1
|
Ma X, Xu J, Wang Y, Fleishman JS, Bing H, Yu B, Li Y, Bo L, Zhang S, Chen ZS, Zhao L. Research progress on gene mutations and drug resistance in leukemia. Drug Resist Updat 2025; 79:101195. [PMID: 39740374 DOI: 10.1016/j.drup.2024.101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/05/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025]
Abstract
Leukemia is a type of blood cancer characterized by the uncontrolled growth of abnormal cells in the bone marrow, which replace normal blood cells and disrupt normal blood cell function. Timely and personalized interventions are crucial for disease management and improving survival rates. However, many patients experience relapse following conventional chemotherapy, and increasing treatment intensity often fails to improve outcomes due to mutated gene-induced drug resistance in leukemia cells. This article analyzes the association of gene mutations and drug resistance in leukemia. It explores genetic abnormalities in leukemia, highlighting recently identified mutations affecting signaling pathways, cell apoptosis, epigenetic regulation, histone modification, and splicing mechanisms. Additionally, the article discusses therapeutic strategies such as molecular targeting of gene mutations, alternative pathway targeting, and immunotherapy in leukemia. These approaches aim to combat specific drug-resistant mutations, providing potential avenues to mitigate leukemia relapse. Future research with these strategies holds promise for advancing leukemia treatment and addressing the challenges of drug-resistant mutations to improve patient outcomes.
Collapse
Affiliation(s)
- Xiangyu Ma
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Jiamin Xu
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
| | - Yanan Wang
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY 11439, USA
| | - Hao Bing
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Boran Yu
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Yanming Li
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Letao Bo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY 11439, USA
| | - Shaolong Zhang
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY 11439, USA.
| | - Libo Zhao
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China; Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
2
|
Sobczyńska-Konefał A, Jasek M, Karabon L, Jaskuła E. Insights into genetic aberrations and signalling pathway interactions in chronic lymphocytic leukemia: from pathogenesis to treatment strategies. Biomark Res 2024; 12:162. [PMID: 39732734 DOI: 10.1186/s40364-024-00710-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/17/2024] [Indexed: 12/30/2024] Open
Abstract
Chronic lymphocytic leukemia (CLL) is prevalent in adults and is characterized by the accumulation of mature B cells in the blood, bone marrow, lymph nodes, and spleens. Recent progress in therapy and the introduction of targeted treatments [inhibitors of Bruton's tyrosine kinase (BTKi) or inhibitor of anti-apoptotic B-cell lymphoma-2 (Bcl-2i) protein (venetoclax)] in place of chemoimmunotherapy have significantly improved the outcomes of patients with CLL. These advancements have shifted the importance of traditional predictive markers, leading to a greater focus on resistance genes and reducing the significance of mutations, such as TP53 and del(17p). Despite the significant progress in CLL treatment, some patients still experience disease relapse. This is due to the substantial heterogeneity of CLL as well as the interconnected genetic resistance mechanisms and pathway adaptive resistance mechanisms to targeted therapies in CLL. Although the knowledge of the pathomechanism of CLL has expanded significantly in recent years, the precise origins of CLL and the interplay between various genetic factors remain incompletely understood, necessitating further research. This review enhances the molecular understanding of CLL by describing how BCR signalling, NF-κB PI3K/AKT, and ROR1 pathways sustain CLL cell survival, proliferation, and resistance to apoptosis. It also presents genetic and pathway-adaptive resistance mechanisms in CLL. Identifying B-cell receptor (BCR) signalling as a pivotal driver of CLL progression, the findings advocate personalized treatment strategies based on molecular profiling, emphasizing the need for further research to unravel the complex interplay between BCR signalling and its associated pathways to improve patient outcomes.
Collapse
Affiliation(s)
- Anna Sobczyńska-Konefał
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl 12, 53-114, Wroclaw, Poland
- Lower Silesian Oncology Hematology and Pulmonology Center, Ludwik Hirszfeld square 12, 53-413, Wroclaw, Poland
| | - Monika Jasek
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl 12, 53-114, Wroclaw, Poland
| | - Lidia Karabon
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl 12, 53-114, Wroclaw, Poland
| | - Emilia Jaskuła
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl 12, 53-114, Wroclaw, Poland.
- Lower Silesian Oncology Hematology and Pulmonology Center, Ludwik Hirszfeld square 12, 53-413, Wroclaw, Poland.
| |
Collapse
|
3
|
Muñoz-Novas C, González-Gascón-y-Marín I, Figueroa I, Sánchez-Paz L, Pérez-Carretero C, Quijada-Álamo M, Rodríguez-Vicente AE, Infante MS, Foncillas MÁ, Landete E, Churruca J, Marín K, Ramos V, Sánchez Salto A, Hernández-Rivas JÁ. Association of Cytogenetics Aberrations and IGHV Mutations with Outcome in Chronic Lymphocytic Leukemia Patients in a Real-World Clinical Setting. Glob Med Genet 2024; 11:59-68. [PMID: 38348157 PMCID: PMC10861322 DOI: 10.1055/s-0044-1779668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
Immunoglobulin heavy chain variable ( IGHV ) region mutations, TP53 mutation, fluorescence in situ hybridization (FISH), and cytogenetic analysis are the most important prognostic biomarkers used in chronic lymphocytic leukemia (CLL) patients in our daily practice. In real-life environment, there are scarce studies that analyze the correlation of these factors with outcome, mainly referred to time to first treatment (TTFT) and overall survival (OS). This study aimed to typify IGHV mutation status, family usage, FISH aberrations, and complex karyotype (CK) and to analyze the prognostic impact in TTFT and OS in retrospective study of 375 CLL patients from a Spanish cohort. We found unmutated CLL (U-CLL) was associated with more aggressive disease, shorter TTFT (48 vs. 133 months, p < 0.0001), and shorter OS (112 vs. 246 months, p < 0.0001) than the mutated CLL. IGHV3 was the most frequently used IGHV family (46%), followed by IGHV1 (30%) and IGHV4 (16%). IGHV5-51 and IGHV1-69 subfamilies were associated with poor prognosis, while IGHV4 and IGHV2 showed the best outcomes. The prevalence of CK was 15% and was significantly associated with U-CLL. In the multivariable analysis, IGHV2 gene usage and del13q were associated with longer TTFT, while VH1-02, +12, del11q, del17p, and U-CLL with shorter TTFT. Moreover, VH1-69 usage, del11q, del17p, and U-CLL were significantly associated with shorter OS. A comprehensive analysis of genetic prognostic factors provides a more precise information on the outcome of CLL patients. In addition to FISH cytogenetic aberrations, IGHV and TP53 mutations, IGHV gene families, and CK information could help clinicians in the decision-making process.
Collapse
Affiliation(s)
| | | | - Iñigo Figueroa
- Departamento de Medicina, Universidad Complutense, Madrid, Spain
| | - Laura Sánchez-Paz
- Servicio de Hematología, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Claudia Pérez-Carretero
- IBSAL, IBMCC, Centro de Investigación del Cáncer, Servicio de Hematología, Hospital Universitario de Salamanca, Universidad de Salamanca-CSIC, Salamanca, Spain
| | - Miguel Quijada-Álamo
- IBSAL, IBMCC, Centro de Investigación del Cáncer, Servicio de Hematología, Hospital Universitario de Salamanca, Universidad de Salamanca-CSIC, Salamanca, Spain
| | - Ana-Eugenia Rodríguez-Vicente
- IBSAL, IBMCC, Centro de Investigación del Cáncer, Servicio de Hematología, Hospital Universitario de Salamanca, Universidad de Salamanca-CSIC, Salamanca, Spain
| | | | | | - Elena Landete
- Servicio de Hematología, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Juan Churruca
- Servicio de Hematología, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Karen Marín
- Servicio de Hematología, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Victoria Ramos
- Servicio de Hematología, Hospital Universitario Infanta Leonor, Madrid, Spain
| | | | - José-Ángel Hernández-Rivas
- Servicio de Hematología, Hospital Universitario Infanta Leonor, Madrid, Spain
- Departamento de Medicina, Universidad Complutense, Madrid, Spain
| |
Collapse
|
4
|
Alshemmari SH, Siddiqui MA, Pandita R, Osman HY, Cherif H, O'Brien S, Marashi M, Al Farsi K. Evidence-Based Management of Chronic Lymphocytic Leukemia: Consensus Statements from the Gulf Region. Acta Haematol 2023; 147:260-279. [PMID: 37751733 DOI: 10.1159/000531675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 06/16/2023] [Indexed: 09/28/2023]
Abstract
INTRODUCTION Despite recent advances in diagnosis, prognostication, and treatment options, chronic lymphocytic leukemia (CLL) is still a largely incurable disease. New concepts on diagnosis, staging, treatment, and follow-up on CLL have been incorporated throughout recent years. The lack of regional consensus guidelines has led to varying practices in the management of patients with CLL in the region. This manuscript aims to reach a consensus among expert hematologists regarding the definitions, classifications, and related practices of CLL. The experts developed a set of statements utilizing their personal experience together with the current literature on CLL management. This consensus aims to provide guidance for healthcare professionals involved in the management of CLL and serves as a step in developing regional guidelines. METHODS Eight experts responded to 50 statements regarding the diagnosis, staging, treatment, and prognosis of CLL with three potential answering alternatives ranging between agree, disagree, and abstain. This consensus adopted a modified Delphi consensus methodology. A consensus was reached when at least 75% of the agreement to the answer was reached. This manuscript presents the scientific insights of the participating attendees, panel discussions, and the supporting literature review. RESULTS Of the 50 statements, a consensus was reached on almost all statements. Statements covered CLL-related topics, including diagnostic evaluation, staging, risk assessment, different patient profiles, prognostic evaluation, treatment decisions, therapy sequences, response evaluation, complications, and CLL during the COVID-19 pandemic. CONCLUSION In recent years, CLL management has progressed significantly, with many diagnostic tests and several novel treatments becoming available. This consensus gathers decades of consolidated principles, novel research, and promising prospects for the management of this disease.
Collapse
Affiliation(s)
- Salem H Alshemmari
- Department of Medicine, Faculty of Medicine and Department of Hematology, Kuwait Cancer Control Centre, Shuwaikh, Kuwait
| | - Mustaqeem A Siddiqui
- Hematology and Oncology Division, Sheikh Shakhbout Medical City, Abu Dhabi, United Arab Emirates
- Mayo Clinic Division of Hematology, Rochester, Minnesota, USA
| | - Ramesh Pandita
- Department of Hematology, Kuwait Cancer Control Centre, Shuwaikh, Kuwait
| | - Hani Y Osman
- Oncology Department, Tawam Hospital, Al Ain, United Arab Emirates
| | - Honar Cherif
- Departmant of Hematology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Susan O'Brien
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, California, USA
| | - Mahmoud Marashi
- Department of Hematology, Dubai Healthcare Authority, Dubai, United Arab Emirates
| | - Khalil Al Farsi
- Department of Hematology, Sultan Qaboos University Hospital Muscat, Seeb, Oman
| |
Collapse
|
5
|
Moysiadis T, Koparanis D, Liapis K, Ganopoulou M, Vrachiolias G, Katakis I, Moyssiadis C, Vizirianakis IS, Angelis L, Fokianos K, Kotsianidis I. A personalized stepwise dynamic predictive algorithm of the time to first treatment in chronic lymphocytic leukemia. iScience 2023; 26:107591. [PMID: 37664638 PMCID: PMC10470317 DOI: 10.1016/j.isci.2023.107591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/27/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
Personalized prediction is ideal in chronic lymphocytic leukemia (CLL). Although refined models have been developed, stratifying patients in risk groups, it is required to accommodate time-dependent information of patients, to address the clinical heterogeneity observed within these groups. In this direction, this study proposes a personalized stepwise dynamic predictive algorithm (PSDPA) for the time-to-first-treatment of the individual patient. The PSDPA introduces a personalized Score, reflecting the evolution in the patient's follow-up, employed to develop a reference pool of patients. Score evolution's similarity is used to predict, at a selected time point, the time-to-first-treatment for a new patient. Additional patient's biological information may be utilized. The algorithm was applied to 20 CLL patients, indicating that stricter assessment criteria for the Score evolution's similarity, and biological similarity exploitation, may improve prediction. The PSDPA capitalizes on both the follow-up and the biological background of the individual patient, dynamically promoting personalized prediction in CLL.
Collapse
Affiliation(s)
- Theodoros Moysiadis
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace Medical School, 68100 Alexandroupolis, Greece
| | - Dimitris Koparanis
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace Medical School, 68100 Alexandroupolis, Greece
| | - Konstantinos Liapis
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace Medical School, 68100 Alexandroupolis, Greece
| | - Maria Ganopoulou
- School of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - George Vrachiolias
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace Medical School, 68100 Alexandroupolis, Greece
| | - Ioannis Katakis
- Department of Computer Science, School of Sciences and Engineering, University of Nicosia, 2417 Nicosia, Cyprus
| | - Chronis Moyssiadis
- School of Mathematics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis S. Vizirianakis
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus
| | - Lefteris Angelis
- School of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | - Ioannis Kotsianidis
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace Medical School, 68100 Alexandroupolis, Greece
| |
Collapse
|
6
|
Jirát J, Rohlíček J, Kaminský J, Jirkal T, Ridvan L, Skořepová E, Zvoníček V, Dušek M, Šoóš M. Formation of ibrutinib solvates: so similar, yet so different. IUCRJ 2023; 10:210-219. [PMID: 36815712 PMCID: PMC9980385 DOI: 10.1107/s2052252523001197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
The transformation processes of non-solvated ibrutinib into a series of halogenated benzene solvates are explored in detail here. The transformation was studied in real time by X-ray powder diffraction in a glass capillary. Crystal structures of chlorobenzene, bromobenzene and iodobenzene solvates are isostructural, whereas the structure of fluorobenzene solvate is different. Four different mechanisms for transformation were discovered despite the similarity in the chemical nature of the solvents and crystal structures of the solvates formed. These mechanisms include direct transformations and transformations with either a crystalline or an amorphous intermediate phase. The binding preference of each solvate in the crystal structure of the solvates was examined in competitive slurry experiments and further confirmed by interaction strength calculations. Overall, the presented system and online X-ray powder diffraction measurement provide unique insights into the formation of solvates.
Collapse
Affiliation(s)
- Jan Jirát
- Chemical Engineering, University of Chemistry and Technology in Prague, Technická 3, Praha, Czech Republic
- Zentiva, k.s., U kabelovny 130, Prague 10 10237, Czech Republic
| | - Jan Rohlíček
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, Prague 8 182 00, Czech Republic
| | - Jakub Kaminský
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí 542/2, Prague 6, Czech Republic
| | - Tomáš Jirkal
- Chemical Engineering, University of Chemistry and Technology in Prague, Technická 3, Praha, Czech Republic
| | - Luděk Ridvan
- Zentiva, k.s., U kabelovny 130, Prague 10 10237, Czech Republic
| | - Eliška Skořepová
- Chemical Engineering, University of Chemistry and Technology in Prague, Technická 3, Praha, Czech Republic
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, Prague 8 182 00, Czech Republic
| | - Vít Zvoníček
- Zentiva, k.s., U kabelovny 130, Prague 10 10237, Czech Republic
| | - Michal Dušek
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, Prague 8 182 00, Czech Republic
| | - Miroslav Šoóš
- Chemical Engineering, University of Chemistry and Technology in Prague, Technická 3, Praha, Czech Republic
| |
Collapse
|
7
|
Conte HA, Biondi MC, Janket SJ, Ackerson LK, Diamandis EP. Babesia microti-induced fulminant sepsis in an immunocompromised host: A case report and the case-specific literature review. Open Life Sci 2022; 17:1200-1207. [PMID: 36185407 PMCID: PMC9483830 DOI: 10.1515/biol-2022-0448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/30/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
Babesia microti is an obligate intra-erythrocytic parasite transmitted by infected ticks. B. microti is a eukaryote much larger than prokaryotic microbes and more similar to human hosts in their biochemistry and metabolism. Moreover, Babesia spp. possess various immune evasion mechanisms leading to persistent and sometimes life-threatening diseases in immunocompromised hosts. Chronic lymphocytic leukemia (CLL) is the most prevalent adult B-cell malignancy, and a small percentage of CLL transforms into aggressive lymphomas. CLL also causes immune dysfunction due to the over-expansion of immature and ineffective B-cells. When our patient with indolent CLL presented with anemia, pancytopenia, and splenomegaly, all his healthcare providers presumptively assumed a malignant transformation of CLL. However, these are also the signs and symptoms of babesiosis. Herein, we report a case where B. microti infection was presumed as a malignant transformation of CLL and narrowly avoided a devastating outcome. Although the patient developed fulminant sepsis, he finally received the correct diagnosis and treatment. Unfortunately, the disease recrudesced twice. Each time, it became more difficult to control the infection. We describe the clinical course of the case and discuss the case-specific literature review. This report highlights the importance of differential diagnoses ruling out infections which include babesiosis, prior to initiating the treatment of B-cell malignancy.
Collapse
Affiliation(s)
- Harry A Conte
- Department of Infectious Diseases, Saint Francis Hospital, Hartford, CT, USA.,Department of Infectious Diseases, Johnson Memorial Hospital, Stafford Springs, CT, USA
| | - Michael C Biondi
- Department of Radiology, Saint Francis Hospital, Hartford, CT, USA
| | - Sok-Ja Janket
- Center for Clinical and Translational Research, The Forsyth Institute, Cambridge, MA, USA
| | - Leland K Ackerson
- Department of Public Health, University of Massachusetts at Lowell, Lowell, MA, USA
| | - Eleftherios P Diamandis
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, 60 Murray St. Box 32, Floor 6, Rm L6-201. Toronto, ON, M5T 3L9, Canada
| |
Collapse
|
8
|
Rozovski U, Veletic I, Harris DM, Li P, Liu Z, Jain P, Manshouri T, Ferrajoli A, Burger JA, Bose P, Thompson PA, Jain N, Wierda WG, Verstovsek S, Keating MJ, Estrov Z. STAT3 Activates the Pentraxin 3 Gene in Chronic Lymphocytic Leukemia Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2847-2855. [PMID: 35595309 DOI: 10.4049/jimmunol.2101105] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/03/2022] [Indexed: 01/13/2023]
Abstract
Pentraxin-related protein 3 (PTX3), commonly produced by myeloid and endothelial cells, is a humoral pattern recognition protein of the innate immune system. Because PTX3 plasma levels of patients with chronic lymphocytic leukemia (CLL) are high and most circulating cells in patients with CLL are CLL cells, we reasoned that CLL cells produce PTX3. Western immunoblotting revealed that low-density cells from seven of seven patients with CLL produce high levels of PTX3, flow cytometry analysis revealed that the PTX3-producing cells are B lymphocytes coexpressing CD19 and CD5, and confocal microscopy showed that PTX3 is present in the cytoplasm of CLL cells. Because STAT3 is constitutively activated in CLL cells, and because we identified putative STAT3 binding sites within the PTX3 gene promoter, we postulated that phosphorylated STAT3 triggers transcriptional activation of PTX3. Immunoprecipitation analysis of CLL cells' chromatin fragments showed that STAT3 Abs precipitated PTX3 DNA. STAT3 knockdown induced a marked reduction in PTX3 expression, indicating a STAT3-induced transcriptional activation of the PTX3 gene in CLL cells. Using an EMSA, we established and used a dual-reporter luciferase assay to confirm that STAT3 binds the PTX3 gene promoter. Downregulation of PTX3 enhanced apoptosis of CLL cells, suggesting that inhibition of PTX3 might benefit patients with CLL.
Collapse
Affiliation(s)
- Uri Rozovski
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX.,Division of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel; and.,The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ivo Veletic
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - David M Harris
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ping Li
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Zhiming Liu
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Preetesh Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Taghi Manshouri
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Alessandra Ferrajoli
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jan A Burger
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Prithviraj Bose
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Phillip A Thompson
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - William G Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael J Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Zeev Estrov
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX;
| |
Collapse
|
9
|
Putowski M, Giannopoulos K. Perspectives on Precision Medicine in Chronic Lymphocytic Leukemia: Targeting Recurrent Mutations-NOTCH1, SF3B1, MYD88, BIRC3. J Clin Med 2021; 10:jcm10163735. [PMID: 34442029 PMCID: PMC8396993 DOI: 10.3390/jcm10163735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is highly heterogeneous, with extremely variable clinical course. The clinical heterogeneity of CLL reflects differences in the biology of the disease, including chromosomal alterations, specific immunophenotypic patterns and serum markers. The application of next-generation sequencing techniques has demonstrated the high genetic and epigenetic heterogeneity in CLL. The novel mutations could be pharmacologically targeted for individualized approach in some of the CLL patients. Potential neurogenic locus notch homolog protein 1 (NOTCH1) signalling targeting mechanisms in CLL include secretase inhibitors and specific antibodies to block NOTCH ligand/receptor interactions. In vitro studies characterizing the effect of the splicing inhibitors resulted in increased apoptosis of CLL cells regardless of splicing factor 3B subunit 1 (SF3B1) status. Several therapeutic strategies have been also proposed to directly or indirectly inhibit the toll-like receptor/myeloid differentiation primary response gene 88 (TLR/MyD88) pathway. Another potential approach is targeting nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and inhibition of this prosurvival pathway. Newly discovered mutations and their signalling pathways play key roles in the course of the disease. This opens new opportunities in the management and treatment of CLL.
Collapse
Affiliation(s)
- Maciej Putowski
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland;
- Correspondence: ; Tel.: +48-81-448-66-32
| | - Krzysztof Giannopoulos
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland;
- Department of Hematology, St. John’s Cancer Center, 20-090 Lublin, Poland
| |
Collapse
|
10
|
Lin F, Wu D, Fang D, Chen Y, Zhou H, Ou C. STAT3-induced SMYD3 transcription enhances chronic lymphocytic leukemia cell growth in vitro and in vivo. Inflamm Res 2019; 68:739-749. [PMID: 31218443 DOI: 10.1007/s00011-019-01257-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 04/01/2019] [Accepted: 05/30/2019] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE AND DESIGN The purpose of this study was to investigate the roles of SMYD3 and STAT3 in chronic lymphocytic leukemia (CLL) and the possible underlying mechanisms. MATERIALS Blood samples were collected from 20 patients with CLL and 20 hematologically normal donors. Human cell lines K562, HL-60, MEG-1, and BALL-1 were performed in vitro and BALB/c nude mouse was used in subcutaneous tumor experiments. TREATMENT WP1066 (30 mg/kg) was also injected intratumorally two days after the first lentivirus treatment and then every four days for a total of four injections and 3 µM WP1066 was carried out for 48 h to downregulate STAT3 phosphorylation. METHODS We performed studies using the human CLL cell line MEG-1 in vitro and nude mouse subcutaneous tumor experiments in vivo. Differential expression of RNAs was determined using qRT-PCR. The CCK-8 assay and colony formation assay were conducted to evaluate cell proliferation. Flow cytometry was performed to assess cell apoptosis. The relative protein levels were detected using western blotting. Chromatin immunoprecipitation (ChIP) assays, luciferase reporter assays and WP1066, a STAT3 inhibitor, were used to explore the regulatory mechanisms of proteases and transcription factors. A subcutaneous tumor model was constructed to verify the results in vivo. RESULTS SMYD3 and STAT3 expressions positively correlated with the progression of CLL. Upregulation of SMYD3 significantly promoted the proliferation and inhibited the expression of apoptosis-related genes. The results of the ChIP assays and luciferase reporter assays suggested that STAT3 targeted the promoter region of SMYD3 and, thus, promoted SMYD3 transcription. Downregulation of the phosphorylation of STAT3 by WP1066 notably inhibited the binding of STAT3 to the SMYD3 promoter, and subsequently downregulated SMYD3 transcription. The STAT3 inhibitor inhibited CLL cell growth in vivo, and overexpression of SMYD3 promoted CLL cell growth. Furthermore, overexpression of SMYD3 reversed the inhibitory effects of the STAT3 inhibitor on CLL cell growth. CONCLUSIONS The STAT3-mediated transcription of SMYD3 plays a role in promoting the progression of chronic lymphocytic leukemia.
Collapse
Affiliation(s)
- Fujia Lin
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No 111 Dade Road, Yuexiu District, Guangzhou, 510120, Guangdong, China
| | - Danjuan Wu
- Department of Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Dan Fang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yao Chen
- Department of Hematology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
| | - Haitao Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No 111 Dade Road, Yuexiu District, Guangzhou, 510120, Guangdong, China
| | - Caiwen Ou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No 111 Dade Road, Yuexiu District, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
11
|
Lu X, Wu Z, Zhao XY, Li CF, Kan SF. Systematic tracking of altered modules identifies the key biomarkers involved in chronic lymphocytic leukemia. Oncol Lett 2019; 17:2351-2355. [PMID: 30675301 PMCID: PMC6341787 DOI: 10.3892/ol.2018.9812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/27/2018] [Indexed: 11/26/2022] Open
Abstract
Key genes in chronic lymphocytic leukemia (CLL) were investigated through systematically tracking the dysregulated modules from protein-protein interaction (PPI) networks. Microarray data of normal subjects and CLL patients recruited from ArrayExpress database were applied to extract differentially expressed genes (DEGs). Additionally, we re-weighted the PPI network of normal and CLL conditions by means of Pearsons correlation coefficient (PCC). Furthermore, clique-merging method was applied to extract the modules and then the altered modules were screened out. The intersection genes were selected from miss and add genes in the altered modules. The common genes were screened from the intersection genes and DEGs in CLL. A total of 734 DEGs were screened by statistical analysis. In this investigation, there were 1,805 and 703 modules in normal as well as disease PPI network. In addition, 875 altered modules were obtained which included 145 miss genes, 353 add genes and 85 intersection genes. Finally, in-depth analysis revealed 9 mutual genes between the intersection genes and DEGs in CLL. Our analysis revealed several key genes associated with CLL by systematically tracking the dysregulated modules, which might be candidate targets for diagnosis and management of CLL.
Collapse
Affiliation(s)
- Xin Lu
- Department of Blood Transfusion, Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Zhen Wu
- Department of Blood Transfusion, Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xue-Ying Zhao
- Department of Blood Transfusion, Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Chun-Feng Li
- Department of Blood Transfusion, Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Shi-Feng Kan
- Department of Laboratory Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
12
|
Huang X, Xiao F, Li Y, Qian W, Ding W, Ye X. Bypassing drug resistance by triggering necroptosis: recent advances in mechanisms and its therapeutic exploitation in leukemia. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:310. [PMID: 30541583 PMCID: PMC6291981 DOI: 10.1186/s13046-018-0976-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/23/2018] [Indexed: 12/20/2022]
Abstract
Resistance to regulated cell death is one of the hallmarks of human cancers; it maintains cell survival and significantly limits the effectiveness of conventional drug therapy. Leukemia represents a class of hematologic malignancies that is characterized by dysregulation of cell death pathways and treatment-related resistance. As the majority of chemotherapeutic and targeted drugs kill leukemia cells by triggering apoptosis, the observed resistance indicates the need for novel therapeutic strategies to reactivate nonapoptotic cell death programs in refractory leukemia. Necroptosis is a regulated form of necrosis that is precisely modulated by intracellular signaling pathways and thus provides potential molecular targets for rational therapeutic intervention. Indeed, accumulating evidence indicates that many current antitumor agents can activate necroptotic pathways and thereby induce leukemia cell death. Elucidation of the complete regulatory mechanism of necroptosis is expected to accelerate the development of novel therapeutic strategies for overcoming apoptosis resistance in leukemia. Here, we review the latest research advances in the regulatory mechanisms of necroptosis and summarize the progression of necroptosis-based therapeutic strategies in leukemia.
Collapse
Affiliation(s)
- Xianbo Huang
- Department of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, China
| | - Feng Xiao
- Department of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, China.,Malignant Lymphoma Diagnosis and Therapy Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yuan Li
- Institute of Hematology, the First Hospital of Jiaxing, Jiaxing, 314000, China
| | - Wenbin Qian
- Department of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, China.,Malignant Lymphoma Diagnosis and Therapy Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Wei Ding
- Department of Pathology, the First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, China.
| | - Xiujin Ye
- Department of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, China.
| |
Collapse
|
13
|
Rassy EE, Chebly A, Korban R, Semaan W, Bakouny Z, Assi T, Kourie HR, Karak FE, Chouery E, Kattan J. Untreated chronic lymphocytic leukemia in Lebanese patients: an observational study using standard karyotyping and FISH. Int J Hematol Oncol 2017; 6:105-111. [PMID: 30302231 PMCID: PMC6172003 DOI: 10.2217/ijh-2017-0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/27/2017] [Indexed: 01/04/2023] Open
Abstract
AIM We aimed to understand the biology of chronic lymphocytic leukemia (CLL) patients in Lebanon. MATERIALS & METHODS We applied conventional cytogenetic and FISH studies on Lebanese patients diagnosed with CLL and undergoing a watch and wait approach. RESULTS Our study disclosed 53.6% of patients with aberrant karyotypes among which 26.7% were complex karyotypes. Genetic aberrations included del(13q14) 46.4%, 14q32 translocation in 25%, trisomy 12 in 14.3%, del(17p13) and del(11q22) in 7.1% each. The deletion of 6q21/6q23 was not found in any of our patients. CONCLUSION The higher prevalence of del(13q14) as a sole abnormality could be the primary event in inducing CLL. The del(17p13) and del(11q22) followed as potential drivers for progression in CLL patients with a watch and wait approach.
Collapse
Affiliation(s)
- Elie El Rassy
- Department of Hematology-Oncology, Hotel-Dieu de France University Hospital, Faculty of Medicine, Saint Joseph University, Beirut 1104-2020, Lebanon
| | - Alain Chebly
- Department of Genetics, Unité de Génétique Médicale, Pôle technologie Santé, Faculty of Medicine, Saint Joseph University, Beirut 1104-2020, Lebanon
| | - Rima Korban
- Department of Genetics, Unité de Génétique Médicale, Pôle technologie Santé, Faculty of Medicine, Saint Joseph University, Beirut 1104-2020, Lebanon
| | - Warde Semaan
- Department of Genetics, Unité de Génétique Médicale, Pôle technologie Santé, Faculty of Medicine, Saint Joseph University, Beirut 1104-2020, Lebanon
| | - Ziad Bakouny
- Department of Hematology-Oncology, Hotel-Dieu de France University Hospital, Faculty of Medicine, Saint Joseph University, Beirut 1104-2020, Lebanon
| | - Tarek Assi
- Department of Hematology-Oncology, Hotel-Dieu de France University Hospital, Faculty of Medicine, Saint Joseph University, Beirut 1104-2020, Lebanon
| | - Hampig Raphael Kourie
- Department of Genetics, Unité de Génétique Médicale, Pôle technologie Santé, Faculty of Medicine, Saint Joseph University, Beirut 1104-2020, Lebanon
| | - Fadi El Karak
- Department of Hematology-Oncology, Hotel-Dieu de France University Hospital, Faculty of Medicine, Saint Joseph University, Beirut 1104-2020, Lebanon
| | - Eliane Chouery
- Department of Genetics, Unité de Génétique Médicale, Pôle technologie Santé, Faculty of Medicine, Saint Joseph University, Beirut 1104-2020, Lebanon
| | - Joseph Kattan
- Department of Hematology-Oncology, Hotel-Dieu de France University Hospital, Faculty of Medicine, Saint Joseph University, Beirut 1104-2020, Lebanon
| |
Collapse
|
14
|
Tripathi R, Lee-Verges E, Higashi M, Gimenez N, Rosich L, Lopez-Guerra M, Colomer D. New drug discovery approaches targeting recurrent mutations in chronic lymphocytic leukemia. Expert Opin Drug Discov 2017; 12:1041-1052. [PMID: 28776453 DOI: 10.1080/17460441.2017.1362387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Next generation sequencing has provided a comprehensive understanding of the mutational landscape in chronic lymphocytic leukemia (CLL), and new drivers have been identified. Some of these drivers could be pharmacologically targeted to choose the most effective personalized therapy in each CLL patient. Areas covered: In this article, the authors uncover the potential role of new targeted therapies against the most recurrent mutations in CLL as well as the recently approved therapies. The authors also provide their expert opinion and give their perspectives for the future. Expert opinion: The development of more personalized therapies is of interest to clinicians as a system to enhance the duration of treatment response and to extend the survival and quality of life of CLL patients. The main challenge, however, will be to translate the preclinical results into the clinics. Therefore, the designing and execution of clinical trials focused on molecular drivers are the need of the hour.
Collapse
Affiliation(s)
- Rupal Tripathi
- a Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hematopathology Unit , Hospital Clinic, CIBERONC , Barcelona , Spain
| | - Eriong Lee-Verges
- a Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hematopathology Unit , Hospital Clinic, CIBERONC , Barcelona , Spain
| | - Morihiro Higashi
- a Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hematopathology Unit , Hospital Clinic, CIBERONC , Barcelona , Spain
| | - Neus Gimenez
- a Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hematopathology Unit , Hospital Clinic, CIBERONC , Barcelona , Spain
| | - Laia Rosich
- a Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hematopathology Unit , Hospital Clinic, CIBERONC , Barcelona , Spain
| | - Monica Lopez-Guerra
- a Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hematopathology Unit , Hospital Clinic, CIBERONC , Barcelona , Spain
| | - Dolors Colomer
- a Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hematopathology Unit , Hospital Clinic, CIBERONC , Barcelona , Spain
| |
Collapse
|
15
|
Hansson L, Asklid A, Diels J, Eketorp-Sylvan S, Repits J, Søltoft F, Jäger U, Österborg A. Ibrutinib versus previous standard of care: an adjusted comparison in patients with relapsed/refractory chronic lymphocytic leukaemia. Ann Hematol 2017; 96:1681-1691. [PMID: 28762081 PMCID: PMC5569664 DOI: 10.1007/s00277-017-3061-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 07/03/2017] [Indexed: 10/26/2022]
Abstract
This study explored the relative efficacy of ibrutinib versus previous standard-of-care treatments in relapsed/refractory patients with chronic lymphocytic leukaemia (CLL), using multivariate regression modelling to adjust for baseline prognostic factors. Individual patient data were collected from an observational Stockholm cohort of consecutive patients (n = 144) diagnosed with CLL between 2002 and 2013 who had received at least second-line treatment. Data were compared with results of the RESONATE clinical trial. A multivariate Cox proportional hazards regression model was used which estimated the hazard ratio (HR) of ibrutinib versus previous standard of care. The adjusted HR of ibrutinib versus the previous standard-of-care cohort was 0.15 (p < 0.0001) for progression-free survival (PFS) and 0.36 (p < 0.0001) for overall survival (OS). A similar difference was observed also when patients treated late in the period (2012-) were compared separately. Multivariate analysis showed that later line of therapy, male gender, older age and poor performance status were significant independent risk factors for worse PFS and OS. Our results suggest that PFS and OS with ibrutinib in the RESONATE study were significantly longer than with previous standard-of-care regimens used in second or later lines in routine healthcare. The approach used, which must be interpreted with caution, compares patient-level data from a clinical trial with outcomes observed in a daily clinical practice and may complement results from randomised trials or provide preliminary wider comparative information until phase 3 data exist.
Collapse
Affiliation(s)
- Lotta Hansson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden. .,Department of Hematology, Karolinska University Hospital, Stockholm, Sweden.
| | - Anna Asklid
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Oncology, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | | - Anders Österborg
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
16
|
Present and future of personalized medicine in CLL. Best Pract Res Clin Haematol 2016; 29:100-110. [PMID: 27742064 DOI: 10.1016/j.beha.2016.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 07/19/2016] [Accepted: 08/04/2016] [Indexed: 12/27/2022]
Abstract
Medicine has been 'personalized' (i.e. centred in persons) since its foundation. Recently, however, the term 'personalized medicine' (or, better, 'precision medicine') has been introduced to define 'a form of medicine that uses information about a person's genes, proteins, and environment to prevent, diagnose, and treat disease'. This concept has gained momentum thanks to next-generation-sequencing (NGS) techniques that allow identification of molecular characteristics unique to the patient and to the tumour. It is hoped that NGS will not only contribute to a better understanding of chronic lymphocytic leukaemia (CLL), but will identify disease subsets that could benefit from specific treatment interventions. Recent advances in diagnosis (e.g. high-resolution immunophenotyping, markers of genetic abnormalities), prognosis (e.g. biomarkers), response predictors [e.g. del(17p)/TP53 mutations even at subclonal level], treatment (e.g. BCR signalling inhibitors, BCL2 antagonists, CAR-T cells) and methods to evaluate minimal residual disease constitute good examples of tools facilitating 'personalized' management of patients with CLL.
Collapse
|
17
|
Fu C, Gong Y, Shi X, Sun Z, Niu M, Sang W, Xu L, Zhu F, Wang Y, Xu K. Plumbagin reduces chronic lymphocytic leukemia cell survival by downregulation of Bcl-2 but upregulation of the Bax protein level. Oncol Rep 2016; 36:1605-11. [DOI: 10.3892/or.2016.4950] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/01/2016] [Indexed: 11/06/2022] Open
|
18
|
Shakeel F, Iqbal M, Ezzeldin E. Bioavailability enhancement and pharmacokinetic profile of an anticancer drug ibrutinib by self-nanoemulsifying drug delivery system. J Pharm Pharmacol 2016; 68:772-780. [PMID: 27018771 DOI: 10.1111/jphp.12550] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/29/2016] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The current studies were undertaken to enhance dissolution and bioavailability/pharmacokinetic profile of a newly approved anticancer drug ibrutinib (IBR) via encapsulation of drug into self-nanoemulsifying drug delivery system (SNEDDS). METHODS Various SNEDDS formulations of IBR were developed by aqueous phase titration method using Capryol-PGMC (oil phase), Tween-20 (surfactant), Carbitol (cosurfactant) and water (aqueous phase). Developed SNEDDS of IBR was evaluated in vitro for various physicochemical properties and drug release profile. KEY FINDINGS Based on lowest droplet size (28.7 ± 3.2 nm), least polydispersity (0.123), optimal values of zeta potential (-32.8 mV) and refractive index (1.336), highest % transmittance (98.7 ± 0.2%), highest drug release profile via dialysis membrane (98.9 ± 8.2% after 48 h) and the presence of lowest concentration of Capryol-PGMC (12% w/w), SNEDDS I1 was selected for in-vivo pharmacokinetic/bioavailability studies in female Wistar rats. In-vivo pharmacokinetic studies in rats showed that optimized SNEDDS I1 controlled the absorption of IBR compared with IBR suspension. The bioavailability of IBR from optimized SNEDDS I1 was enhanced around 2.64 times in comparison with IBR suspension. CONCLUSION These results indicated the potential of developed SNEDDS as an alternative drug delivery system for IBR to enhance its bioavailability and anticancer efficacy.
Collapse
Affiliation(s)
- Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Center of Excellence in Biotechnology Research (CEBR), King Saud University, Riyadh, Saudi Arabia
| | - Muzaffar Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Bioavailability Laboratory, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Essam Ezzeldin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Bioavailability Laboratory, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
19
|
Manouchehri S, Ibsen S, Wright J, Rassenti L, Ghia EM, Widhopf GF, Kipps TJ, Heller MJ. Dielectrophoretic recovery of DNA from plasma for the identification of chronic lymphocytic leukemia point mutations. Int J Hematol Oncol 2016; 5:27-35. [PMID: 30302201 DOI: 10.2217/ijh-2015-0009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/29/2016] [Indexed: 02/07/2023] Open
Abstract
Aim Circulating cell free (ccf) DNA contains information about mutations affecting chronic lymphocytic leukemia (CLL). The complexity of isolating DNA from plasma inhibits the development of point-of-care diagnostics. Here, we introduce an electrokinetic method that enables rapid recovery of DNA from plasma. Materials & methods ccf-DNA was isolated from 25 µl of CLL plasma using dielectrophoresis. The DNA was used for PCR amplification, sequencing and analysis. Results The ccf-DNA collected from plasma of 5 CLL patients revealed identical mutations to those previously identified by extracting DNA from CLL cells from the same patients. Conclusion Rapid dielectrophoresis isolation of ccf-DNA directly from plasma provides sufficient amounts of DNA to use for identification of point mutations in genes associated with CLL progression.
Collapse
Affiliation(s)
- Sareh Manouchehri
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA.,Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Stuart Ibsen
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA.,Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Jennifer Wright
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA.,Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Laura Rassenti
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA.,Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Emanuela M Ghia
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA.,Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - George F Widhopf
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA.,Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Thomas J Kipps
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA.,Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Michael J Heller
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA.,Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
20
|
Shakeel F, Salem-Bekhit MM, Iqbal M, Haq N. Solubility and thermodynamic function of a new anticancer drug ibrutinib in 2-(2-ethoxyethoxy)ethanol+water mixtures at different temperatures. THE JOURNAL OF CHEMICAL THERMODYNAMICS 2015; 89:159-163. [DOI: 10.1016/j.jct.2015.04.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
|
21
|
Shakeel F, Iqbal M, Ezzeldin E, Haq N. Thermodynamics of solubility of ibrutinib in ethanol+water cosolvent mixtures at different temperatures. J Mol Liq 2015; 209:461-464. [DOI: 10.1016/j.molliq.2015.06.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Huang Y, Wu JZ, Li JY, Xu W. Know the enemy as well as the weapons in hand: the aberrant death pathways and therapeutic agents in chronic lymphocytic leukemia. Am J Cancer Res 2015; 5:2361-2375. [PMID: 26396912 PMCID: PMC4568772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/06/2015] [Indexed: 06/05/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a highly heterogeneous hematologic malignancy and characterized by dysregulation of cell death pathways. Apoptosis and necroptosis are the two major cell death processes, and substantial evidence showed up-regulation of several pro-survival factors in CLL cells. Autophagy, as a dual player in mediating cell death and survival, is largely regarded to be an alternative target in the treatment of CLL. Numerous novel drugs have been developed and are being investigated in clinical trials. It is necessary to depict the impaired cell death pathways in CLL and the pro-survival factors targeted by noncytotoxic drugs directly or indirectly. Here we summarize three dysregulated cell death mechanisms in CLL, and present the current knowledge of drugs that orchestrate cell death via targeting pro-survival factors and the clinical effects as well.
Collapse
Affiliation(s)
- Ying Huang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University Nanjing 210029, Jiangsu, China
| | - Jia-Zhu Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University Nanjing 210029, Jiangsu, China
| | - Jian-Yong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University Nanjing 210029, Jiangsu, China
| | - Wei Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University Nanjing 210029, Jiangsu, China
| |
Collapse
|
23
|
Lu K, Fang XS, Feng LL, Jiang YJ, Zhou XX, Liu X, Li PP, Chen N, Ding M, Wang N, Zhang J, Wang X. The STAT3 inhibitor WP1066 reverses the resistance of chronic lymphocytic leukemia cells to histone deacetylase inhibitors induced by interleukin-6. Cancer Lett 2015; 359:250-8. [PMID: 25636517 DOI: 10.1016/j.canlet.2015.01.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/14/2015] [Accepted: 01/17/2015] [Indexed: 10/24/2022]
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine produced by a variety of cell types, including fibroblasts, endothelial cells, lymphocytes, and bone marrow stromal cells (BMSCs). Levels of IL-6 are increased in serum of CLL patients and correlated with adverse clinical features and short survival. In our study, we observed that IL-6 induced the resistance of CLL cells to pan-histone deacetylase (HDAC) inhibitors vorinostat (SAHA) and panobinostat (LBH589). Furthermore, low concentrations of SAHA and LBH589 enhanced the activation of the signal transducer and activator of transcription 3 (STAT3) signaling pathway induced by IL-6 in CLL cells. All of these effects were blocked by the STAT3-selective inhibitor, WP1066. Meanwhile, WP1066 decreased the expressions of Mcl-1 and Bcl-xL protein induced by IL-6 with or without low concentrations of HDAC inhibitors. Co-culture of CLL cells with BMSCs could also facilitate the activation of STAT3 and protected CLL cells from apoptosis when treated with HDAC inhibitors, and this cytoprotection was reversed by WP1066. The present study indicated that IL-6 or co-culture with BMSCs prevented HDAC inhibitor-induced apoptosis of CLL cells. This prevention was mediated by activation of the STAT3 signaling pathway. Moreover, WP1066 reversed the resistance of CLL cells to SAHA and LBH589 induced by either IL-6 or co-culture with BMSCs. Our findings suggest that targeting the STAT3 pathway may be a novel way to improve the efficacy of the HDAC inhibitor in CLL patients by overcoming antiapoptotic signaling of the microenvironment.
Collapse
Affiliation(s)
- Kang Lu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Xiao-sheng Fang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Li-li Feng
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Yu-jie Jiang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Xiang-xiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Xin Liu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Pei-pei Li
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Na Chen
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Mei Ding
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Na Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Jie Zhang
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China; Institute of Diagnostics, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
24
|
Chung C, Lee R. Ibrutinib, Obinutuzumab, Idelalisib, and Beyond: Review of Novel and Evolving Therapies for Chronic Lymphocytic Leukemia. Pharmacotherapy 2014; 34:1298-316. [DOI: 10.1002/phar.1509] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Clement Chung
- Lyndon B. Johnson General Hospital; Harris Health System; Houston Texas
| | - Rosetta Lee
- Smith Clinic; Harris Health System; Houston Texas
| |
Collapse
|