. These alterations generate building blocks for tumor growth and strengthen antioxidant defense in tumor cells. All of these metabolic changes meet different demands of RAS-driven cancers, making them distinct from normal cells. Indeed, some achievements have been made to inhibit tumor growth through targeting specific metabolism rewiring in preclinical models. Although there is still a long way to elucidate the landscape of altered metabolism, we believe that specific metabolic enzymes or pathways could be therapeutically targeted for selective inhibition of RAS-driven cancers.
Collapse
Affiliation(s)
- Jing Lv
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jieqiong Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Siyu Chang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China Department of Molecular and Cellular Medicine, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Xiufeng Pang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
43
|
Tan X, Thapa N, Sun Y, Anderson RA. A kinase-independent role for EGF receptor in autophagy initiation. Cell 2015; 160:145-60. [PMID: 25594178 DOI: 10.1016/j.cell.2014.12.006] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 09/21/2014] [Accepted: 11/19/2014] [Indexed: 12/30/2022]
Abstract
The epidermal growth factor receptor (EGFR) is upregulated in numerous human cancers. Inhibition of EGFR signaling induces autophagy in tumor cells. Here, we report an unanticipated role for the inactive EGFR in autophagy initiation. Inactive EGFR interacts with the oncoprotein LAPTM4B that is required for the endosomal accumulation of EGFR upon serum starvation. Inactive EGFR and LAPTM4B stabilize each other at endosomes and recruit the exocyst subcomplex containing Sec5. We show that inactive EGFR, LAPTM4B, and the Sec5 subcomplex are required for basal and starvation-induced autophagy. LAPTM4B and Sec5 promote EGFR association with the autophagy inhibitor Rubicon, which in turn disassociates Beclin 1 from Rubicon to initiate autophagy. Thus, the oncoprotein LAPTM4B facilitates the role of inactive EGFR in autophagy initiation. This pathway is positioned to control tumor metabolism and promote tumor cell survival upon serum deprivation or metabolic stress.
Collapse
Affiliation(s)
- Xiaojun Tan
- Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Narendra Thapa
- Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Yue Sun
- Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Richard A Anderson
- Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
44
|
Prioritizing therapeutics for lung cancer: an integrative meta-analysis of cancer gene signatures and chemogenomic data. PLoS Comput Biol 2015; 11:e1004068. [PMID: 25786242 PMCID: PMC4364883 DOI: 10.1371/journal.pcbi.1004068] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 12/02/2014] [Indexed: 01/22/2023] Open
Abstract
Repurposing FDA-approved drugs with the aid of gene signatures of disease can accelerate the development of new therapeutics. A major challenge to developing reliable drug predictions is heterogeneity. Different gene signatures of the same disease or drug treatment often show poor overlap across studies, as a consequence of both biological and technical variability, and this can affect the quality and reproducibility of computational drug predictions. Existing algorithms for signature-based drug repurposing use only individual signatures as input. But for many diseases, there are dozens of signatures in the public domain. Methods that exploit all available transcriptional knowledge on a disease should produce improved drug predictions. Here, we adapt an established meta-analysis framework to address the problem of drug repurposing using an ensemble of disease signatures. Our computational pipeline takes as input a collection of disease signatures, and outputs a list of drugs predicted to consistently reverse pathological gene changes. We apply our method to conduct the largest and most systematic repurposing study on lung cancer transcriptomes, using 21 signatures. We show that scaling up transcriptional knowledge significantly increases the reproducibility of top drug hits, from 44% to 78%. We extensively characterize drug hits in silico, demonstrating that they slow growth significantly in nine lung cancer cell lines from the NCI-60 collection, and identify CALM1 and PLA2G4A as promising drug targets for lung cancer. Our meta-analysis pipeline is general, and applicable to any disease context; it can be applied to improve the results of signature-based drug repurposing by leveraging the large number of disease signatures in the public domain. Computer algorithms that find new uses for known drugs can accelerate the development of new therapies for many diseases, including cancer. One promising strategy is to identify drugs that, at the transcriptional level, reverse the gene expression signature of a disease. A major difficulty with this strategy is variability: different gene expression signatures of the same disease or drug treatment can show poor overlap across studies. Since existing algorithms analyze one signature at a time, this means that the drug candidates they identify may reverse some signatures of a disease but not others. For many diseases, dozens of signatures from different labs are now available in online databases. Combining knowledge across all signatures should lead to better drug predictions. Here, we design a meta-analysis pipeline that takes in a large set of disease signatures and then identifies drugs that consistently reverse deleterious gene changes. We apply our method to find new drug candidates for lung cancer, using 21 signatures. We show that our meta-analysis pipeline increases the reproducibility of top drug hits, and then extensively characterize new lung cancer drug candidates in silico.
Collapse
|
45
|
Kim SY. Cancer metabolism: strategic diversion from targeting cancer drivers to targeting cancer suppliers. Biomol Ther (Seoul) 2015; 23:99-109. [PMID: 25767677 PMCID: PMC4354324 DOI: 10.4062/biomolther.2015.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 02/05/2015] [Accepted: 02/11/2015] [Indexed: 12/14/2022] Open
Abstract
Drug development groups are close to discovering another pot of gold-a therapeutic target-similar to the success of imatinib (Gleevec) in the field of cancer biology. Modern molecular biology has improved cancer therapy through the identification of more pharmaceutically viable targets, and yet major problems and risks associated with late-phase cancer therapy remain. Presently, a growing number of reports have initiated a discussion about the benefits of metabolic regulation in cancers. The Warburg effect, a great discovery approximately 70 years ago, addresses the “universality” of cancer characteristics. For instance, most cancer cells prefer aerobic glycolysis instead of mitochondrial respiration. Recently, cancer metabolism has been explained not only by metabolites but also through modern molecular and chemical biological techniques. Scientists are seeking context-dependent universality among cancer types according to metabolic and enzymatic pathway signatures. This review presents current cancer metabolism studies and discusses future directions in cancer therapy targeting bio-energetics, bio-anabolism, and autophagy, emphasizing the important contribution of cancer metabolism in cancer therapy.
Collapse
Affiliation(s)
- Soo-Youl Kim
- Cancer Cell and Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 410-769, Republic of Korea
| |
Collapse
|
46
|
|
47
|
Rosa R, Monteleone F, Zambrano N, Bianco R. In vitro and in vivo models for analysis of resistance to anticancer molecular therapies. Curr Med Chem 2014; 21:1595-606. [PMID: 23992330 PMCID: PMC4082167 DOI: 10.2174/09298673113209990226] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/14/2013] [Accepted: 07/10/2013] [Indexed: 12/12/2022]
Abstract
The efficacy of classical and molecular therapies in cancer is hampered by the occurrence of primary (intrinsic) and secondary (acquired) refractoriness of tumours to selected therapeutic regimens. Nevertheless, the increased knowledge of the genetic, molecular and metabolic mechanisms underlying cancer results in the generation of a correspondingly increasing number of druggable targets and molecular drugs. Thus, a current challenge in molecular oncology and medicinal chemistry is to cope with the increased need for modelling, both in cellular and animal systems, the genetic assets associated to cancer resistance to drugs. In this review, we summarize the current strategies for generation and analysis of in vitro and in vivo models, which may reveal useful to extract information on the molecular basis of intrinsic and acquired resistance to anticancer molecular agents.
Collapse
Affiliation(s)
| | | | | | - Roberto Bianco
- Dipartimento di Medicina Clinica e Chirurgia and Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via S. Pansini 5, 80131 Napoli, Italy.
| |
Collapse
|
48
|
EGFR inhibitors and autophagy in cancer treatment. Tumour Biol 2014; 35:11701-9. [PMID: 25293518 DOI: 10.1007/s13277-014-2660-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/18/2014] [Indexed: 12/19/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) inhibitor treatment is a strategy for cancer therapy. However, innate and acquired resistance is a major obstacle of the efficacy. Autophagy is a self-digesting process in cells, which is considered to be associated with anti-cancer drug resistance. The activation of EGFR can regulate autophagy through multiple signal pathways. EGFR inhibitors can induce autophagy, but the specific function of the induction of autophagy by EGFR inhibitors remains biphasic. On the one hand, autophagy induced by EGFR inhibitors acts as a cytoprotective response in cancer cells, and autophagy inhibitors can enhance the cytotoxic effects of EGFR inhibitors. On the other hand, a high level of autophagy after treatment of EGFR inhibitors can also result in autophagic cell death lacking features of apoptosis, and the combination of EGFR inhibitors with an autophagy inducer might be beneficial. Thus, autophagy regulation represents a promising approach for improving the efficacy of EGFR inhibitors in the treatment of cancer patients.
Collapse
|
49
|
Fumarola C, Bonelli MA, Petronini PG, Alfieri RR. Targeting PI3K/AKT/mTOR pathway in non small cell lung cancer. Biochem Pharmacol 2014; 90:197-207. [DOI: 10.1016/j.bcp.2014.05.011] [Citation(s) in RCA: 271] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/16/2014] [Accepted: 05/16/2014] [Indexed: 01/08/2023]
|
50
|
Blum R, Kloog Y. Metabolism addiction in pancreatic cancer. Cell Death Dis 2014; 5:e1065. [PMID: 24556680 PMCID: PMC3944253 DOI: 10.1038/cddis.2014.38] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/06/2014] [Accepted: 01/08/2014] [Indexed: 12/16/2022]
Abstract
Pancreatic ductal adenocarcinoma, an aggressively invasive, treatment-resistant malignancy and the fourth leading cause of cancer deaths in the United States, is usually detectable only when already inevitably fatal. Despite advances in genetic screening, mapping and molecular characterization, its pathology remains largely elusive. Renewed research interest in longstanding doctrines of tumor metabolism has led to the emergence of aberrant signaling pathways as critical factors modulating central metabolic networks that fuel pancreatic tumors. Such pathways, including those of Ras signaling, glutamine-regulatory enzymes, lipid metabolism and autophagy, are directly affected by genetic mutations and extreme tumor microenvironments that typify pancreatic tumor cells. Elucidation of these metabolic networks can be expected to yield more potent therapies against this deadly disease.
Collapse
Affiliation(s)
- R Blum
- Department of Pathology and Cancer Institute, Smilow Research Center, New York University School of Medicine, New York, NY, USA
| | - Y Kloog
- Department of Neurobiology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|