1
|
Lu B, Chen S, Guan X, Chen X, Du Y, Yuan J, Wang J, Wu Q, Zhou L, Huang X, Zhao Y. Lactate accumulation induces H4K12la to activate super-enhancer-driven RAD23A expression and promote niraparib resistance in ovarian cancer. Mol Cancer 2025; 24:83. [PMID: 40102876 PMCID: PMC11921584 DOI: 10.1186/s12943-025-02295-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/05/2025] [Indexed: 03/20/2025] Open
Abstract
Ovarian cancer is a gynecological malignancy with the highest recurrence and mortality rates. Although niraparib can effectively affect its progression, the challenge of drug resistance remains. Herein, niraparib-resistant ovarian cancer cell lines were constructed to identify the abnormally activated enhancers and associated target genes via RNA in situ conformation sequencing. Notably, the target gene RAD23A was markedly upregulated in niraparib-resistant cells, and inhibiting RAD23A restored their sensitivity. Additionally, abnormal activation of glycolysis in niraparib-resistant cells induced lactate accumulation, which promoted the lactylation of histone H4K12 lysine residues. Correlation analysis showed that key glycolysis enzymes such as pyruvate kinase M and lactate dehydrogenase A were significantly positively correlated with RAD23A expression in ovarian cancer. Additionally, H4K12la activated the super-enhancer (SE) of niraparib and RAD23A expression via MYC transcription factor, thereby enhancing the DNA damage repair ability and promoting the drug resistance of ovarian cancer cells. Overall, the findings of this study indicate that lactic acid accumulation leads to lactylation of histone H4K12la, thereby upregulating SE-mediated abnormal RAD23A expression and promoting niraparib resistance in ovarian cancer cells, suggesting RAD23A as a potential therapeutic target for niraparib-resistant ovarian cancer.
Collapse
Affiliation(s)
- Bingfeng Lu
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, No.63 Duobao Raod, Liwan District, Guangzhou, Guangdong Province, P. R. China
| | - Shuo Chen
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, No.63 Duobao Raod, Liwan District, Guangzhou, Guangdong Province, P. R. China
| | - Xue Guan
- Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Xi Chen
- Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yuping Du
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, No.63 Duobao Raod, Liwan District, Guangzhou, Guangdong Province, P. R. China
| | - Jing Yuan
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, No.63 Duobao Raod, Liwan District, Guangzhou, Guangdong Province, P. R. China
| | - Jielin Wang
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, No.63 Duobao Raod, Liwan District, Guangzhou, Guangdong Province, P. R. China
| | - Qinghua Wu
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, No.63 Duobao Raod, Liwan District, Guangzhou, Guangdong Province, P. R. China
| | - Lingfeng Zhou
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, No.63 Duobao Raod, Liwan District, Guangzhou, Guangdong Province, P. R. China
| | - Xiangchun Huang
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, No.63 Duobao Raod, Liwan District, Guangzhou, Guangdong Province, P. R. China
| | - Yang Zhao
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, No.63 Duobao Raod, Liwan District, Guangzhou, Guangdong Province, P. R. China.
- Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China.
| |
Collapse
|
2
|
Berney M, Ferguson S, McGouran JF. Function and inhibition of the DNA repair enzyme SNM1A. Bioorg Chem 2025; 156:108225. [PMID: 39914034 DOI: 10.1016/j.bioorg.2025.108225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/09/2025] [Accepted: 01/28/2025] [Indexed: 03/28/2025]
Abstract
SNM1A is an enzyme involved in several important biological pathways. To date, most investigations have focused on its role in repairing interstrand crosslinks, a highly cytotoxic form of DNA damage. SNM1A acts as a 5'-3' exonuclease, displaying an unusual capability to digest DNA past the site of a crosslink lesion. Recently, additional functions of this enzyme in the repair of DNA double-strand breaks and critically shortened telomeres have been uncovered. Furthermore, SNM1A is involved in two cell cycle checkpoints that arrest cell division in response to DNA damage. Inhibition of both DNA repair enzymes and cell cycle checkpoint proteins are effective strategies for cancer treatment, and SNM1A is therefore of significant interest as a potential therapeutic target. As a member of the metallo-β-lactamase superfamily, SNM1A is postulated to contain two metal ions in the active site that catalyse hydrolysis of the phosphodiester backbone of DNA. Substrate-mimic probes based on a nucleoside or oligonucleotide scaffold appended with a metal-binding group have proven effective in vitro. High-throughput screening campaigns have identified potent inhibitors, some of which were successful in sensitising cells to DNA-damaging cancer drugs. This review discusses the biological role, structure, and mechanism of action of SNM1A, and the development of SNM1A inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Mark Berney
- National Institute for Bioprocess Research and Training, Foster Avenue, Mount Merrion, Dublin, Ireland; School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Steven Ferguson
- National Institute for Bioprocess Research and Training, Foster Avenue, Mount Merrion, Dublin, Ireland; School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland; SSPC, The SFI Research Centre for Pharmaceuticals, Ireland
| | - Joanna F McGouran
- School of Chemistry, and Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland; SSPC, The SFI Research Centre for Pharmaceuticals, Ireland.
| |
Collapse
|
3
|
Nadin SB, Cuello-Carrión FD, Cayado-Gutiérrez N, Fanelli MA. Overview of Wnt/β-Catenin Pathway and DNA Damage/Repair in Cancer. BIOLOGY 2025; 14:185. [PMID: 40001953 PMCID: PMC11851563 DOI: 10.3390/biology14020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/28/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
The Wnt/β-catenin pathway takes part in important cellular processes in tumor cells, such as gene expression, adhesion, and survival. The canonical pathway is activated in several tumors, and β-catenin is its major effector. The union of Wnt to the co-receptor complex causes the inhibition of GSK3β activity, thus preventing the phosphorylation and degradation of β-catenin, which accumulates in the cytoplasm, to subsequently be transported to the nucleus to associate with transcription factors. The relationship between Wnt/β-catenin and DNA damage/repair mechanisms has been a focus for the last few years. Studying the Wnt/β-catenin network interactions with DNA damage/repair proteins has become a successful research field. This review provides an overview of the participation of Wnt/β-catenin in DNA damage/repair mechanisms and their future implications as targets for cancer therapy.
Collapse
Affiliation(s)
- Silvina B. Nadin
- Laboratorio de Biología Tumoral, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Científico Tecnológico (CCT), Mendoza 5500, Argentina
| | - F. Darío Cuello-Carrión
- Laboratorio de Oncología, IMBECU, CONICET, CCT, Mendoza 5500, Argentina; (F.D.C.-C.); (N.C.-G.); (M.A.F.)
| | - Niubys Cayado-Gutiérrez
- Laboratorio de Oncología, IMBECU, CONICET, CCT, Mendoza 5500, Argentina; (F.D.C.-C.); (N.C.-G.); (M.A.F.)
- Cátedra de Bioquímica e Inmunidad, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| | - Mariel A. Fanelli
- Laboratorio de Oncología, IMBECU, CONICET, CCT, Mendoza 5500, Argentina; (F.D.C.-C.); (N.C.-G.); (M.A.F.)
| |
Collapse
|
4
|
Calles A, Navarro A, Doger de Speville Uribe BG, Colomé EÁ, de Miguel M, Álvarez R, Arregui M, Moreno V, Rocha P, Calvo E, Ramon-Patino J, Corral de la Fuente E, Alcalá-López D, Boix O, Fernández-Pinto M, Rodríguez-Morató J, Palmero R, Nadal E, Jove M, Felip E. Lurbinectedin Plus Pembrolizumab in Relapsed SCLC: The Phase I/II LUPER Study. J Thorac Oncol 2025:S1556-0864(25)00064-4. [PMID: 39938593 DOI: 10.1016/j.jtho.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/30/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025]
Abstract
INTRODUCTION SCLC has limited second-line treatment options after chemotherapy. We assessed the efficacy and safety of lurbinectedin combined with pembrolizumab in relapsed SCLC patients who had not received prior immunotherapy, aiming to prevent early progression and achieve sustained responses. METHODS The LUPER trial (NCT04358237) is a phase I/II, single-arm, open-label, multicenter study. Phase I established the recommended phase II dose. The primary endpoint of phase II was the investigator-confirmed objective response rate. Secondary endpoints included duration of response, progression-free survival (PFS), overall survival (OS), and safety. Patients were categorized as platinum-sensitive (chemotherapy-free interval ≥ 90 d) or platinum-resistant (<90 d). RESULTS The recommended phase II dose was 3.2 mg/m2 lurbinectedin and 200 mg pembrolizumab IV every three weeks. Phase II included 28 patients, 50% of whom were platinum-resistant. The objective response rate was 46.4% (95% confidence interval: 27.5-66.1, p < 0.001), including three complete responses, with two complete metabolic responses post-treatment completion at 35 cycles. The median duration of response was 7.8 months, with 40% of patients maintaining responses for 12 months or longer. The median PFS was 4.6 months, and the median OS was 10.5 months. Platinum-sensitive patients had significantly better PFS (8.0 versus 2.8 mo, p = 0.012) and numerically superior OS (15.7 versus 7.1 mo, p = 0.058). Grade 3 or higher treatment-related adverse events occurred in 71.4% of patients, with transient neutropenia being the most common. Immune-related adverse events were consistent with prior pembrolizumab studies. CONCLUSIONS Lurbinectedin plus pembrolizumab reported promising efficacy in relapsed SCLC, particularly for platinum-sensitive patients, with a known and manageable safety profile. These results support further exploration of this combination in SCLC treatment.
Collapse
Affiliation(s)
- Antonio Calles
- Medical Oncology Department, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.
| | - Alejandro Navarro
- Medical Oncology Department, Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; Medica Scientia Innovation Research (MEDSIR), Barcelona (Spain), Ridgewood, New Jersey
| | | | - Enric Álvarez Colomé
- Medical Oncology Department, Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - María de Miguel
- START Madrid-CIOCC, Centro Integral Oncológico Clara Campal, Madrid, Spain
| | - Rosa Álvarez
- Medical Oncology Department, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Marta Arregui
- Medical Oncology Department, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Víctor Moreno
- START Madrid-FJD, Hospital Fundación Jiménez Díaz, Madrid, Spain
| | - Pedro Rocha
- Medical Oncology Department, Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Emiliano Calvo
- START Madrid-CIOCC, Centro Integral Oncológico Clara Campal, Madrid, Spain
| | - Jorge Ramon-Patino
- START Madrid-CIOCC, Centro Integral Oncológico Clara Campal, Madrid, Spain
| | | | - Daniel Alcalá-López
- Medica Scientia Innovation Research (MEDSIR), Barcelona (Spain), Ridgewood, New Jersey
| | - Olga Boix
- Medica Scientia Innovation Research (MEDSIR), Barcelona (Spain), Ridgewood, New Jersey
| | | | - Jose Rodríguez-Morató
- Medica Scientia Innovation Research (MEDSIR), Barcelona (Spain), Ridgewood, New Jersey
| | - Ramón Palmero
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - Ernest Nadal
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - Maria Jove
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - Enriqueta Felip
- Medical Oncology Department, Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| |
Collapse
|
5
|
Berney M, Fay EM, Doherty W, Deering JJ, Dürr EM, Ferguson S, McGouran JF. Zinc-Binding Oligonucleotide Backbone Modifications for Targeting a DNA-Processing Metalloenzyme. Chembiochem 2024; 25:e202400528. [PMID: 39023512 DOI: 10.1002/cbic.202400528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024]
Abstract
A series of chemically-modified oligonucleotides for targeting the DNA repair nuclease SNM1A have been designed and synthesised. Each oligonucleotide contains a modified internucleotide linkage designed to both mimic the native phosphodiester backbone and chelate to the catalytic zinc ion(s) in the SNM1A active site. Dinucleoside phosphoramidites containing urea, squaramide, sulfanylacetamide, and sulfinylacetamide linkages were prepared and employed successfully in solid-phase oligonucleotide synthesis. All the modified oligonucleotides were found to interact with SNM1A in a gel electrophoresis-based assay, demonstrating the first examples of inhibition of DNA damage repair enzymes for many of these groups in oligonucleotides. One strand containing a sulfinylacetamide-linkage was found to have the strongest interaction with SNM1A and was further tested in a real-time fluorescence assay. This allowed an IC50 value of 231 nM to be determined, significantly lower than previously reported substrate-mimics targeting this enzyme. It is expected that these modified oligonucleotides will serve as a scaffold for the future development of fluorescent or biotin-labelled probes for the in vivo study of DNA repair processes.
Collapse
Affiliation(s)
- Mark Berney
- National Institute for Bioprocess Research and Training, Foster Avenue, Mount Merrion, Dublin, Ireland
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ellen M Fay
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - William Doherty
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - John J Deering
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - Eva-Maria Dürr
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - Steven Ferguson
- National Institute for Bioprocess Research and Training, Foster Avenue, Mount Merrion, Dublin, Ireland
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
- SSPC, The SFI Research Centre for Pharmaceuticals, Ireland
| | - Joanna F McGouran
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
- SSPC, The SFI Research Centre for Pharmaceuticals, Ireland
| |
Collapse
|
6
|
Afifah NN, Permatasari LI, Diantini A, Intania R, Wijaya I, Obinata H, Barliana MI. Exploring Genetic Variants and Platinum Chemotherapy Response in Indonesian Non-Small Cell Lung Cancer Patients: Insights from ERCC2 rs13181. Onco Targets Ther 2024; 17:767-776. [PMID: 39319218 PMCID: PMC11421434 DOI: 10.2147/ott.s475219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/08/2024] [Indexed: 09/26/2024] Open
Abstract
Purpose Individual responses to platinum-based treatment for Non-Small Cell Lung Cancer (NSCLC) are influenced by genetic polymorphisms, including Single Nucleotide Polymorphisms (SNPs). This study aimed to explore the role of ERCC2 in the Nucleotide Excision Repair (NER) pathway for platinum-based chemotherapy in NSCLC. While ERCC2 is widely studied, data for Southeast Asian populations are lacking. Addressing this gap could improve personalized treatment strategies for NSCLC in this demographic. Patients and Methods This study recruited 82 NSCLC patients with wildtype mutations of EGFR at Dr. H.A. Rotinsulu Lung Hospital, Bandung, and Dharmais Cancer Hospital, Jakarta. Data were collected prospectively from whole blood samples and medical records, while the effectiveness of chemotherapy was assessed by evaluating the response using RECIST 1.1 criteria on fourth cycle of chemotherapy. Results The results of this study showed the presence of genotype variation among the subjects, with frequency distribution as follows: AA genotype (82.9%), AC genotype (15.9%), and CC genotype (1.2%). The analysis of the association between ERCC2 rs13181 CC + AC versus AA with RECIST 1.1 yielded an odds ratio (OR) of 1.042 (95% CI: 0.292-3.715; p=0.950). A multivariate analysis that included cancer stage and chemotherapy regimen as additional variables produced an adjusted odds ratio (aOR) of 0.970 (95% CI: 0.263-3.568; p=0.963). Conclusion This study did not find statistically significant associations between ERCC2 rs13181 polymorphisms and chemotherapy responses. However, this research highlights the presence of genetic variation within the Indonesian population, with the AA genotype being the most prevalent, which may influence chemotherapy responses. The results provided preliminary data and lay the foundation for future comprehensive cohort observational investigations.
Collapse
Affiliation(s)
- Nadiya Nurul Afifah
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
- Department of Pharmacy, Faculty of Health Sciences, Universitas Esa Unggul, Jakarta, Indonesia
| | - Lanny Indah Permatasari
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Ajeng Diantini
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Ruri Intania
- Division of Pulmonology and Respiratory, Dr.H.A Rotinsulu, Lung Hospital, Bandung, Indonesia
| | - Indra Wijaya
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Hasan Sadikin General Hospital, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Hideru Obinata
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Melisa Intan Barliana
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
- Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
| |
Collapse
|
7
|
Ai C, Huang Z, Rong T, Shen W, Yang F, Li Q, Bi L, Li W. The impact of SOX4-activated CTHRC1 transcriptional activity regulating DNA damage repair on cisplatin resistance in lung adenocarcinoma. Electrophoresis 2024; 45:1408-1417. [PMID: 38629299 DOI: 10.1002/elps.202300255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/08/2024] [Accepted: 03/02/2024] [Indexed: 08/22/2024]
Abstract
Lung adenocarcinoma (LUAD) is the predominant subtype within the spectrum of lung malignancies. CTHRC1 has a pro-oncogenic role in various cancers. Here, we observed the upregulation of CTHRC1 in LUAD, but its role in cisplatin resistance in LUAD remains unclear. Bioinformatics analysis was employed to detect CTHRC1 and SRY-related HMG-box 4 (SOX4) expression in LUAD. Gene Set Enrichment Analysis predicted the enriched pathways related to CTHRC1. JASPAR and MotifMap databases predicted upstream transcription factors of CTHRC1. Pearson analysis was conducted to analyze the correlation between genes of interest. The interaction and binding relationship between CTHRC1 and SOX4 were validated through dual-luciferase and chromatin immunoprecipitation assays. Quantitative real-time polymerase chain reaction determined the expression of CTHRC1 and SOX4 genes. CCK-8 was performed to assess cell viability and calculate IC50 value. Flow cytometry examined the cell cycle. Comet assay and western blot assessed DNA damage. CTHRC1 and SOX4 were upregulated in LUAD. CTHRC1 exhibited higher expression in cisplatin-resistant A549 cells compared to cisplatin-sensitive A549 cells. Knockdown of CTHRC1 enhanced DNA damage during cisplatin treatment and increased the sensitivity of LUAD cells to cisplatin. Additionally, SOX4 modulated DNA damage repair (DDR) by activating CTHRC1 transcriptional activity, promoting cisplatin resistance in LUAD cells. SOX4 regulated DDR by activating CTHRC1, thereby enhancing cisplatin resistance in LUAD cells. The finding provides a novel approach to address clinical cisplatin resistance in LUAD, with CTHRC1 possibly serving as a candidate for targeted therapies in addressing cisplatin resistance within LUAD.
Collapse
Affiliation(s)
- Cheng Ai
- Department of Cardiothoracic Surgery, Bishan Hospital of Chongqing, Medical University, Chongqing, P. R. China
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, The affiliated Hospital of Nanjing University Medical School, Nanjing, P. R. China
| | - Zhenhao Huang
- Department of Cardiothoracic Surgery, Bishan Hospital of Chongqing, Medical University, Chongqing, P. R. China
| | - Tenghao Rong
- Department of Cardiothoracic Surgery, Bishan Hospital of Chongqing, Medical University, Chongqing, P. R. China
| | - Wang Shen
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, P. R. China
| | - Fuyu Yang
- Department of Cardiothoracic Surgery, Bishan Hospital of Chongqing, Medical University, Chongqing, P. R. China
| | - Qiang Li
- Department of Cardiothoracic Surgery, Bishan Hospital of Chongqing, Medical University, Chongqing, P. R. China
| | - Lei Bi
- Department of Cardiothoracic Surgery, Bishan Hospital of Chongqing, Medical University, Chongqing, P. R. China
| | - Wen Li
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, P. R. China
| |
Collapse
|
8
|
Popov AA, Shamanin VA, Petruseva IO, Evdokimov AN, Lavrik OI. Use of qPCR to Evaluate Efficiency of the Bulky DNA Damage Removal in Extracts of Mammalian Cells with Different Maximum Lifespan. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1183-1191. [PMID: 39218017 DOI: 10.1134/s0006297924070022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 09/04/2024]
Abstract
Proteins of nucleotide excision repair system (NER) are responsible for detecting and removing a wide range of bulky DNA damages, thereby contributing significantly to the genome stability maintenance within mammalian cells. Evaluation of NER functional status in the cells is important for identifying pathological changes in the body and assessing effectiveness of chemotherapy. The following method, described herein, has been developed for better assessment of bulky DNA damages removal in vitro, based on qPCR. Using the developed method, NER activity was compared for the extracts of the cells from two mammals with different lifespans: a long-lived naked mole-rat (Heterocephalus glaber) and a short-lived mouse (Mus musculus). Proteins of the H. glaber cell extract have been shown to be 1.5 times more effective at removing bulky damage from the model DNA substrate than the proteins of the M. musculus cell extract. These results are consistent with the experimental data previously obtained. The presented method could be applied not only in fundamental studies of DNA repair in mammalian cells, but also in clinical practice.
Collapse
Affiliation(s)
- Aleksei A Popov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | | | - Irina O Petruseva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Aleksei N Evdokimov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences, Novosibirsk, 630090, Russia.
- Novosibirsk National Research State University, Novosibirsk, 630090, Russia
| |
Collapse
|
9
|
Erdemir Sayan S, Sreekumar R, Bhome R, Mirnezami A, Yagci T, Sayan AE. ERCC1 abundance is an indicator of DNA repair-apoptosis decision upon DNA damage. Cell Death Discov 2024; 10:47. [PMID: 38272916 PMCID: PMC10810800 DOI: 10.1038/s41420-024-01817-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
DNA repair is essential for successful propagation of genetic material and fidelity of transcription. Nucleotide excision repair (NER) is one of the earliest DNA repair mechanisms, functionally conserved from bacteria to human. The fact that number of NER genes vary significantly between prokaryotes and metazoans gives the insight that NER proteins have evolved to acquire additional functions to combat challenges associated with a diploid genome, including being involved in the decision between DNA repair and apoptosis. However, no direct association between apoptosis and NER proteins has been shown to date. In this study, we induced apoptosis with a variety of agents, including oxaliplatin, doxorubicin and TRAIL, and observed changes in the abundance and molecular weight of NER complex proteins. Our results showed that XPA, XPC and ERCC1 protein levels change during DNA damage-induced apoptosis. Among these, ERCC1 decrease was observed as a pre-mitochondria depolarisation event which marks the "point of no return" in apoptosis signalling. ERCC1 decrease was due to proteasomal degradation upon lethal doses of oxaliplatin exposure. When ERCC1 protein was stabilised using proteasome inhibitors, the pro-apoptotic activity of oxaliplatin was attenuated. These results explain why clinical trials using proteasome inhibitors and platinum derivatives showed limited efficacy in carcinoma treatment and also the importance of how deep understanding of DNA repair mechanisms can improve cancer therapy.
Collapse
Affiliation(s)
- Sule Erdemir Sayan
- Department of Molecular Biology and Genetics, Gebze Technical University, Kocaeli, 41400, Turkey
| | - Rahul Sreekumar
- Cancer Sciences Unit, University of Southampton, Southampton General Hospital, Somers Cancer Research Building, Southampton, SO16 6YD, UK
| | - Rahul Bhome
- Cancer Sciences Unit, University of Southampton, Southampton General Hospital, Somers Cancer Research Building, Southampton, SO16 6YD, UK
| | - Alex Mirnezami
- Cancer Sciences Unit, University of Southampton, Southampton General Hospital, Somers Cancer Research Building, Southampton, SO16 6YD, UK
| | - Tamer Yagci
- Department of Molecular Biology and Genetics, Gebze Technical University, Kocaeli, 41400, Turkey
| | - A Emre Sayan
- Cancer Sciences Unit, University of Southampton, Southampton General Hospital, Somers Cancer Research Building, Southampton, SO16 6YD, UK.
| |
Collapse
|
10
|
Slyskova J, Muniesa-Vargas A, da Silva I, Drummond R, Park J, Häckes D, Poetsch I, Ribeiro-Silva C, Moretton A, Heffeter P, Schärer O, Vermeulen W, Lans H, Loizou J. Detection of oxaliplatin- and cisplatin-DNA lesions requires different global genome repair mechanisms that affect their clinical efficacy. NAR Cancer 2023; 5:zcad057. [PMID: 38058548 PMCID: PMC10696645 DOI: 10.1093/narcan/zcad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
The therapeutic efficacy of cisplatin and oxaliplatin depends on the balance between the DNA damage induction and the DNA damage response of tumor cells. Based on clinical evidence, oxaliplatin is administered to cisplatin-unresponsive cancers, but the underlying molecular causes for this tumor specificity are not clear. Hence, stratification of patients based on DNA repair profiling is not sufficiently utilized for treatment selection. Using a combination of genetic, transcriptomics and imaging approaches, we identified factors that promote global genome nucleotide excision repair (GG-NER) of DNA-platinum adducts induced by oxaliplatin, but not by cisplatin. We show that oxaliplatin-DNA lesions are a poor substrate for GG-NER initiating factor XPC and that DDB2 and HMGA2 are required for efficient binding of XPC to oxaliplatin lesions and subsequent GG-NER initiation. Loss of DDB2 and HMGA2 therefore leads to hypersensitivity to oxaliplatin but not to cisplatin. As a result, low DDB2 levels in different colon cancer cells are associated with GG-NER deficiency and oxaliplatin hypersensitivity. Finally, we show that colon cancer patients with low DDB2 levels have a better prognosis after oxaliplatin treatment than patients with high DDB2 expression. We therefore propose that DDB2 is a promising predictive marker of oxaliplatin treatment efficiency in colon cancer.
Collapse
Affiliation(s)
- Jana Slyskova
- Center for Cancer Research, Medical University of Vienna, A-1090 Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, A-1090 Vienna, Austria
| | - Alba Muniesa-Vargas
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Israel Tojal da Silva
- Laboratory of Bioinformatics and Computational Biology, A.C. Camargo Cancer Center, São Paulo 01508-010, Brazil
| | - Rodrigo Drummond
- Laboratory of Bioinformatics and Computational Biology, A.C. Camargo Cancer Center, São Paulo 01508-010, Brazil
| | - Jiyeong Park
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - David Häckes
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Isabella Poetsch
- Center for Cancer Research, Medical University of Vienna, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, A-1090 Vienna, Austria
| | - Cristina Ribeiro-Silva
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Amandine Moretton
- Center for Cancer Research, Medical University of Vienna, A-1090 Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, A-1090 Vienna, Austria
| | - Petra Heffeter
- Center for Cancer Research, Medical University of Vienna, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, A-1090 Vienna, Austria
| | - Orlando D Schärer
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Wim Vermeulen
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Hannes Lans
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Joanna I Loizou
- Center for Cancer Research, Medical University of Vienna, A-1090 Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, A-1090 Vienna, Austria
| |
Collapse
|
11
|
Jeon J, Lee S, Park JM, Lee TH, Kang TH. Circadian control of cisplatin-DNA adduct repair and apoptosis in culture cells. Int J Biochem Cell Biol 2023; 162:106454. [PMID: 37574041 DOI: 10.1016/j.biocel.2023.106454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/02/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
Cisplatin, a widely prescribed chemotherapeutic agent for treating solid tumors, induces DNA adducts and activates cellular defense mechanisms, including DNA repair, cell cycle checkpoint control, and apoptosis. Considering the circadian rhythmicity displayed by most chemotherapeutic agents and their varying therapeutic efficacy based on treatment timing, our study aimed to investigate whether the circadian clock system influences the DNA damage responses triggered by cisplatin in synchronized cells. We examined the DNA damage responses in circadian-synchronized wild-type mouse embryonic fibroblasts (WT-MEF; clock-proficient cells), cryptochrome1 and 2 double knock-out MEF (CRYDKO; clock-deficient cells), and mouse hepatocarcinoma Hepa1c1c7 cells. Varying the treatment time resulted in a significant difference in the rate of platinum-DNA adduct removal specifically in circadian-synchronized WT-MEF, while CRYDKO did not exhibit such variation. Moreover, diurnal variation in other DNA damage responses, such as cell cycle checkpoint activity indicated by p53 phosphorylation status and apoptosis measured by DNA break frequency, was observed only in circadian-synchronized WT-MEF, not in CRYDKO or mouse hepatocarcinoma Hepa1c1c7 cells. These findings highlight that the DNA damage responses triggered by cisplatin are indeed governed by circadian control exclusively in clock-proficient cells. This outcome bears potential implications for enhancing or devising chronotherapy approaches for cancer patients.
Collapse
Affiliation(s)
- Jeseok Jeon
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea
| | - Sanggon Lee
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea
| | - Jeong-Min Park
- Department of Stem Cell Transplantation Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tae-Hee Lee
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Tae-Hong Kang
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea.
| |
Collapse
|
12
|
Liu Y, Dong W, Ma Y, Dou J, Jiang W, Wang L, Wang Q, Li S, Wang Y, Li M. Nanomedicines with high drug availability and drug sensitivity overcome hypoxia-associated drug resistance. Biomaterials 2023; 294:122023. [PMID: 36708621 DOI: 10.1016/j.biomaterials.2023.122023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/17/2022] [Accepted: 01/20/2023] [Indexed: 01/23/2023]
Abstract
Tumor hypoxia heterogeneity, a hallmark of the tumor microenvironment, confers resistance to conventional chemotherapy due to insufficient drug availability and drug sensitivity in hypoxic regions. To overcome these challenges, we develope a nanomedicine, NPHPaPN, constructed with hyaluronic acid (HA) grafted with cisplatin prodrug and PEG-azobenzene for hypoxia-responsive PEG shell deshielding and loaded with a DNA damage repair inhibitor (NERi). After arriving at the tumor site, NPHPaPN deshields the PEG shell in response to hypoxia due to the enzymolysis of azobenzene and thus exposes HA. The exposed HA binds to the highly expressed CD44 on cisplatin-resistant tumor cells and mediates drug internalization, thus increasing drug availability to hypoxic tumor cells. After intracellular hyaluronidase-mediated cleavage, the HA NPs release the cisplatin prodrug and NERi, and cause enhanced DNA damage and consequent cell death, thus enhancing the drug sensitivity of hypoxic tumor cells. Eventually, NPHPaPN achieves distinct tumor growth suppression with an ∼84.4% inhibition rate.
Collapse
Affiliation(s)
- Yi Liu
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Wang Dong
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Yinchu Ma
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Jiaxiang Dou
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Wei Jiang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Li Wang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Qin Wang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Shuya Li
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Yucai Wang
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, 230601, China.
| | - Min Li
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| |
Collapse
|
13
|
High expression of CETN2 is associated with platinum resistance and poor prognosis in epithelial ovarian cancer. Clin Transl Oncol 2022; 25:1340-1352. [PMID: 36527574 DOI: 10.1007/s12094-022-03031-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE The poor prognosis of ovarian cancer is largely due to platinum resistance. It has been demonstrated that nucleotide excision repair (NER) involving centrin-2(CETN2) is connected to platinum resistance in ovarian cancer. The molecular mechanism of CETN2 in ovarian cancer and the mechanism affecting the outcome of chemotherapy are unknown. METHODS The protein-protein interaction (PPI) network was mapped after obtaining the interacting proteins of CETN2, and the interacting genes were subjected to enrichment analysis. To examine the relationship between CETN2 and platinum resistance, gene microarray data and clinical data related to platinum resistance in ovarian cancer were downloaded. The possible signaling pathway of CETN2 was investigated by Gene set enrichment analysis (GSEA). Immune infiltration analysis was performed. Immunohistochemistry (IHC) and quantitative real-time PCR (QRT-PCR) were used to examine the expression of CETN2 in clinical samples in relation to the effectiveness of chemotherapy. The capacity of CETN2 to predict chemotherapy results was proven by receiver operating characteristic (ROC) curves after the construction of two prediction models, the logistic regression model and the decision tree model. The impact of CETN2 on prognosis was examined using the Kaplan-Meier technique. RESULTS CETN2 was associated with NER, oxidative phosphorylation (OXPHOS) and cell cycle pathways in ovarian cancer drug-resistant samples. In clinical samples, CETN2 showed its possible correlation with immune infiltration. The protein expression level of CETN2 was significantly higher in platinum-resistant patients than that in platinum-sensitive patients, and the expression level had some predictive value for chemotherapy outcome, and high CETN2 protein expression was associated with poorer progression-free survival. CONCLUSIONS CETN2 protein had a significant effect on ovarian cancer platinum sensitivity and prognosis, which may be related to the activation of NER, OXPHOS and cell cycle pathways upon CETN2 upregulation. Further research is necessary to determine the therapeutic application value of CETN2, which may be a new biomarker of chemoresponsiveness.
Collapse
|
14
|
Krasikova YS, Lavrik OI, Rechkunova NI. The XPA Protein-Life under Precise Control. Cells 2022; 11:cells11233723. [PMID: 36496984 PMCID: PMC9739396 DOI: 10.3390/cells11233723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
Nucleotide excision repair (NER) is a central DNA repair pathway responsible for removing a wide variety of DNA-distorting lesions from the genome. The highly choreographed cascade of core NER reactions requires more than 30 polypeptides. The xeroderma pigmentosum group A (XPA) protein plays an essential role in the NER process. XPA interacts with almost all NER participants and organizes the correct NER repair complex. In the absence of XPA's scaffolding function, no repair process occurs. In this review, we briefly summarize our current knowledge about the XPA protein structure and analyze the formation of contact with its protein partners during NER complex assembling. We focus on different ways of regulation of the XPA protein's activity and expression and pay special attention to the network of post-translational modifications. We also discuss the data that is not in line with the currently accepted hypothesis about the functioning of the XPA protein.
Collapse
Affiliation(s)
- Yuliya S. Krasikova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Nadejda I. Rechkunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Correspondence:
| |
Collapse
|
15
|
Chen M, Marrs B, Qi L, Knifley T, Weiss HL, D’Orazio JA, O’Connor KL. Integrin α6β4 signals through DNA damage response pathway to sensitize breast cancer cells to cisplatin. Front Oncol 2022; 12:1043538. [PMID: 36439467 PMCID: PMC9686853 DOI: 10.3389/fonc.2022.1043538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Integrin α6β4 is highly expressed in triple negative breast cancer (TNBC) and drives its most aggressive traits; however, its impact on chemotherapeutic efficacy remains untested. We found that integrin α6β4 signaling promoted sensitivity to cisplatin and carboplatin but not to other chemotherapies tested. Mechanistic investigations revealed that integrin α6β4 stimulated the activation of ATM, p53, and 53BP1, which required the integrin β4 signaling domain. Genetic manipulation of gene expression demonstrated that mutant p53 cooperated with integrin α6β4 for cisplatin sensitivity and was necessary for downstream phosphorylation of 53BP1 and enhanced ATM activation. Additionally, we found that in response to cisplatin-induced DNA double strand break (DSB), integrin α6β4 suppressed the homologous recombination (HR) activity and enhanced non-homologous end joining (NHEJ) repair activity. Finally, we discovered that integrin α6β4 preferentially activated DNA-PK, facilitated DNA-PK-p53 and p53-53BP1 complex formation in response to cisplatin and required DNA-PK to enhance ATM, 53BP1 and p53 activation as well as cisplatin sensitivity. In summary, we discovered a novel function of integrin α6β4 in promoting cisplatin sensitivity in TNBC through DNA damage response pathway.
Collapse
Affiliation(s)
- Min Chen
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Brock Marrs
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Lei Qi
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Teresa Knifley
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Heidi L. Weiss
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
- Department of Biostatistics, University of Kentucky, Lexington, KY, United States
| | - John A. D’Orazio
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
- Department of Pediatrics, University of Kentucky, Lexington, KY, United States
| | - Kathleen L. O’Connor
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
16
|
Mitrevska K, Cernei N, Michalkova H, Rodrigo MAM, Sivak L, Heger Z, Zitka O, Kopel P, Adam V, Milosavljevic V. Platinum-based drug-induced depletion of amino acids in the kidneys and liver. Front Oncol 2022; 12:986045. [PMID: 36212465 PMCID: PMC9535364 DOI: 10.3389/fonc.2022.986045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cisplatin (cis-diamminedichloroplatinum II; CDDP) is a widely used cytostatic agent; however, it tends to promote kidney and liver disease, which are a major signs of drug-induced toxicity. Platinum compounds are often presented as alternative therapeutics and subsequently easily dispersed in the environment as contaminants. Due to the major roles of the liver and kidneys in removing toxic materials from the human body, we performed a comparative study of the amino acid profiles in chicken liver and kidneys before and after the application of CDDP and platinum nanoparticles (PtNPs-10 and PtNPs-40). The treatment of the liver with the selected drugs affected different amino acids; however, Leu and Arg were decreased after all treatments. The treatment of the kidneys with CDDP mostly affected Val; PtNPs-10 decreased Val, Ile and Thr; and PtNPs-40 affected only Pro. In addition, we tested the same drugs on two healthy cell lines, HaCaT and HEK-293, and ultimately explored the amino acid profiles in relation to the tricarboxylic acid cycle (TCA) and methionine cycle, which revealed that in both cell lines, there was a general increase in amino acid concentrations associated with changes in the concentrations of the metabolites of these cycles.
Collapse
Affiliation(s)
- Katerina Mitrevska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Natalia Cernei
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Hana Michalkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | | | - Ladislav Sivak
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Pavel Kopel
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, Olomouc, Czechia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Vedran Milosavljevic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
- *Correspondence: Vedran Milosavljevic,
| |
Collapse
|
17
|
Blee AM, Li B, Pecen T, Meiler J, Nagel ZD, Capra JA, Chazin WJ. An Active Learning Framework Improves Tumor Variant Interpretation. Cancer Res 2022; 82:2704-2715. [PMID: 35687855 PMCID: PMC9357215 DOI: 10.1158/0008-5472.can-21-3798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/26/2022] [Accepted: 06/07/2022] [Indexed: 02/05/2023]
Abstract
SIGNIFICANCE A novel machine learning approach predicts the impact of tumor mutations on cellular phenotypes, overcomes limited training data, minimizes costly functional validation, and advances efforts to implement cancer precision medicine.
Collapse
Affiliation(s)
- Alexandra M. Blee
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Bian Li
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Turner Pecen
- John B. Little Center of Radiation Sciences, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Jens Meiler
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, SAC 04103, Germany
| | - Zachary D. Nagel
- John B. Little Center of Radiation Sciences, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - John A. Capra
- Bakar Computational Health Sciences Institute and Department of Epidemiology and Biostatistics, University of California, San Francisco, CA 94107, USA
| | - Walter J. Chazin
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|
18
|
Pasqui A, Boddi A, Campanacci DA, Scoccianti G, Bernini A, Grasso D, Gambale E, Scolari F, Palchetti I, Palomba A, Fancelli S, Caliman E, Antonuzzo L, Pillozzi S. Alteration of the Nucleotide Excision Repair (NER) Pathway in Soft Tissue Sarcoma. Int J Mol Sci 2022; 23:ijms23158360. [PMID: 35955506 PMCID: PMC9369086 DOI: 10.3390/ijms23158360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 02/02/2023] Open
Abstract
Clinical responses to anticancer therapies in advanced soft tissue sarcoma (STS) are unluckily restricted to a small subgroup of patients. Much of the inter-individual variability in treatment efficacy is as result of polymorphisms in genes encoding proteins involved in drug pharmacokinetics and pharmacodynamics. The nucleotide excision repair (NER) system is the main defense mechanism for repairing DNA damage caused by carcinogens and chemotherapy drugs. Single nucleotide polymorphisms (SNPs) of NER pathway key genes, altering mRNA expression or protein activity, can be significantly associated with response to chemotherapy, toxicities, tumor relapse or risk of developing cancer. In the present study, in a cohort of STS patients, we performed DNA extraction and genotyping by SNP assay, RNA extraction and quantitative real-time reverse transcription PCR (qPCR), a molecular dynamics simulation in order to characterize the NER pathway in STS. We observed a severe deregulation of the NER pathway and we describe for the first time the effect of SNP rs1047768 in the ERCC5 structure, suggesting a role in modulating single-stranded DNA (ssDNA) binding. Our results evidenced, for the first time, the correlation between a specific genotype profile of ERCC genes and proficiency of the NER pathway in STS.
Collapse
Affiliation(s)
- Adriano Pasqui
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy; (A.P.); (L.A.); (S.P.)
| | - Anna Boddi
- Orthopaedic Oncology Unit, Careggi University Hospital, 50134 Florence, Italy; (A.B.); (D.A.C.); (G.S.); (F.S.)
| | - Domenico Andrea Campanacci
- Orthopaedic Oncology Unit, Careggi University Hospital, 50134 Florence, Italy; (A.B.); (D.A.C.); (G.S.); (F.S.)
- Orthopaedic Oncology Unit, Careggi University Hospital, Department of Health Sciences, University of Florence, 50134 Florence, Italy
| | - Guido Scoccianti
- Orthopaedic Oncology Unit, Careggi University Hospital, 50134 Florence, Italy; (A.B.); (D.A.C.); (G.S.); (F.S.)
| | - Andrea Bernini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
- Correspondence:
| | - Daniela Grasso
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Elisabetta Gambale
- Clinical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy;
| | - Federico Scolari
- Orthopaedic Oncology Unit, Careggi University Hospital, 50134 Florence, Italy; (A.B.); (D.A.C.); (G.S.); (F.S.)
| | - Ilaria Palchetti
- Department of Chemistry Ugo Schiff, University of Florence, 50019 Sesto Fiorentino, Italy;
| | - Annarita Palomba
- Histopathology and Molecular Diagnostic Unit, Careggi University Hospital, 50134 Florence, Italy;
| | - Sara Fancelli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (S.F.); (E.C.)
| | - Enrico Caliman
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (S.F.); (E.C.)
| | - Lorenzo Antonuzzo
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy; (A.P.); (L.A.); (S.P.)
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (S.F.); (E.C.)
| | - Serena Pillozzi
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy; (A.P.); (L.A.); (S.P.)
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (S.F.); (E.C.)
| |
Collapse
|
19
|
Sui Q, Chen Z, Hu Z, Huang Y, Liang J, Bi G, Bian Y, Zhao M, Zhan C, Lin Z, Wang Q, Tan L. Cisplatin resistance-related multi-omics differences and the establishment of machine learning models. J Transl Med 2022; 20:171. [PMID: 35410350 PMCID: PMC9004122 DOI: 10.1186/s12967-022-03372-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/29/2022] [Indexed: 01/05/2023] Open
Abstract
Objectives Platinum-based chemotherapies are currently the first-line treatment of non-small cell lung cancer. This study will improve our understanding of the causes of resistance to cisplatin, especially in lung adenocarcinoma (LUAD) and provide a reference for therapeutic decisions in clinical practice. Methods Cancer Cell Line Encyclopedia (CCLE), The Cancer Genome Atlas (TCGA) and Zhongshan hospital affiliated to Fudan University (zs-cohort) were used to identify the multi-omics differences related to platinum chemotherapy. Cisplatin-resistant mRNA and miRNA models were constructed by Logistic regression, classification and regression tree and C4.5 decision tree classification algorithm with previous feature selection performed via least absolute shrinkage and selection operator (LASSO). qRT-PCR and western-blotting of A549 and H358 cells, as well as single-cell Seq data of tumor samples were applied to verify the tendency of certain genes. Results 661 cell lines were divided into three groups according to the IC50 value of cisplatin, and the top 1/3 (220) with a small IC50 value were defined as the sensitive group while the last 1/3 (220) were enrolled in the insensitive group. TP53 was the most common mutation in the insensitive group, in contrast to TTN in the sensitive group. 1348 mRNA, 80 miRNA, and 15 metabolites were differentially expressed between 2 groups (P < 0.05). According to the LASSO penalized logistic modeling, 6 of the 1348 mRNAs, FOXA2, BATF3, SIX1, HOXA1, ZBTB38, IRF5, were selected as the associated features with cisplatin resistance and for the contribution of predictive mRNA model (all of adjusted P-values < 0.001). Three of 6 (BATF3, IRF5, ZBTB38) genes were finally verified in cell level and patients in zs-cohort. Conclusions Somatic mutations, mRNA expressions, miRNA expressions, metabolites and methylation were related to the resistance of cisplatin. The models we created could help in the prediction of the reaction and prognosis of patients given platinum-based chemotherapies. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03372-0.
Collapse
|
20
|
Kelm JM, Samarbakhsh A, Pillai A, VanderVere-Carozza PS, Aruri H, Pandey DS, Pawelczak KS, Turchi JJ, Gavande NS. Recent Advances in the Development of Non-PIKKs Targeting Small Molecule Inhibitors of DNA Double-Strand Break Repair. Front Oncol 2022; 12:850883. [PMID: 35463312 PMCID: PMC9020266 DOI: 10.3389/fonc.2022.850883] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/22/2022] [Indexed: 01/09/2023] Open
Abstract
The vast majority of cancer patients receive DNA-damaging drugs or ionizing radiation (IR) during their course of treatment, yet the efficacy of these therapies is tempered by DNA repair and DNA damage response (DDR) pathways. Aberrations in DNA repair and the DDR are observed in many cancer subtypes and can promote de novo carcinogenesis, genomic instability, and ensuing resistance to current cancer therapy. Additionally, stalled or collapsed DNA replication forks present a unique challenge to the double-strand DNA break (DSB) repair system. Of the various inducible DNA lesions, DSBs are the most lethal and thus desirable in the setting of cancer treatment. In mammalian cells, DSBs are typically repaired by the error prone non-homologous end joining pathway (NHEJ) or the high-fidelity homology directed repair (HDR) pathway. Targeting DSB repair pathways using small molecular inhibitors offers a promising mechanism to synergize DNA-damaging drugs and IR while selective inhibition of the NHEJ pathway can induce synthetic lethality in HDR-deficient cancer subtypes. Selective inhibitors of the NHEJ pathway and alternative DSB-repair pathways may also see future use in precision genome editing to direct repair of resulting DSBs created by the HDR pathway. In this review, we highlight the recent advances in the development of inhibitors of the non-phosphatidylinositol 3-kinase-related kinases (non-PIKKs) members of the NHEJ, HDR and minor backup SSA and alt-NHEJ DSB-repair pathways. The inhibitors described within this review target the non-PIKKs mediators of DSB repair including Ku70/80, Artemis, DNA Ligase IV, XRCC4, MRN complex, RPA, RAD51, RAD52, ERCC1-XPF, helicases, and DNA polymerase θ. While the DDR PIKKs remain intensely pursued as therapeutic targets, small molecule inhibition of non-PIKKs represents an emerging opportunity in drug discovery that offers considerable potential to impact cancer treatment.
Collapse
Affiliation(s)
- Jeremy M. Kelm
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, United States
| | - Amirreza Samarbakhsh
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, United States
| | - Athira Pillai
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, United States
| | | | - Hariprasad Aruri
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, United States
| | - Deepti S. Pandey
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, United States
| | | | - John J. Turchi
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States,NERx Biosciences, Indianapolis, IN, United States,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Navnath S. Gavande
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, United States,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States,*Correspondence: Navnath S. Gavande, ; orcid.org/0000-0002-2413-0235
| |
Collapse
|
21
|
Shah SM, Demidova EV, Lesh RW, Hall MJ, Daly MB, Meyer JE, Edelman MJ, Arora S. Therapeutic implications of germline vulnerabilities in DNA repair for precision oncology. Cancer Treat Rev 2022; 104:102337. [PMID: 35051883 PMCID: PMC9016579 DOI: 10.1016/j.ctrv.2021.102337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022]
Abstract
DNA repair vulnerabilities are present in a significant proportion of cancers. Specifically, germline alterations in DNA repair not only increase cancer risk but are associated with treatment response and clinical outcomes. The therapeutic landscape of cancer has rapidly evolved with the FDA approval of therapies that specifically target DNA repair vulnerabilities. The clinical success of synthetic lethality between BRCA deficiency and poly(ADP-ribose) polymerase (PARP) inhibition has been truly revolutionary. Defective mismatch repair has been validated as a predictor of response to immune checkpoint blockade associated with durable responses and long-term benefit in many cancer patients. Advances in next generation sequencing technologies and their decreasing cost have supported increased genetic profiling of tumors coupled with germline testing of cancer risk genes in patients. The clinical adoption of panel testing for germline assessment in high-risk individuals has generated a plethora of genetic data, particularly on DNA repair genes. Here, we highlight the therapeutic relevance of germline aberrations in DNA repair to identify patients eligible for precision treatments such as PARP inhibitors (PARPis), immune checkpoint blockade, chemotherapy, radiation therapy and combined treatment. We also discuss emerging mechanisms that regulate DNA repair.
Collapse
Affiliation(s)
- Shreya M Shah
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States; Science Scholars Program, Temple University, Philadelphia, PA, United States
| | - Elena V Demidova
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States; Kazan Federal University, Kazan, Russian Federation
| | - Randy W Lesh
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States; Geisinger Commonwealth School of Medicine, Scranton, PA, United States
| | - Michael J Hall
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States; Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Mary B Daly
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States; Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Joshua E Meyer
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, United States; Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Martin J Edelman
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, United States.
| | - Sanjeevani Arora
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States; Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, United States.
| |
Collapse
|
22
|
Suzuki T, Sirimangkalakitti N, Baba A, Toyoshima-Nagasaki R, Enomoto Y, Saito N, Ogasawara Y. Characterization of the nucleotide excision repair pathway and evaluation of compounds for overcoming the cisplatin resistance of non‑small cell lung cancer cell lines. Oncol Rep 2022; 47:70. [PMID: 35147203 DOI: 10.3892/or.2022.8281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 01/03/2022] [Indexed: 11/06/2022] Open
Abstract
Lung cancer has been reported to be the leading cause of cancer‑related mortality worldwide. Cisplatin combination chemotherapy is a standard therapeutic strategy for patients with non‑small cell lung cancer (NSCLC) lacking driver mutations. However, the development of cisplatin resistance is a major obstacle to effective cancer treatment. The cellular mechanisms underlying cisplatin resistance have been previously revealed to be multifunctional. Accordingly, mechanistic analysis and the development of novel therapeutic strategies for cisplatin‑resistant NSCLC are urgently required. The present study mainly focused on the DNA repair mechanisms in cisplatin‑resistant NSCLC cells. Additionally, the effects of an Ecteinascidin (Et) derivative on cisplatin‑resistant cell lines were examined, by using a cisplatin‑resistant NSCLC cell line subjected to nucleotide excision repair (NER) pathway alterations. The results revealed that xeroderma pigmentosum group F‑complementing protein (XPF) mRNA expression was strongly associated with cisplatin resistance in cisplatin‑resistant NSCLC cell lines. XPF silencing significantly restored the sensitivity of cisplatin‑resistant PC‑14/CDDP cells to the drug. A potent anticancer effect of Et was observed in the cisplatin‑resistant cell line (PC‑14/CDDP), in which the NER pathway was altered. On the whole, these findings revealed that the expression levels of NER pathway‑related genes, including XPF, may have potential as biomarkers of cisplatin resistance. It was also suggested that Et may be a very promising compound for the development of novel anticancer drugs for the treatment of cisplatin‑resistant lung cancer.
Collapse
Affiliation(s)
- Toshihiro Suzuki
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, Tokyo 204‑8588, Japan
| | | | - Asami Baba
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, Tokyo 204‑8588, Japan
| | | | - Yuna Enomoto
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, Tokyo 204‑8588, Japan
| | - Naoki Saito
- Department of Pharmaceutical Chemistry, Meiji Pharmaceutical University, Tokyo 204‑8588, Japan
| | - Yuki Ogasawara
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, Tokyo 204‑8588, Japan
| |
Collapse
|
23
|
Berney M, T Manoj M, Fay EM, McGouran JF. 5'-Phosphorylation Increases the Efficacy of Nucleoside Inhibitors of the DNA Repair Enzyme SNM1A. ChemMedChem 2021; 17:e202100603. [PMID: 34905656 DOI: 10.1002/cmdc.202100603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/07/2021] [Indexed: 11/11/2022]
Abstract
Certain cancers exhibit upregulation of DNA interstrand crosslink repair pathways, which contributes to resistance to crosslinking chemotherapy drugs and poor prognoses. Inhibition of enzymes implicated in interstrand crosslink repair is therefore a promising strategy for improving the efficacy of cancer treatment. One such target enzyme is SNM1A, a zinc co-ordinating 5'-3' exonuclease. Previous studies have demonstrated the feasibility of inhibiting SNM1A using modified nucleosides appended with zinc-binding groups. In this work, we sought to develop more effective SNM1A inhibitors by exploiting interactions with the phosphate-binding pocket adjacent to the enzyme's active site, in addition to the catalytic zinc ions. A series of nucleoside derivatives bearing phosphate moieties at the 5'-position, as well as zinc-binding groups at the 3'-position, were prepared and tested in gel-electrophoresis and real-time fluorescence assays. As well as investigating novel zinc-binding groups, we found that incorporation of a 5'-phosphate dramatically increased the potency of the inhibitors.
Collapse
Affiliation(s)
- Mark Berney
- Trinity College Dublin: The University of Dublin Trinity College, Chemistry, IRELAND
| | - Manav T Manoj
- Trinity College Dublin: The University of Dublin Trinity College, Chemistry, IRELAND
| | - Ellen Mary Fay
- Trinity College Dublin: The University of Dublin Trinity College, Chemistry, IRELAND
| | | |
Collapse
|
24
|
Berney M, Doherty W, Jauslin WT, T Manoj M, Dürr EM, McGouran JF. Synthesis and evaluation of squaramide and thiosquaramide inhibitors of the DNA repair enzyme SNM1A. Bioorg Med Chem 2021; 46:116369. [PMID: 34482229 PMCID: PMC8607331 DOI: 10.1016/j.bmc.2021.116369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 11/24/2022]
Abstract
SNM1A is a zinc-dependent nuclease involved in the removal of interstrand crosslink lesions from DNA. Inhibition of interstrand crosslink repair enzymes such as SNM1A is a promising strategy for improving the efficacy of crosslinking chemotherapy drugs. Initial studies have demonstrated the feasibility of developing SNM1A inhibitors, but the full potential of this enzyme as a drug target has yet to be explored. Herein, the synthesis of a family of squaramide- and thiosquaramide-bearing nucleoside derivatives and their evaluation as SNM1A inhibitors is reported. A gel electrophoresis assay was used to identify nucleoside derivatives bearing an N-hydroxysquaramide or squaric acid moiety at the 3′-position, and a thymidine derivative bearing a 5′-thiosquaramide, as candidate SNM1A inhibitors. Quantitative IC50 determination showed that a thymidine derivative bearing a 5′-thiosquaramide was the most potent inhibitor, followed by a thymidine derivative bearing a 3′-squaric acid. UV–Vis titrations were carried out to evaluate the binding of the (thio)squaramides to zinc ions, allowing the order of inhibitory potency to be rationalised. The membrane permeability of the active inhibitors was investigated, with several compounds showing promise for future in vivo applications.
Collapse
Affiliation(s)
- Mark Berney
- School of Chemistry & Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Ireland
| | - William Doherty
- School of Chemistry & Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Ireland
| | - Werner Theodor Jauslin
- School of Chemistry & Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Ireland
| | - Manav T Manoj
- School of Chemistry & Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Ireland
| | - Eva-Maria Dürr
- School of Chemistry & Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Ireland
| | - Joanna Francelle McGouran
- School of Chemistry & Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Ireland.
| |
Collapse
|
25
|
D'Amora P, Silva IDCG, Tewari KS, Bristow RE, Cappuccini F, Evans SS, Salzgeber MB, Addis-Bernard PJ, Palma AM, Marchioni DML, Carioca AAF, Penner KR, Alldredge J, Longoria T, Nagourney RA. Platinum resistance in gynecologic malignancies: Response, disease free and overall survival are predicted by biochemical signature: A metabolomic analysis. Gynecol Oncol 2021; 163:162-170. [PMID: 34446269 DOI: 10.1016/j.ygyno.2021.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/22/2021] [Accepted: 08/01/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Platinum resistance, defined as the lack of response or relapse within six months of platinum-based chemotherapy, is an important determinant of survival in gynecologic cancer. We used quantitative Mass Spectrometry to identify metabolic signatures that predict platinum resistance in patients receiving chemotherapy for gynecologic cancers. METHODS In this study 47 patients with adenocarcinoma of the ovary or uterus who were candidates for carboplatin plus paclitaxel submitted blood for quantitation of metabolites and surgical specimens for the isolation 3-dimensional organoids used to measure individual patient platinum resistance, ex vivo. Results were correlated with response, time to progression and survival. RESULTS Of 47 patients, 27 (64.3%) achieved complete remission with a mean time to progression of 1.9 years (± 1.5), disease-free survival of 1.7 years (± 1.4) and overall survival of 2.6 years (± 1.6) and a mean cisplatin lethal concentration 50% (LC50) = 1.15 μg/ml (range 0.4-3.1). Cisplatin LC50's correlated with a non-significant decrease in complete remission (RR [95% CI] =0.76 [0.46-1.27]), diminished disease-free survival (median: 1.15 vs. 2.99 years, p = 0.038) and with biochemical signatures of 186 metabolites. Receiver operating curves (ROC) of lipid ratios, branched chain amino acids and the tryptophan to kynurenine ratio identified patients at the highest risk of relapse and death (AUC = 0.933) with a sensitivity of 92.0% and specificity of 86.0% (p < 0.001). CONCLUSIONS Metabolic signatures in gynecologic cancer identify patients at the highest risk of relapse and death offering new diagnostic and prognostic tools for management of the advanced gynecologic tumors.
Collapse
Affiliation(s)
- Paulo D'Amora
- Molecular Gynecology and Metabolomics Lab, Gynecology Department, College of Medicine of the Federal University of São Paulo (EPM-UNIFESP), Rua Pedro de Toledo, 781 - 4o. andar frente, 04039-032 São Paulo, SP, Brazil; Nagourney Cancer Institute, 750 East 29th Street, 90806 Long Beach, CA, USA; Metabolomycs, Inc., 750 East 29th Street, 90806 Long Beach, CA, USA.
| | - Ismael Dale C G Silva
- Molecular Gynecology and Metabolomics Lab, Gynecology Department, College of Medicine of the Federal University of São Paulo (EPM-UNIFESP), Rua Pedro de Toledo, 781 - 4o. andar frente, 04039-032 São Paulo, SP, Brazil; Metabolomycs, Inc., 750 East 29th Street, 90806 Long Beach, CA, USA
| | - Krishnansu S Tewari
- Memorial Medical Center of Long Beach, Todd Cancer Institute, 2810 Long Beach Blvd, Long Beach 90806, CA, USA; Department of Obstetrics and Gynecology, University of California Irvine (UCI) School of Medicine, 101 The City Drive South, Orange 92868, CA, USA
| | - Robert E Bristow
- Memorial Medical Center of Long Beach, Todd Cancer Institute, 2810 Long Beach Blvd, Long Beach 90806, CA, USA; Department of Obstetrics and Gynecology, University of California Irvine (UCI) School of Medicine, 101 The City Drive South, Orange 92868, CA, USA
| | - Fabio Cappuccini
- Memorial Medical Center of Long Beach, Todd Cancer Institute, 2810 Long Beach Blvd, Long Beach 90806, CA, USA; Department of Obstetrics and Gynecology, University of California Irvine (UCI) School of Medicine, 101 The City Drive South, Orange 92868, CA, USA
| | - Steven S Evans
- Nagourney Cancer Institute, 750 East 29th Street, 90806 Long Beach, CA, USA; Metabolomycs, Inc., 750 East 29th Street, 90806 Long Beach, CA, USA
| | - Marcia B Salzgeber
- Molecular Gynecology and Metabolomics Lab, Gynecology Department, College of Medicine of the Federal University of São Paulo (EPM-UNIFESP), Rua Pedro de Toledo, 781 - 4o. andar frente, 04039-032 São Paulo, SP, Brazil
| | | | - Anton M Palma
- Institute for Clinical and Translational Science (ICTS), University of California Irvine (UCI), 843 Health Science Rd, Irvine 92697, CA, USA
| | - Dirce M L Marchioni
- Nutrition Department, School of Public Health, University of São Paulo School of Medicine (FMUSP), Av. Dr Arnaldo 715, 01246-904 São Paulo, SP, Brazil
| | - Antonio A F Carioca
- Nutrition Department, University of Fortaleza (UNIFOR), Av. Washington Soares, 1321, 60811-905 Fortaleza, CE, Brazil
| | - Kristine R Penner
- Kaiser Permanente South Bay Medical Center, 25825 S Vermont Ave, Harbor City 90710, CA, USA
| | - Jill Alldredge
- UCHealth Cancer Care - Anschutz Medical Campus, University of Colorado Cancer Center, 1665 Aurora Court, Aurora 80045, CO, USA
| | - Teresa Longoria
- Scripps Clinic John R. Anderson V Medical Pavilion, 9898 Genesee Ave, La Jolla 92037, CA, USA
| | - Robert A Nagourney
- Nagourney Cancer Institute, 750 East 29th Street, 90806 Long Beach, CA, USA; Metabolomycs, Inc., 750 East 29th Street, 90806 Long Beach, CA, USA; Memorial Medical Center of Long Beach, Todd Cancer Institute, 2810 Long Beach Blvd, Long Beach 90806, CA, USA; Department of Obstetrics and Gynecology, University of California Irvine (UCI) School of Medicine, 101 The City Drive South, Orange 92868, CA, USA
| |
Collapse
|
26
|
Lv Y, Xu M, Sun Y, Liu Y, Zhao L, Liu X, Li Z, Shi G, Jia J, Bi L, Ma N, Zhang X, Qi C. Prognostic significance of excision repair cross complementation group 1 rs2298881 in patients with gastric cancer receiving platinum-based chemotherapy: A PRISMA-compliant meta-analysis. Medicine (Baltimore) 2021; 100:e26850. [PMID: 34414935 PMCID: PMC8376342 DOI: 10.1097/md.0000000000026850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 07/12/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is a strong cause of global cancer mortality. Nucleotide excision repair (NER) can modulate platinum-based chemotherapeutic efficacy by removing drug-produced DNA damage. Some studies have found a link between excision repair cross complementation group 1 (ERCC1) rs2298881, one gene in NER pathway, and response to chemotherapy. However, the results have been disputed. METHODS We conducted a meta-analysis to reevaluate the association between polymorphisms of NER gene (ERCC1 rs2298881) and the clinical outcomes in gastric cancer patients receiving platinum-based chemotherapy. Searching PubMed, Web of Science, EMBASE, Google Scholar, and China National Knowledge Infrastructure, 2 independent searchers found all pertinent literatures up to May 1, 2021. We enrolled studies according to consistent selection criteria, extracted and vitrified data. Crude odds ratios (ORs) and hazard ratios (HRs) with 95% confidence interval (CI) were applied to evaluate the effect of ERCC1 rs2298881 on patients treated by platinum-based chemotherapy. RESULTS By the data gathered from 6 independent studies, 1940 cases diagnosed with gastric cancer and treated with chemotherapy were included, containing 1208 Good-Responders and 732 Poor-Responders. With a comprehensive meta-analysis, we found that the patients with ERCC1 rs2298881A allele had a worse response to chemotherapy than those who with rs2298881C allele under allelic model (A vs C), with the pooled OR of 0.780 (95% CI: 0.611-0.996, P = .046). And our analysis indicated that AA genotype was associated with unfavorable overall survival (HR = 1.540, 95% CI = 1.106-2.144, P = .011) compared with CC genotype. CONCLUSIONS ERCC1 rs2298881 is suggested as a marker of clinical outcome in gastric cancer patients treated by platinum-based chemotherapy.
Collapse
Affiliation(s)
- Yalei Lv
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Mengyuan Xu
- Department of Epidemiology and statistics, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Yidan Sun
- Graduate school, Hebei Medical University, Shijiazhuang, China
| | - Yezhou Liu
- Department of Epidemiology and statistics, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Lijuan Zhao
- Graduate school, Hebei Medical University, Shijiazhuang, China
| | - Xuehui Liu
- Department of Epidemiology and statistics, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Zixuan Li
- Department of Epidemiology and statistics, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Gaiping Shi
- Department of gynaecology and obstetrics, Quzhou county hospital of Hebei, Handan, China
| | - Jinhai Jia
- Graduate school, Hebei Medical University, Shijiazhuang, China
| | - Lanfei Bi
- Department of Epidemiology and statistics, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Ning Ma
- Department of Social Medicine and Health Care Management, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Xiaolin Zhang
- Department of Epidemiology and statistics, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Cheng Qi
- Department of Oncological Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
27
|
Ruthenium(II) and Platinum(II) Complexes with Biologically Active Aminoflavone Ligands Exhibit In Vitro Anticancer Activity. Int J Mol Sci 2021; 22:ijms22147568. [PMID: 34299199 PMCID: PMC8306828 DOI: 10.3390/ijms22147568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022] Open
Abstract
Continuing our studies on the mechanisms underlying the cytotoxicity of potential drugs, we have described several aspects of the in vitro anticancer activity of ruthenium(II) and platinum(II) complexes with bioactive, synthetic aminoflavone ligands. We examined the mechanism of proapoptotic activity of cis-dichlorobis(3-imino-2-methoxyflavanone)ruthenium(II), cis-dichlorobis(3-imino-2-ethoxyflavanone)ruthenium(II), and trans-dichlorobis(3-aminoflavone)platinum(II). Cisplatin was used as a reference compound. The cytotoxicity was investigated by MTT assay. The mechanism of proapoptotic activity of the tested compounds was investigated by evaluation of caspase-8 activity, cytometric analysis of annexin-V positive cells, and mitochondrial potential loss measurement. The results showed that ruthenium compounds break partially or completely the cisplatin resistance by activating the caspase 8-dependent apoptosis pathway and loss of mitochondrial membrane potential. Platinum compounds also have a cytostatic effect, but their action requires more exposure time. Potential mechanisms underlying drug resistance in the two pairs of cancer cell lines were investigated: total glutathione content, P-glycoprotein activity, and differences in the activity of DNA repair induced by nucleotide excision. Results showed that cisplatin-resistant cells have elevated glutathione levels relative to sensitive cells. Moreover, they indicated the mechanisms enabling cells to avoid apoptosis caused by DNA damage. Pg-P activity has no effect on the development of cisplatin resistance in the cell lines described.
Collapse
|
28
|
Sreekumar R, Al-Saihati H, Emaduddin M, Moutasim K, Mellone M, Patel A, Kilic S, Cetin M, Erdemir S, Navio MS, Lopez MA, Curtis N, Yagci T, Primrose JN, Price BD, Berx G, Thomas GJ, Tulchinsky E, Mirnezami A, Sayan AE. The ZEB2-dependent EMT transcriptional programme drives therapy resistance by activating nucleotide excision repair genes ERCC1 and ERCC4 in colorectal cancer. Mol Oncol 2021; 15:2065-2083. [PMID: 33931939 PMCID: PMC8333771 DOI: 10.1002/1878-0261.12965] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/16/2021] [Accepted: 04/12/2021] [Indexed: 12/18/2022] Open
Abstract
Resistance to adjuvant chemotherapy is a major clinical problem in the treatment of colorectal cancer (CRC). The aim of this study was to elucidate the role of an epithelial to mesenchymal transition (EMT)‐inducing protein, ZEB2, in chemoresistance of CRC, and to uncover the underlying mechanism. We performed IHC for ZEB2 and association analyses with clinical outcomes on primary CRC and matched CRC liver metastases in compliance with observational biomarker study guidelines. ZEB2 expression in primary tumours was an independent prognostic marker of reduced overall survival and disease‐free survival in patients who received adjuvant FOLFOX chemotherapy. ZEB2 expression was retained in 96% of liver metastases. The ZEB2‐dependent EMT transcriptional programme activated nucleotide excision repair (NER) pathway largely via upregulation of the ERCC1 gene and other components in NER pathway, leading to enhanced viability of CRC cells upon oxaliplatin treatment. ERCC1‐overexpressing CRC cells did not respond to oxaliplatin in vivo, as assessed using a murine orthotopic model in a randomised and blinded preclinical study. Our findings show that ZEB2 is a biomarker of tumour response to chemotherapy and risk of recurrence in CRC patients. We propose that the ZEB2‐ERCC1 axis is a key determinant of chemoresistance in CRC.
Collapse
Affiliation(s)
| | - Hajir Al-Saihati
- Cancer Sciences Division, University of Southampton, UK.,College of Applied Medical Sciences, University of Hafr Al-Batin, Saudi Arabia
| | | | | | | | - Ashish Patel
- Cancer Sciences Division, University of Southampton, UK
| | - Seval Kilic
- Cancer Sciences Division, University of Southampton, UK
| | - Metin Cetin
- Department of Molecular Biology and Genetics, Gebze Technical University, Turkey
| | - Sule Erdemir
- Department of Molecular Biology and Genetics, Gebze Technical University, Turkey
| | | | | | - Nathan Curtis
- Department of Surgery, Southampton University Hospital NHS Trust, UK
| | - Tamer Yagci
- Department of Molecular Biology and Genetics, Gebze Technical University, Turkey
| | - John N Primrose
- Cancer Sciences Division, University of Southampton, UK.,Department of Surgery, Southampton University Hospital NHS Trust, UK
| | - Brendan D Price
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Geert Berx
- Molecular Cellular Oncology Lab, Department for Biomedical Molecular Biology, Ghent University, Belgium.,Cancer Research Institute Ghent (CRIG), Belgium
| | | | - Eugene Tulchinsky
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, Kazakhstan
| | - Alex Mirnezami
- Cancer Sciences Division, University of Southampton, UK.,College of Applied Medical Sciences, University of Hafr Al-Batin, Saudi Arabia
| | - A Emre Sayan
- Cancer Sciences Division, University of Southampton, UK
| |
Collapse
|
29
|
Busatto FF, Viero VP, Schaefer BT, Saffi J. Cell growth analysis and nucleotide excision repair modulation in breast cancer cells submitted to a protocol using doxorubicin and paclitaxel. Life Sci 2021; 268:118990. [PMID: 33412214 DOI: 10.1016/j.lfs.2020.118990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/13/2020] [Accepted: 12/24/2020] [Indexed: 11/30/2022]
Abstract
INTRODUCTION One of the most used regimens to treat breast cancer is the dose-dense ACT protocol, a combination of anthracycline doxorubicin (DOX) with cyclophosphamide and paclitaxel (PCTX). However, many tumors show resistance to the protocols applied. It is known that the nucleotide excision repair (NER) pathway acts by removing the DOX-generated lesions, and this, together with other DNA repair pathways, can modulate the response to treatment. AIMS To evaluate the in vitro growth profile of breast cancer cells (MCF7), and the modulation of DNA repair genes, submitted to a protocol using DOX and PCTX in a similar regimen to what is used in clinical practice. MAIN METHODS MCF7 cells were treated with repeated cycles of DOX and PCTX and followed-up during and after each of the treatments. The population doubling of the remaining cells was calculated during the complete protocol and DNA repair gene expression was evaluated at different time-points. KEY FINDINGS An increase in all NER genes analyzed after the DOX treatment was observed, but not after the PCTX treatment. MRE11was overexpressed at all evaluated time-points. There was a resumption of NER genes overexpression profile when cells were maintained for follow-up and retook their growth pattern, indicating that DNA repair pathways can modulate their expression during the chemotherapy exposure.
Collapse
Affiliation(s)
- Franciele Faccio Busatto
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre - UFCSPA, Porto Alegre, RS, Brazil; Post-Graduation Program in Molecular and Cell Biology (PPGBCM), Federal University of Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Victoria Pereira Viero
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre - UFCSPA, Porto Alegre, RS, Brazil
| | - Bruna Thaís Schaefer
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre - UFCSPA, Porto Alegre, RS, Brazil
| | - Jenifer Saffi
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre - UFCSPA, Porto Alegre, RS, Brazil; Post-Graduation Program in Molecular and Cell Biology (PPGBCM), Federal University of Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
30
|
Afifah NN, Diantini A, Intania R, Abdulah R, Barliana MI. Genetic Polymorphisms and the Efficacy of Platinum-Based Chemotherapy: Review. Pharmgenomics Pers Med 2020; 13:427-444. [PMID: 33116759 PMCID: PMC7549502 DOI: 10.2147/pgpm.s267625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/07/2020] [Indexed: 11/23/2022] Open
Abstract
Previous studies have indicated that genetic variations in individuals may result in changes in gene expression and amino acids. The effect of these changes may lead to different responses to platinum-based chemotherapy. A vast response rate interval and a short survival rate indicate that the efficacy and efficiency of the selection of chemotherapy have not been optimized. This article aims to illustrate the potential relationship of various genetic polymorphisms in response to platinum-based chemotherapy for several types of cancer. This review was conducted using articles from the last three- and five-year periods (2014-2019) that use gene polymorphism and its relationship to the efficacy of platinum-based chemotherapy as their theme. A total of 26 out of 488 relevant articles were included based on specific criteria. Through various mechanisms, genes, including ERCC1, ERCC2/XPD, XPC, XPA, XRCC1, APE-1, PARP1, OGG1, ABCC2, MRP, GSTP1, GSTM1, GSTT1, MATE1, and OCT2, have been associated with patient response to platinum-based chemotherapy. We conclude that genetic polymorphism analysis is recommended for the management of cancer so that each patient can be administered therapy based on his or her genetic profile to achieve an effective and efficient outcome.
Collapse
Affiliation(s)
- Nadiya Nurul Afifah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Ajeng Diantini
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
| | - Ruri Intania
- Dr. H.A. Rotinsulu Lung Hospital, Bandung, Indonesia
| | - Rizky Abdulah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
| | - Melisa I Barliana
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
31
|
Enhancing chemotherapy response through augmented synthetic lethality by co-targeting nucleotide excision repair and cell-cycle checkpoints. Nat Commun 2020; 11:4124. [PMID: 32807787 PMCID: PMC7431578 DOI: 10.1038/s41467-020-17958-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 07/22/2020] [Indexed: 01/23/2023] Open
Abstract
In response to DNA damage, a synthetic lethal relationship exists between the cell cycle checkpoint kinase MK2 and the tumor suppressor p53. Here, we describe the concept of augmented synthetic lethality (ASL): depletion of a third gene product enhances a pre-existing synthetic lethal combination. We show that loss of the DNA repair protein XPA markedly augments the synthetic lethality between MK2 and p53, enhancing anti-tumor responses alone and in combination with cisplatin chemotherapy. Delivery of siRNA-peptide nanoplexes co-targeting MK2 and XPA to pre-existing p53-deficient tumors in a highly aggressive, immunocompetent mouse model of lung adenocarcinoma improves long-term survival and cisplatin response beyond those of the synthetic lethal p53 mutant/MK2 combination alone. These findings establish a mechanism for co-targeting DNA damage-induced cell cycle checkpoints in combination with repair of cisplatin-DNA lesions in vivo using RNAi nanocarriers, and motivate further exploration of ASL as a generalized strategy to improve cancer treatment.
Collapse
|
32
|
McMullen M, Madariaga A, Lheureux S. New approaches for targeting platinum-resistant ovarian cancer. Semin Cancer Biol 2020; 77:167-181. [DOI: 10.1016/j.semcancer.2020.08.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/15/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022]
|
33
|
Burgess JT, Rose M, Boucher D, Plowman J, Molloy C, Fisher M, O'Leary C, Richard DJ, O'Byrne KJ, Bolderson E. The Therapeutic Potential of DNA Damage Repair Pathways and Genomic Stability in Lung Cancer. Front Oncol 2020; 10:1256. [PMID: 32850380 PMCID: PMC7399071 DOI: 10.3389/fonc.2020.01256] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022] Open
Abstract
Despite advances in our understanding of the molecular biology of the disease and improved therapeutics, lung cancer remains the most common cause of cancer-related deaths worldwide. Therefore, an unmet need remains for improved treatments, especially in advanced stage disease. Genomic instability is a universal hallmark of all cancers. Many of the most commonly prescribed chemotherapeutics, including platinum-based compounds such as cisplatin, target the characteristic genomic instability of tumors by directly damaging the DNA. Chemotherapies are designed to selectively target rapidly dividing cells, where they cause critical DNA damage and subsequent cell death (1, 2). Despite the initial efficacy of these drugs, the development of chemotherapy resistant tumors remains the primary concern for treatment of all lung cancer patients. The correct functioning of the DNA damage repair machinery is essential to ensure the maintenance of normal cycling cells. Dysregulation of these pathways promotes the accumulation of mutations which increase the potential of malignancy. Following the development of the initial malignancy, the continued disruption of the DNA repair machinery may result in the further progression of metastatic disease. Lung cancer is recognized as one of the most genomically unstable cancers (3). In this review, we present an overview of the DNA damage repair pathways and their contributions to lung cancer disease occurrence and progression. We conclude with an overview of current targeted lung cancer treatments and their evolution toward combination therapies, including chemotherapy with immunotherapies and antibody-drug conjugates and the mechanisms by which they target DNA damage repair pathways.
Collapse
Affiliation(s)
- Joshua T Burgess
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Maddison Rose
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Didier Boucher
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Jennifer Plowman
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Christopher Molloy
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Mark Fisher
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Connor O'Leary
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia.,Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Derek J Richard
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Kenneth J O'Byrne
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia.,Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Emma Bolderson
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia.,Princess Alexandra Hospital, Brisbane, QLD, Australia
| |
Collapse
|
34
|
McMullen M, Karakasis K, Madariaga A, Oza AM. Overcoming Platinum and PARP-Inhibitor Resistance in Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12061607. [PMID: 32560564 PMCID: PMC7352566 DOI: 10.3390/cancers12061607] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
Abstract
Platinum chemotherapy remains the cornerstone of treatment for epithelial ovarian cancer (OC) and Poly (ADP-ribose) polymerase inhibitors (PARPi) now have an established role as maintenance therapy. The mechanisms of action of these agents is, in many ways, complementary, and crucially reliant on the intracellular DNA Damage Repair (DDR) response. Here, we review mechanisms of primary and acquired resistance to treatment with platinum and PARPi, examining the interplay between both classes of agents. A key resistance mechanism appears to be the restoration of the Homologous Recombination (HR) repair pathway, through BRCA reversion mutations and epigenetic upregulation of BRCA1. Alterations in non-homologous end-joint (NHEJ) repair, replication fork protection, upregulation of cellular drug efflux pumps, reduction in PARP1 activity and alterations to the tumour microenvironment have also been described. These resistance mechanisms reveal molecular vulnerabilities, which may be targeted to re-sensitise OC to platinum or PARPi treatment. Promising therapeutic strategies include ATR inhibition, epigenetic re-sensitisation through DNMT inhibition, cell cycle checkpoint inhibition, combination with anti-angiogenic therapy, BET inhibition and G-quadruplex stabilisation. Translational studies to elucidate mechanisms of treatment resistance should be incorporated into future clinical trials, as understanding these biologic mechanisms is crucial to developing new and effective therapeutic approaches in advanced OC.
Collapse
Affiliation(s)
| | | | | | - Amit M. Oza
- Correspondence: ; Tel.: +1-416-946-4450; Fax: +1-416-946-4467
| |
Collapse
|
35
|
Vaughn CM, Selby CP, Yang Y, Hsu DS, Sancar A. Genome-wide single-nucleotide resolution of oxaliplatin-DNA adduct repair in drug-sensitive and -resistant colorectal cancer cell lines. J Biol Chem 2020; 295:7584-7594. [PMID: 32299912 DOI: 10.1074/jbc.ra120.013347] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/14/2020] [Indexed: 12/27/2022] Open
Abstract
Platinum-based chemotherapies, including oxaliplatin, are a mainstay in the management of solid tumors and induce cell death by forming intrastrand dinucleotide DNA adducts. Despite their common use, they are highly toxic, and approximately half of cancer patients have tumors that are either intrinsically resistant or develop resistance. Previous studies suggest that this resistance is mediated by variations in DNA repair levels or net drug influx. Here, we aimed to better define the roles of nucleotide excision repair and DNA damage in platinum chemotherapy resistance by profiling DNA damage and repair efficiency in seven oxaliplatin-sensitive and three oxaliplatin-resistant colorectal cancer cell lines. We assayed DNA repair indirectly as toxicity and directly measured bulky adduct formation and removal from the genome by slot blot and repair capacity in an excision assay, and used excision repair sequencing (XR-seq) to map repair events genome-wide at single-nucleotide resolution. Using this combinatorial approach and proxies for oxaliplatin-DNA damage, we observed no significant differences in repair efficiency that could explain the relative sensitivities and chemotherapy resistances of these cell lines. In contrast, the levels of oxaliplatin-induced DNA damage were significantly lower in the resistant cells, indicating that decreased damage formation, rather than increased damage repair, is a major determinant of oxaliplatin resistance in these cell lines. XR-seq-based analysis of gene expression revealed up-regulation of membrane transport pathways in the resistant cells, and these pathways may contribute to resistance. In conclusion, additional research is needed to characterize the factors mitigating cellular DNA damage formation by platinum compounds.
Collapse
Affiliation(s)
- Courtney M Vaughn
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260
| | - Christopher P Selby
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260
| | - Yanyan Yang
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260
| | - David S Hsu
- Duke University Medical Center, Durham, North Carolina 27710
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260
| |
Collapse
|
36
|
Zhuo M, Gorgun FM, Tyler DS, Englander EW. Hypoxia potentiates the capacity of melanoma cells to evade cisplatin and doxorubicin cytotoxicity via glycolytic shift. FEBS Open Bio 2020; 10:789-801. [PMID: 32134564 PMCID: PMC7193165 DOI: 10.1002/2211-5463.12830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/27/2020] [Accepted: 03/02/2020] [Indexed: 12/11/2022] Open
Abstract
The hypoxic environment within solid tumors impedes the efficacy of chemotherapeutic treatments. Here, we demonstrate that hypoxia augments the capacity of melanoma cells to withstand cisplatin and doxorubicin cytotoxicity. We show that B16F10 cells derived from spontaneously formed melanoma and YUMM1.7 cells, engineered to recapitulate human‐relevant melanoma driver mutations, profoundly differ in their vulnerabilities to cisplatin and doxorubicin. The differences are manifested in magnitude of proliferative arrest and cell death rates, extent of mtDNA depletion, and impairment of mitochondrial respiration. In both models, cytotoxicity is mitigated by hypoxia, which augments glycolytic metabolism. Collectively, the findings implicate metabolic reprogramming in drug evasion and suggest that melanoma tumors with distinct genetic makeup may have differential drug vulnerabilities, highlighting the importance of precision anticancer treatments.
Collapse
Affiliation(s)
- Ming Zhuo
- Department of SurgeryUniversity of Texas Medical BranchGalvestonTXUSA
| | - Falih M. Gorgun
- Department of SurgeryUniversity of Texas Medical BranchGalvestonTXUSA
| | - Douglas S. Tyler
- Department of SurgeryUniversity of Texas Medical BranchGalvestonTXUSA
| | - Ella W. Englander
- Department of SurgeryUniversity of Texas Medical BranchGalvestonTXUSA
| |
Collapse
|
37
|
Wong-Brown MW, van der Westhuizen A, Bowden NA. Targeting DNA Repair in Ovarian Cancer Treatment Resistance. Clin Oncol (R Coll Radiol) 2020; 32:518-526. [PMID: 32253106 DOI: 10.1016/j.clon.2020.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 01/09/2023]
Abstract
Most patients with advanced high-grade serous ovarian cancer (HGSOC) develop recurrent disease within 3 years and succumb to the disease within 5 years. Standard treatment for HGSOC is cytoreductive surgery followed by a combination of platinum (carboplatin or cisplatin) and taxol (paclitaxel) chemotherapies. Although initial recurrences are usually platinum-sensitive, patients eventually develop resistance to platinum-based chemotherapy. Accordingly, one of the major problems in the treatment of HGSOC and disease recurrence is the development of chemotherapy resistance. One of the causes of chemoresistance may be redundancies in the repair pathways involved in the response to DNA damage caused by chemotherapy. These pathways may be acting in parallel, where if the repair pathway that is responsible for triggering cell death after platinum chemotherapy therapy is deficient, an alternative repair pathway compensates and drives cancer cells to repair the damage, leading to chemotherapy resistance. In addition, if the repair pathways are epigenetically inactivated by DNA methylation, cell death may not be triggered, resulting in accumulation of mutations and DNA damage. There are novel and existing therapies that can drive DNA repair pathways towards sensitivity to platinum chemotherapy or targeted therapy, thus enabling treatment-resistant ovarian cancer to overcome chemotherapy resistance.
Collapse
Affiliation(s)
- M W Wong-Brown
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, NSW, Australia; Centre for Drug Repurposing and Medicines Research, University of Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia.
| | - A van der Westhuizen
- Calvary Mater Newcastle, NSW, Australia; School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, NSW, Australia
| | - N A Bowden
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia; School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, NSW, Australia
| |
Collapse
|
38
|
Bao Y, Yang B, Zhao J, Shen S, Gao J. Role of common ERCC1 polymorphisms in cisplatin-resistant epithelial ovarian cancer patients: A study in Chinese cohort. Int J Immunogenet 2020; 47:443-453. [PMID: 32173978 DOI: 10.1111/iji.12484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/31/2020] [Accepted: 02/25/2020] [Indexed: 12/13/2022]
Abstract
Epithelial ovarian cancer (EOC) contributes the majority of death cases among various ovarian malignancies. Although a standard method of treatment is the surgical removal of malignant tissue followed by platinum-based chemotherapy, a group of patients does not respond appropriately to cisplatin. An appropriate response to cisplatin has been linked with the nucleotide excision repair mechanism. The present study aims to investigate the role of polymorphisms in DNA repair genes, excision repair cross-complementation group 1 (ERCC1) with susceptibility to EOC development and tumour response to platinum-based chemotherapy in Chinese EOC patients. Patients (n = 559) reporting to the Department of Oncology and general surgery, the First Affiliated Hospital of Kunming Medical University, were enrolled in the study. Three hundred twenty-three healthy controls hailing from similar geographical areas without a history of cancer enrolled as healthy controls. Excision repair cross-complementation group 1 polymorphisms (rs11615, rs3212986, rs735482, rs2336219, rs3212980, rs3212964, rs3212961 and rs2298881) were genotyped by appropriate methods. Distribution of genotypes and allele for ERCC1 polymorphisms (rs11615, rs3212986, rs735482, rs2336219, rs3212980, rs3212964, rs3212961 and rs2298881) were comparable among healthy controls and EOC patients. Interestingly, homozygous mutant and the minor allele for rs11615 and rs3212986 polymorphisms were significantly higher in nonresponder EOC patients when compared to those with a proper response to cisplatin treatment. The prevalence of other SNPs was comparable among the two treated clinical categories. Furthermore, combined genotype revealed significant association of rs11615: TT/ rs3212986: AA genotype combination with cisplatin nonresponder. Variants of rs11615, rs3212986 polymorphisms are associated with cisplatin resistance in Chinese EOC patients. Combined rs11615 and rs3212986 genotypes can be used as a predictive biomarker for platinum-based chemotherapy outcomes.
Collapse
Affiliation(s)
- Yuxia Bao
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, China.,Yunnan Institute of Experimental Diagnosis, Kunming, China.,Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
| | - Bin Yang
- Department of General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jingjiao Zhao
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Simin Shen
- Department of Pain treatment, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jianyuan Gao
- Department of General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
39
|
Cerrato A, Morra F, Di Domenico I, Celetti A. NSCLC Mutated Isoforms of CCDC6 Affect the Intracellular Distribution of the Wild Type Protein Promoting Cisplatinum Resistance and PARP Inhibitors Sensitivity in Lung Cancer Cells. Cancers (Basel) 2019; 12:cancers12010044. [PMID: 31877762 PMCID: PMC7016757 DOI: 10.3390/cancers12010044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
CCDC6 is implicated in cell cycle checkpoints and DNA damage repair by homologous recombination (HR). In NSCLC, CCDC6 is barely expressed in about 30% of patients and CCDC6 gene rearrangements with RET and ROS kinases are detected in about 1% of patients. Recently, CCDC6 point-mutations naming E227K, S351Y, N394Y, and T462A have been identified in primary NSCLC. In this work, we analyze the effects exerted by the CCDC6 mutated isoforms on lung cancer cells. By pull-down experiments and immunofluorescence, we evaluated the biochemical and morphological effects of CCDC6 lung-mutants on the CCDC6 wild type protein. By using two HR-reporter assays, we analyzed the effect of CCDC6 lung-mutants in perturbing CCDC6 physiology in the HR process. Finally, by cell-titer assay, we evaluated the response to the treatment with different drugs in lung cancer cells expressing CCDC6 mutants. This work shows that the CCDC6 mutated and truncated isoforms, identified so far in NSCLC, affected the intracellular distribution of the wild type protein and impaired the CCDC6 function in the HR process, ultimately inducing cisplatinum resistance and PARP-inhibitors sensitivity in lung cancer cells. The identification of selected molecular alterations involving CCDC6 gene product might define predictive biomarkers for personalized treatment in NSCLC.
Collapse
|
40
|
Tan LM, Li X, Qiu CF, Zhu T, Hu CP, Yin JY, Zhang W, Zhou HH, Liu ZQ. CLEC4M is associated with poor prognosis and promotes cisplatin resistance in NSCLC patients. J Cancer 2019; 10:6374-6383. [PMID: 31772670 PMCID: PMC6856750 DOI: 10.7150/jca.30139] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 09/30/2019] [Indexed: 12/23/2022] Open
Abstract
Cisplatin-based chemotherapy is the foundation of treatment for major non-small cell lung cancer (NSCLC) patients. However, cisplatin resistance is still a challenging issue, and the molecular mechanisms underlying this resistance remain to be fully explored. CLEC4M, a Ca2+-dependent C-type lectin, has recently been found to correlate with tumourigenesis. This study mainly focused on whether CLEC4M impacts clinical prognosis and how CLEC4M contributes to cisplatin resistance in NSCLC. Our results found that CLEC4M was correlated with poor prognosis in patients with lung cancer. In addition, a positive association between CLEC4M expression and the IC50 values of cisplatin was found, which suggests that CLEC4M may impact cisplatin sensitivity. In vitro results from cultured A549 and H1299 cells confirmed that CLEC4M could enhance cisplatin resistance, while CLEC4M knockdown led to higher sensitivity to cisplatin in these cells. Further experiments showed that the underlying mechanisms included inhibition of cisplatin-induced cell apoptosis by CLEC4M and improved DNA repair capacity by upregulating XPA and ERCC1 expression. In addition, CLEC4M was able to promote cell migration with or without cisplatin treatment. Collectively, these findings suggest the potential clinical significance of CLEC4M inhibition in overcoming cisplatin resistance in NSCLC patients.
Collapse
Affiliation(s)
- Li-Ming Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Department of Evidence-based Medicine and Clinical Center, The First People's Hospital of Huaihua City,Huaihua 418000, P. R China.,Department of Clinical Pharmacy, The Second People's Hospital of Huaihua City, Huaihua 418000, P. R China
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, Changsha 410008, P.R. China
| | - Cheng-Feng Qiu
- Department of Evidence-based Medicine and Clinical Center, The First People's Hospital of Huaihua City,Huaihua 418000, P. R China
| | - Tao Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, Changsha 410008, P.R. China
| | - Cheng-Ping Hu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, Changsha 410008, P.R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, Changsha 410008, P.R. China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, Changsha 410008, P.R. China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, Changsha 410008, P.R. China
| |
Collapse
|
41
|
Yang Z, Liu C, Wu H, Xie Y, Gao H, Zhang X. CSB affected on the sensitivity of lung cancer cells to platinum-based drugs through the global decrease of let-7 and miR-29. BMC Cancer 2019; 19:948. [PMID: 31615563 PMCID: PMC6792260 DOI: 10.1186/s12885-019-6194-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 09/24/2019] [Indexed: 12/16/2022] Open
Abstract
Background Transcription-coupled nucleotide excision repair (TC-NER) plays a prominent role in the removal of DNA adducts induced by platinum-based chemotherapy reagents. Cockayne syndrome protein B (CSB), the master sensor of TCR, is also involved in the platinum resistant. Let-7 and miR-29 binding sites are highly conserved in the proximal 3′UTR of CSB. Methods We conducted immunohistochemisty to examine the expression of CSB in NSCLC. To determine whether let-7 family and miR-29 family directly interact with the putative target sites in the 3′UTR of CSB, we used luciferase reporter gene analysis. To detect the sensitivity of non-small cell lung cancer (NSCLC) cells to platinum-based drugs, CCK analysis and apoptosis analysis were performed. Results We found that let-7 and miR-29 negatively regulate the expression of CSB by directly targeting to the 3′UTR of CSB. The endogenous CSB expression could be suppressed by let-7 and miR-29 in lung cancer cells. The suppression of CSB activity by endogenous let-7 and miR-29 can be robustly reversed by their sponges. Down-regulation of CSB induced apoptosis and increased the sensitivity of NSCLC cells to cisplatin and carboplatin drugs. Let-7 and miR-29 directly effect on cisplatin and carboplatin sensitivity in NSCLC. Conclusions In conclusion, the platinum-based drug resistant of lung cancer cells may involve in the regulation of let-7 and miR-29 to CSB.
Collapse
Affiliation(s)
- Zhenbang Yang
- Institute of Molecular Genetics, College of Life Science, North China University of Science and Technology, Tangshan, China.,Hebei Key Laboratory of Basic Medicine for Chronic Disease, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Chunling Liu
- Department of Pathology, Affiliated Tangshan Renmin Hospital North China University of Science and Technology, Tangshan, China
| | - Hongjiao Wu
- Institute of Molecular Genetics, College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Yuning Xie
- Institute of Molecular Genetics, College of Life Science, North China University of Science and Technology, Tangshan, China.,Institute of Epidemiology, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Hui Gao
- Institute of Molecular Genetics, College of Life Science, North China University of Science and Technology, Tangshan, China.,Institute of Epidemiology, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Xuemei Zhang
- Institute of Molecular Genetics, College of Life Science, North China University of Science and Technology, Tangshan, China.
| |
Collapse
|
42
|
RAB13 as a novel prognosis marker promotes proliferation and chemotherapeutic resistance in gastric cancer. Biochem Biophys Res Commun 2019; 519:113-120. [PMID: 31474334 DOI: 10.1016/j.bbrc.2019.08.141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 08/25/2019] [Indexed: 12/19/2022]
Abstract
Gastric cancer (GC) is still a major lethal gastrointestinal tumor. In this study, we clarified that RAB13, which is a member of Rab GTPase family and responsible for cargos delivery between the Golgi and the plasma membrane, plays critical roles in the proliferation and the chemotherapeutic resistance in GC cells. Analyzing RAB13 expression in GC specimens, we found that its mRNA level was higher in cancerous tissues compared with normal counterparts and this increase was further associated with malignant progression of GC. Moreover, increased RAB13 indicated poor overall survival (OS) and progression free survival (PFS) in GC patients. We then found that deletion of RAB13 inhibited the proliferation and promoted the apoptosis in AGS and NCI-N87 cells, the impairments of viability which was due to reduced amount of RAB13 anchoring the plasma membrane and attenuated cellular response to EGF treatment and the activation of downstream Akt/ERK/mTOR signaling pathways accordingly. Moreover, in vitro experiments showed that RAB13 deletion enhanced the sensitization of AGS and NCI-N87 cells toward cisplatin (CDDP) and 5-fluorouracil (5-FU) treatment respectively. Together, these data demonstrate that RAB13 promotes the proliferation and confers CDDP and 5-FU resistance to GC cells, which provides experimental support to target this protein in future clinical practice.
Collapse
|
43
|
Dehydrogenase/reductase SDR family member 2 silencing sensitizes an oxaliplatin‑resistant cell line to oxaliplatin by inhibiting excision repair cross‑complementing group 1 protein expression. Oncol Rep 2019; 42:1725-1734. [PMID: 31436301 PMCID: PMC6775812 DOI: 10.3892/or.2019.7291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022] Open
Abstract
Oxaliplatin (Oxa)-based chemotherapy is widely used as the first-line treatment for colorectal cancer (CRC). However, Oxa-resistance is common for many postoperative CRC patients. To explore drug resistance in CRC, an Oxa-resistant cell line, HCT116/Oxa, was established from parental HCT116 cells. These Oxa-resistant cells exhibited characteristics of epithelial-mesenchymal transition (EMT) and a higher migratory capacity than parental cells. Protein profiles of HCT116/Oxa and HCT116 cells were compared using a tandem mass tag-based quantitative proteomics technique. The protein dehydrogenase/reductase SDR family member 2 (DHRS2) was revealed to be highly expressed in HCT116/Oxa cells. Silencing of DHRS2 in HCT116/Oxa cells effectively restored Oxa-sensitivity by suppressing the expression of excision repair cross-complementing group 1 protein via a p53-dependent pathway, and reversed the EMT phenotype. Overall, the suppression of DHRS2 expression may be a promising strategy for the prevention of Oxa-resistance in CRC.
Collapse
|
44
|
Slyskova J, Sabatella M, Ribeiro-Silva C, Stok C, Theil AF, Vermeulen W, Lans H. Base and nucleotide excision repair facilitate resolution of platinum drugs-induced transcription blockage. Nucleic Acids Res 2019; 46:9537-9549. [PMID: 30137419 PMCID: PMC6182164 DOI: 10.1093/nar/gky764] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/20/2018] [Indexed: 12/21/2022] Open
Abstract
Sensitivity and resistance of cells to platinum drug chemotherapy are to a large extent determined by activity of the DNA damage response (DDR). Combining chemotherapy with inhibition of specific DDR pathways could therefore improve treatment efficacy. Multiple DDR pathways have been implicated in removal of platinum-DNA lesions, but it is unclear which exact pathways are most important to cellular platinum drug resistance. Here, we used CRISPR/Cas9 screening to identify DDR proteins that protect colorectal cancer cells against the clinically applied platinum drug oxaliplatin. We find that besides the expected homologous recombination, Fanconi anemia and translesion synthesis pathways, in particular also transcription-coupled nucleotide excision repair (TC-NER) and base excision repair (BER) protect against platinum-induced cytotoxicity. Both repair pathways are required to overcome oxaliplatin- and cisplatin-induced transcription arrest. In addition to the generation of DNA crosslinks, exposure to platinum drugs leads to reactive oxygen species production that induces oxidative DNA lesions, explaining the requirement for BER. Our findings highlight the importance of transcriptional integrity in cells exposed to platinum drugs and suggest that both TC-NER and BER should be considered as targets for novel combinatorial treatment strategies.
Collapse
Affiliation(s)
- Jana Slyskova
- Department of Molecular Genetics, Erasmus MC, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Mariangela Sabatella
- Department of Molecular Genetics, Erasmus MC, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Cristina Ribeiro-Silva
- Department of Molecular Genetics, Erasmus MC, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
- Oncode Institute, Erasmus MC, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Colin Stok
- Department of Molecular Genetics, Erasmus MC, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Arjan F Theil
- Department of Molecular Genetics, Erasmus MC, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
- Oncode Institute, Erasmus MC, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Wim Vermeulen
- Department of Molecular Genetics, Erasmus MC, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
- Oncode Institute, Erasmus MC, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Hannes Lans
- Department of Molecular Genetics, Erasmus MC, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
- Oncode Institute, Erasmus MC, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
- To whom correspondence should be addressed. Tel: +31 10 7038169; Fax: +31 10 7044743;
| |
Collapse
|
45
|
Sun Y, Bao X, Ren Y, Jia L, Zou S, Han J, Zhao M, Han M, Li H, Hua Q, Fang Y, Yang J, Wu C, Chen G, Wang L. Targeting HDAC/OAZ1 axis with a novel inhibitor effectively reverses cisplatin resistance in non-small cell lung cancer. Cell Death Dis 2019; 10:400. [PMID: 31127087 PMCID: PMC6534535 DOI: 10.1038/s41419-019-1597-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 03/03/2019] [Accepted: 04/16/2019] [Indexed: 01/04/2023]
Abstract
Cisplatin yields significant efficacy and is generally used as a frontline therapy for non-small cell lung cancer (NSCLC). However, acquired resistance strongly limits its application. Here, we identified that a novel histone deacetylase (HDAC) inhibitor S11, with P-glycoprotein inhibitory activity, could obviously suppress cell growth in cisplatin-resistant NSCLC cell lines. In addition, S11 could increase the expression of Ac-H4 and p21, which confirmed its HDAC inhibitory action, suppress colony formation, and block cell migration of cisplatin-resistant NSCLC cells. Notably, co-treatment with S11 and cisplatin exhibited synergistically inhibitory efficacy in cisplatin-resistant NSCLC cells. Gene microarray data showed that OAZ1 was downregulated in resistant cells but upregulated after S11 treatment. Further study indicated that knockdown of OAZ1 by siRNA resulted in the decrease of sensitivity of resistant cells to cisplatin treatment and contributed to the increase of resistant cell migration. Additionally, ChIP assay data demonstrated that HDAC inhibitor S11 could increase the accumulation of Ac-H4 in OAZ1 promoter region, suggesting the direct regulation of OAZ1 by HDAC. Importantly, the combination of S11 and cisplatin overcome resistance through inhibiting HDAC activity and subsequently increasing the OAZ1 expression in preclinical model. Moreover, we observed that positive expression of HDAC1 was associated with the downregulation of OAZ1 in NSCLC patients with platinum-based treatment, and predicted drug resistance and poor prognosis. In summary, we demonstrated a role of HDAC/OAZ1 axis in cisplatin-resistant NSCLC and identified a promising compound to overcome cisplatin resistance.
Collapse
Affiliation(s)
- Yuhong Sun
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, China
| | - Xuefei Bao
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Yong Ren
- Department of Pathology, Wuhan General Hospital of Chinese People's Liberation Army, Wuhan, China
| | - Lina Jia
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, China
| | - Shenglan Zou
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Jian Han
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, China
| | - Mengyue Zhao
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, China
| | - Mei Han
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, China
| | - Hong Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, China
| | - Qixiang Hua
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, China
| | - Yi Fang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, China
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China.
| | - Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China. .,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
46
|
Kreutz D, Gerner C, Meier-Menches SM. Enabling Methods to Elucidate the Effects of Metal-based Anticancer Agents. METAL-BASED ANTICANCER AGENTS 2019:246-270. [DOI: 10.1039/9781788016452-00246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Next-generation metal-based pharmaceuticals are considered promising therapeutic agents, which may follow novel modes of action and engage with different targets compared to classical platinum(ii) anticancer agents. However, appropriate methods and assays are required to provide evidence of such unprecedented drug effects. Mass spectrometry (MS) has proved useful in probing the reactivity and selectivity of metal-based anticancer agents on a molecular level and recently also in the cellular context, especially with regard to the proteome. This chapter will discuss the design and use of competitive experiments to investigate activation pathways and binding preferences of metal-based anticancer agents by identifying reaction products via different MS setups. Moreover, cell-based approaches are described to obtain insights into novel potential targets and modes of action. Thus, mass spectrometry emerges as an enabling technology that connects molecules to mechanisms, highlighting the broad applicability of this analytical technique to the discovery and understanding of metal-based anticancer agents.
Collapse
Affiliation(s)
- D. Kreutz
- University of Vienna, Department of Analytical Chemistry Waehringer Str. 38 1090 Vienna Austria
| | - C. Gerner
- University of Vienna, Department of Analytical Chemistry Waehringer Str. 38 1090 Vienna Austria
| | - S. M. Meier-Menches
- University of Vienna, Department of Analytical Chemistry Waehringer Str. 38 1090 Vienna Austria
| |
Collapse
|
47
|
Folk WP, Kumari A, Iwasaki T, Pyndiah S, Johnson JC, Cassimere EK, Abdulovic-Cui AL, Sakamuro D. Loss of the tumor suppressor BIN1 enables ATM Ser/Thr kinase activation by the nuclear protein E2F1 and renders cancer cells resistant to cisplatin. J Biol Chem 2019; 294:5700-5719. [PMID: 30733337 PMCID: PMC6462522 DOI: 10.1074/jbc.ra118.005699] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/14/2019] [Indexed: 11/06/2022] Open
Abstract
The tumor suppressor bridging integrator 1 (BIN1) is a corepressor of the transcription factor E2F1 and inhibits cell-cycle progression. BIN1 also curbs cellular poly(ADP-ribosyl)ation (PARylation) and increases sensitivity of cancer cells to DNA-damaging therapeutic agents such as cisplatin. However, how BIN1 deficiency, a hallmark of advanced cancer cells, increases cisplatin resistance remains elusive. Here, we report that BIN1 inactivates ataxia telangiectasia-mutated (ATM) serine/threonine kinase, particularly when BIN1 binds E2F1. BIN1 + 12A (a cancer-associated BIN1 splicing variant) also inhibited cellular PARylation, but only BIN1 increased cisplatin sensitivity. BIN1 prevented E2F1 from transcriptionally activating the human ATM promoter, whereas BIN1 + 12A did not physically interact with E2F1. Conversely, BIN1 loss significantly increased E2F1-dependent formation of MRE11A/RAD50/NBS1 DNA end-binding protein complex and efficiently promoted ATM autophosphorylation. Even in the absence of dsDNA breaks (DSBs), BIN1 loss promoted ATM-dependent phosphorylation of histone H2A family member X (forming γH2AX, a DSB biomarker) and mediator of DNA damage checkpoint 1 (MDC1, a γH2AX-binding adaptor protein for DSB repair). Of note, even in the presence of transcriptionally active (i.e. proapoptotic) TP53 tumor suppressor, BIN1 loss generally increased cisplatin resistance, which was conversely alleviated by ATM inactivation or E2F1 reduction. However, E2F2 or E2F3 depletion did not recapitulate the cisplatin sensitivity elicited by E2F1 elimination. Our study unveils an E2F1-specific signaling circuit that constitutively activates ATM and provokes cisplatin resistance in BIN1-deficient cancer cells and further reveals that γH2AX emergence may not always reflect DSBs if BIN1 is absent.
Collapse
Affiliation(s)
- Watson P Folk
- From the Biochemistry and Cancer Biology Graduate Program, Augusta University, Augusta, Georgia 30912
- the Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
- the Tumor Signaling and Angiogenesis Program, Georgia Cancer Center, Augusta University, Augusta, Georgia 30912
| | - Alpana Kumari
- the Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
- the Tumor Signaling and Angiogenesis Program, Georgia Cancer Center, Augusta University, Augusta, Georgia 30912
| | - Tetsushi Iwasaki
- the Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
- the Tumor Signaling and Angiogenesis Program, Georgia Cancer Center, Augusta University, Augusta, Georgia 30912
- the Division of Signal Pathways, Biosignal Research Center, Kobe University, Kobe 657, Japan
| | - Slovénie Pyndiah
- the Molecular Signaling Program, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Joanna C Johnson
- the Medicinal Chemistry and Molecular Pharmacology Graduate Program, Purdue University, West Lafayette, Indiana 47907, and
| | - Erica K Cassimere
- the Molecular Signaling Program, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
- the Medicinal Chemistry and Molecular Pharmacology Graduate Program, Purdue University, West Lafayette, Indiana 47907, and
| | - Amy L Abdulovic-Cui
- the Department of Biological Sciences, College of Science and Mathematics, Augusta University, Augusta, Georgia 30904
| | - Daitoku Sakamuro
- From the Biochemistry and Cancer Biology Graduate Program, Augusta University, Augusta, Georgia 30912,
- the Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
- the Tumor Signaling and Angiogenesis Program, Georgia Cancer Center, Augusta University, Augusta, Georgia 30912
| |
Collapse
|
48
|
Aberrations in DNA repair pathways in cancer and therapeutic significances. Semin Cancer Biol 2019; 58:29-46. [PMID: 30922960 DOI: 10.1016/j.semcancer.2019.02.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/31/2019] [Accepted: 02/19/2019] [Indexed: 01/16/2023]
Abstract
Cancer cells show various types of mutations and aberrant expression in genes involved in DNA repair responses. These alterations induce genome instability and promote carcinogenesis steps and cancer progression processes. These defects in DNA repair have also been considered as suitable targets for cancer therapies. A most effective target so far clinically demonstrated is "homologous recombination repair defect", such as BRCA1/2 mutations, shown to cause synthetic lethality with inhibitors of poly(ADP-ribose) polymerase (PARP), which in turn is involved in DNA repair as well as multiple physiological processes. Different approaches targeting genomic instability, including immune therapy targeting mismatch-repair deficiency, have also recently been demonstrated to be promising strategies. In these DNA repair targeting-strategies, common issues could be how to optimize treatment and suppress/conquer the development of drug resistance. In this article, we review the extending framework of DNA repair response pathways and the potential impact of exploiting those defects on cancer treatments, including chemotherapy, radiation therapy and immune therapy.
Collapse
|
49
|
Konkankit CC, Vaughn BA, MacMillan SN, Boros E, Wilson JJ. Combinatorial Synthesis to Identify a Potent, Necrosis-Inducing Rhenium Anticancer Agent. Inorg Chem 2019; 58:3895-3909. [PMID: 30793900 DOI: 10.1021/acs.inorgchem.8b03552] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Combinatorial synthesis can be applied for developing a library of compounds that can be rapidly screened for biological activity. Here, we report the application of microwave-assisted combinatorial chemistry for the synthesis of 80 rhenium(I) tricarbonyl complexes bearing diimine ligands. This library was evaluated for anticancer activity in three different cancer cell lines, enabling the identification of three lead compounds with cancer cell growth-inhibitory activities of less than 10 μM. These three lead structures, Re-9B, Re-9C, and Re-9D, were synthesized independently and fully characterized by NMR spectroscopy, mass spectrometry, elemental analysis, and X-ray crystallography. The most potent of these three complexes, Re-9D, was further explored to understand its mechanism of action. Complex Re-9D is equally effective in both wild-type and cisplatin-resistant A2780 ovarian cancer cells, indicating that it circumvents cisplatin resistance. This compound was also shown to possess promising activity against ovarian cancer tumor spheroids. Additionally, flow cytometry showed that Re-9D does not induce cell cycle arrest or flipping of phosphatidylserine to the outer cell membrane. Analysis of the morphological changes of cancer cells treated with Re-9D revealed that this compound gives rise to rapid plasma membrane rupture. Collectively, these data suggest that Re-9D induces necrosis in cancer cells. To assess the in vivo biodistribution and stability of this compound, a radioactive 99mTc analogue of Re-9D, 99mTc-9D(H2O), was synthesized and administered to naı̈ve BALB/c mice. Results of these studies indicate that 99mTc-9D(H2O) exhibits high metabolic stability and a distinct biodistribution profile. This research demonstrates that combinatorial synthesis is an effective approach for the development of new rhenium anticancer agents with advantageous biological properties.
Collapse
Affiliation(s)
- Chilaluck C Konkankit
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Brett A Vaughn
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Samantha N MacMillan
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Eszter Boros
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
50
|
Thavaneswaran S, Rath E, Tucker K, Joshua AM, Hess D, Pinese M, Ballinger ML, Thomas DM. Therapeutic implications of germline genetic findings in cancer. Nat Rev Clin Oncol 2019; 16:386-396. [DOI: 10.1038/s41571-019-0179-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|