1
|
Tehrani HA, Zangi M, Fathi M, Vakili K, Hassan M, Rismani E, Hossein-Khannazer N, Vosough M. GPC-3 in hepatocellular carcinoma; A novel biomarker and molecular target. Exp Cell Res 2025; 444:114391. [PMID: 39725192 DOI: 10.1016/j.yexcr.2024.114391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/11/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Hepatocellular carcinoma (HCC) is a global health issue due to its late diagnosis and high recurrence rate. The early detection and diagnosis of HCC with specific and sensitive biomarkers and using novel treatment approaches to improve patient outcomes are essential. Glypican-3 (GPC-3) is a cell surface proteoglycan that is overexpressed in many tumors, including HCC. GPC-3 could be used as a specific biomarker for HCC early detection and could be a potential target for precise therapeutic strategies. Effective identification of GPC-3 could improve both diagnosis and targeted therapy of HCC. Moreover, targeted therapy using GPC-3 could result in a better treatment outcome. Recently, GPC3-targeted therapies have been used in different investigational therapeutic approaches like bi-specific/monoclonal antibodies, peptide vaccines, and CAR T cell therapies. This study aims to highlight the theranostic potential of GPC-3 as a novel biomarker for early detection and as a potential molecular target for HCC treatment as well.
Collapse
Affiliation(s)
- Hamed Azhdari Tehrani
- Department of Hematology-Medical Oncology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masood Zangi
- Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Elham Rismani
- Molecular Medicine Department, Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Nikoo Hossein-Khannazer
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Massoud Vosough
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden; Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Sciences and Advanced Technology in Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
2
|
Mo ZW, Peng YM, Zhang YX, Li Y, Kang BA, Chen YT, Li L, Sorci-Thomas MG, Lin YJ, Cao Y, Chen S, Liu ZL, Gao JJ, Huang ZP, Zhou JG, Wang M, Chang GQ, Deng MJ, Liu YJ, Ma ZS, Hu ZJ, Dong YG, Ou ZJ, Ou JS. High-density lipoprotein regulates angiogenesis by long non-coding RNA HDRACA. Signal Transduct Target Ther 2023; 8:299. [PMID: 37574469 PMCID: PMC10423722 DOI: 10.1038/s41392-023-01558-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 06/17/2023] [Accepted: 07/09/2023] [Indexed: 08/15/2023] Open
Abstract
Normal high-density lipoprotein (nHDL) can induce angiogenesis in healthy individuals. However, HDL from patients with coronary artery disease undergoes various modifications, becomes dysfunctional (dHDL), and loses its ability to promote angiogenesis. Here, we identified a long non-coding RNA, HDRACA, that is involved in the regulation of angiogenesis by HDL. In this study, we showed that nHDL downregulates the expression of HDRACA in endothelial cells by activating WW domain-containing E3 ubiquitin protein ligase 2, which catalyzes the ubiquitination and subsequent degradation of its transcription factor, Kruppel-like factor 5, via sphingosine 1-phosphate (S1P) receptor 1. In contrast, dHDL with lower levels of S1P than nHDL were much less effective in decreasing the expression of HDRACA. HDRACA was able to bind to Ras-interacting protein 1 (RAIN) to hinder the interaction between RAIN and vigilin, which led to an increase in the binding between the vigilin protein and proliferating cell nuclear antigen (PCNA) mRNA, resulting in a decrease in the expression of PCNA and inhibition of angiogenesis. The expression of human HDRACA in a hindlimb ischemia mouse model inhibited the recovery of angiogenesis. Taken together, these findings suggest that HDRACA is involved in the HDL regulation of angiogenesis, which nHDL inhibits the expression of HDRACA to induce angiogenesis, and that dHDL is much less effective in inhibiting HDRACA expression, which provides an explanation for the decreased ability of dHDL to stimulate angiogenesis.
Collapse
Affiliation(s)
- Zhi-Wei Mo
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yue-Ming Peng
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yi-Xin Zhang
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Division of Hypertension and Vascular Diseases, Department of Cardiology, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Li
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Bi-Ang Kang
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Ya-Ting Chen
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Le Li
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | | | - Yi-Jun Lin
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yang Cao
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Si Chen
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Ze-Long Liu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Jian-Jun Gao
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Zhan-Peng Huang
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jia-Guo Zhou
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou, China
| | - Mian Wang
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guang-Qi Chang
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Meng-Jie Deng
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yu-Jia Liu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Zhen-Sheng Ma
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Zuo-Jun Hu
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu-Gang Dong
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Department of Cardiology, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Jun Ou
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.
- Division of Hypertension and Vascular Diseases, Department of Cardiology, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Jing-Song Ou
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, P.R. China.
| |
Collapse
|
3
|
Mosca N, Russo A, Potenza N. Making Sense of Antisense lncRNAs in Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:8886. [PMID: 37240232 PMCID: PMC10219390 DOI: 10.3390/ijms24108886] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Transcriptome complexity is emerging as an unprecedented and fascinating domain, especially by high-throughput sequencing technologies that have unveiled a plethora of new non-coding RNA biotypes. This review covers antisense long non-coding RNAs, i.e., lncRNAs transcribed from the opposite strand of other known genes, and their role in hepatocellular carcinoma (HCC). Several sense-antisense transcript pairs have been recently annotated, especially from mammalian genomes, and an understanding of their evolutionary sense and functional role for human health and diseases is only beginning. Antisense lncRNAs dysregulation is significantly involved in hepatocarcinogenesis, where they can act as oncogenes or oncosuppressors, thus playing a key role in tumor onset, progression, and chemoradiotherapy response, as deduced from many studies discussed here. Mechanistically, antisense lncRNAs regulate gene expression by exploiting various molecular mechanisms shared with other ncRNA molecules, and exploit special mechanisms on their corresponding sense gene due to sequence complementarity, thus exerting epigenetic, transcriptional, post-transcriptional, and translational controls. The next challenges will be piecing together the complex RNA regulatory networks driven by antisense lncRNAs and, ultimately, assigning them a function in physiological and pathological contexts, in addition to defining prospective novel therapeutic targets and innovative diagnostic tools.
Collapse
Affiliation(s)
| | | | - Nicoletta Potenza
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (N.M.); (A.R.)
| |
Collapse
|
4
|
Xu K, Xia P, Chen X, Ma W, Yuan Y. ncRNA-mediated fatty acid metabolism reprogramming in HCC. Trends Endocrinol Metab 2023; 34:278-291. [PMID: 36890041 DOI: 10.1016/j.tem.2023.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/08/2023]
Abstract
The challenges of hepatocellular carcinoma (HCC) pathogenesis, diagnosis, treatment, and prognosis evaluation are obvious. Hepatocyte-specific fatty acid (FA) metabolic reprogramming is an important marker of liver carcinogenesis and progression; elucidating its mechanism will help unravel the complexity of HCC pathogenesis. Noncoding RNAs (ncRNAs) play important roles in HCC development. Moreover, ncRNAs are important mediators of FA metabolism and are directly involved in the reprogramming of FA metabolism in HCC cells. Here we review significant new advances in understanding the mechanisms regulating HCC metabolism by focusing on ncRNA-mediated post-translational modifications of metabolic enzymes, metabolism-related transcription factors, and other proteins in associated signaling pathways. We also discuss the great therapeutic potential of targeting ncRNA-mediated FA metabolism reprogramming in HCC.
Collapse
Affiliation(s)
- Kequan Xu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China
| | - Peng Xia
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China
| | - Xi Chen
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China
| | - Weijie Ma
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| | - Yufeng Yuan
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
5
|
Hu T, Niu Y, Fu J, Dong Z, He D, Liu J. Antisense lncRNA PCNA-AS1 promotes esophageal squamous cell carcinoma progression through the miR-2467-3p/PCNA axis. Open Med (Wars) 2022; 17:1483-1494. [PMID: 36213440 PMCID: PMC9490863 DOI: 10.1515/med-2022-0552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/24/2022] [Accepted: 08/12/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Multiple studies have indicated that long non-coding RNAs are aberrantly expressed in cancers and are pivotal in developing various tumors. No studies have investigated the expression and function of long non-coding antisense RNA PCNA-AS1 in esophageal squamous cell carcinoma (ESCC). In this study, the expression of PCNA-AS1 was identified by qRT–PCR. Cell function assays were used to explore the potential effect of PCNA-AS1 on ESCC progression. A prediction website was utilized to discover the relationships among PCNA-AS1, miR-2467-3p and proliferating cell nuclear antigen (PCNA). Dual luciferase reporter gene and RNA immunoprecipitation (RIP) assays were executed to verify the binding activity between PCNA-AS1, miR-2467-3p and PCNA. As a result, PCNA-AS1 was highly expressed in ESCC and was associated with patient prognosis. PCNA-AS1 overexpression strongly contributed to ESCC cell proliferation, invasion and migration. PCNA-AS1 and PCNA were positively correlated in ESCC. Bioinformatics analysis, RIP and luciferase reporter gene assays revealed that PCNA-AS1 could act as a competitive endogenous RNA to sponge miR-2467-3p, thus upregulating PCNA. In conclusion, the current outcome demonstrates that PCNA-AS1 may be a star molecule in the treatment of ESCC.
Collapse
Affiliation(s)
- Tao Hu
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University , Shijiazhuang , Hebei , China
| | - Yunfeng Niu
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University , Shijiazhuang , Hebei , China
| | - Jianfeng Fu
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University , Shijiazhuang , Hebei , China
| | - Zhiming Dong
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University , Shijiazhuang , Hebei , China
| | - Dongwei He
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University , Shijiazhuang , Hebei , China
| | - Junfeng Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University , Shijiazhuang , Hebei , China
| |
Collapse
|
6
|
Chen Y, Wang N, Cao L, Zhang D, Peng H, Xue P. Long non-coding RNA HOXB-AS1 is a prognostic marker and promotes hepatocellular carcinoma cells' proliferation and invasion. Open Life Sci 2022; 17:944-951. [PMID: 36045719 PMCID: PMC9380905 DOI: 10.1515/biol-2022-0040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/12/2021] [Accepted: 01/03/2022] [Indexed: 11/15/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are broadly transcribed in the genome of human and play critical roles in the progression of multiple diseases. Long non-coding HOXB cluster antisense RNA 1 (HOXB-AS1) is a tumor exciter in various cancers. This study aimed to investigate the involvement of HOXB-AS1 in hepatocellular carcinoma (HCC). In the following study, HOXB-AS1 was unveiled to be highly expressed in HCC tissues as opposed to normal tissues. Silencing of HOXB-AS1 led to the loss of proliferation, migration, and invasiveness of HCC cells, namely Hep3B and Huh7. Moreover, the data showed that expression levels of HOXB-AS1 contribute significantly to the patient's survival rates. Otherwise, HOXB-AS1 levels in the serum of patients proved HOXB-AS1 as a biomarker for analysis and treatment of HCC. In summary, this study highlights HOXB-AS1 as key upregulated lncRNA in HCC which being an oncogene can cause proliferation and metastasis of HCC cells. The results also highlighted HOXB-AS1 as a promising biomarker for early diagnosis and prognosis of patients with HCC.
Collapse
Affiliation(s)
- Yubin Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, No. 63 Yayun South Road, Guangzhou, 510000, Guangdong Province, China
| | - Na Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, No. 63 Yayun South Road, Guangzhou, 510000, Guangdong Province, China
| | - Liangqi Cao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, No. 63 Yayun South Road, Guangzhou, 510000, Guangdong Province, China
| | - Dawei Zhang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, No. 63 Yayun South Road, Guangzhou, 510000, Guangdong Province, China
| | - Heping Peng
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, No. 63 Yayun South Road, Guangzhou, 510000, Guangdong Province, China
| | - Ping Xue
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, No. 63 Yayun South Road, Guangzhou, 510000, Guangdong Province, China
| |
Collapse
|
7
|
Al-Noshokaty TM, Mesbah NM, Abo-Elmatty DM, Abulsoud AI, Abdel-Hamed AR. Selenium nanoparticles overcomes sorafenib resistance in thioacetamide induced hepatocellular carcinoma in rats by modulation of mTOR, NF-κB pathways and LncRNA-AF085935/GPC3 axis. Life Sci 2022; 303:120675. [PMID: 35640776 DOI: 10.1016/j.lfs.2022.120675] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 12/16/2022]
Abstract
AIMS The first-line treatment for advanced hepatocellular carcinoma (HCC) is the multikinase inhibitor sorafenib (SOR). Sofafenib resistance is linked to protein kinase B/ mammalian target of rapamycin (AKT/mTOR) and nuclear factor kappa B (NF-κB) activation, apoptosis inhibition and oxidative stress. This study investigated selenium nanoparticles (SeNps) to overcome SOR resistance in thioacetamide (TAA) induced HCC in rats. MATERIALS AND METHODS TAA (200 mg/kg/twice weekly, i.p.) was administered for 16 weeks to induce HCC.s. Rats were treated with oral SOR (10 mg/Kg daily), selenium, and SeNps (5 mg/kg three times/week) alone or in combination, for two weeks. Apoptosis, proliferation, angiogenesis, metastasis and drug resistance were assessed. Cleaved caspase 3 (C. CASP3), mTOR, and NF-κB were determined by western blotting. Expression of p53 gene and long-noncoding RNA-AF085935 was determined by qRT-PCR. Expression of B- Cell Leukemia/Lymphoma 2 (Bcl2), Bcl associated X protein (Bax)and glypican 3 (GPC3) was determined by enzyme-linked immunosorbent assay. Liver functions, antioxidant capacity, histopathology and CD34 immunohistochemistry were performed. KEY FINDINGS SOR/SeNps reversed TAA-induced HCC in rats, through reduction of oxidative stress, activation of p53, Bax and CASP3, and inhibition of Bcl2. SOR/SeNps ameliorated the HCC-induced effect on cell proliferation and drug resistance by targeting mTOR and NF-κB pathways. SOR/SeNps decreased CD34 immunostaining indicating a decrease in angiogenesis and metastasis. SOR/SeNps regulated HCC epigenetically through the lncRNA-AF085935/GPC3 axis. SIGNIFICANCE SOR/SeNps are a promising combination for tumor suppression and overcoming sorafenib resistance in HCC by modulating apoptosis, AKT/mTOR and NF-κB pathways, as well as CD34 and lncRNA-AF085935/GPC3 axis.
Collapse
Affiliation(s)
- Tohada M Al-Noshokaty
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Noha M Mesbah
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Dina M Abo-Elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Asmaa R Abdel-Hamed
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
8
|
Razavi H, Katanforosh A. Identification of novel key regulatory lncRNAs in gastric adenocarcinoma. BMC Genomics 2022; 23:352. [PMID: 35525925 PMCID: PMC9080188 DOI: 10.1186/s12864-022-08578-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/22/2022] [Indexed: 12/02/2022] Open
Abstract
Background Stomach adenocarcinoma (STAD) is one of the most common and deadly cancers worldwide. Recent evidence has demonstrated that dysregulation of long noncoding RNAs (lncRNA) is associated with different hallmarks of cancer. lncRNAs also were suggested as novel promising biomarkers for cancer diagnosis and prognosis. Despite these previous investigations, the expression pattern, diagnostic role, and hallmark association of lncRNAs in STAD remain unclear. Results In this study, The STAD lncRNA-mRNA network was constructed based on RNAs that differentially expressed among tumor and normal samples and had a strong expression correlation with others. The high degree nodes of the network were associated with overall survival. In addition, we found that the hubs’ regulatory roles have previously been confirmed in different types of cancers by literature. For example, the HCG22 hub inhibited cell proliferation and invasion and induced apoptosis in oral squamous cell carcinoma (OSCC) cells. The levels of PCNA, Vimentin, and Bcl2 were decreased and E-cadherin and Bax expression was elevated in OSCC cells after HCG22 overexpression. Additionally, HCG22 overexpression inhibited the Akt, mTOR, and Wnt/β-catenin pathways. Then lncRNAs were mapped to their related GO terms and cancer hallmarks. Based on these mappings, we predict the hallmarks that might be associated with each lncRNA. Finally, the literature review confirmed our prediction. Among the 20 lncRNAs of the STAD network, 11 lncRNAs (LINC02560, SOX21-AS1, C5orf66-AS1, HCG22, PGM5-AS1, NALT1, ENSG00000241224.2, TINCR, MIR205HG, HNF4A-AS1, ENSG00000262756) demonstrated expression correlation with overall survival (OS). Based on expression analysis, survival analysis, hallmark associations, and literature review, LINC02560, SOX21-AS1, C5orf66-AS1, HCG22, PGM5-AS1, NALT1, ENSG00000241224.2, TINCR, MIR205HG, HNF4A-AS1 plays a regulatory role in STAD. For example, our prediction of association between C5orf66-AS1 expression dysregulation and “sustaining proliferative signal” and “Activating invasion and metastasis” has been confirmed in STAD, OSCC and cervical cancer. Finally, we developed a lncRNA signature with SOX21-AS1 and LINC02560, which classified patients into high and low-risk subgroups with significantly different survival outcomes. The mortality rate of the high-risk patients was significantly higher compared to the low-risk patients (28/1% vs 60.13). Conclusion These findings help in designing more precise and detailed experimental studies to find STAD biomarkers and therapeutic targets. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08578-6.
Collapse
Affiliation(s)
- Houri Razavi
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran.
| | - Ali Katanforosh
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
9
|
Li D, Fan X, Li Y, Yang J, Lin H. The paradoxical functions of long noncoding RNAs in hepatocellular carcinoma: Implications in therapeutic opportunities and precision medicine. Genes Dis 2022; 9:358-369. [PMID: 35224152 PMCID: PMC8843871 DOI: 10.1016/j.gendis.2020.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/22/2020] [Accepted: 11/24/2020] [Indexed: 11/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is among the most aggressive and lethal diseases with poor prognosis, worldwide. However, the mechanisms underlying HCC have not been comprehensively elucidated. With the recent application of high-throughput sequencing techniques, a diverse catalogue of differentially expressed long non-coding RNAs (lncRNA) in cancer have been shown to participate in HCC. Rather than being "transcriptional noise," they are emerging as important regulators of many biological processes, including chromatin remodelling, transcription, alternative splicing, translational and post-translational modification. Moreover, lncRNAs have dual effects in the development and progression of HCC, including oncogenic and tumour-suppressive roles. Collectively, recently data point to lncRNAs as novel diagnostic and prognostic biomarkers with satisfactory sensitivity and specificity, as well as being therapeutic targets for HCC patients. In this review, we highlight recent progress of the molecular patterns of lncRNAs and discuss their potential clinical application in human HCC.
Collapse
Affiliation(s)
- Duguang Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Yirun Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Jing Yang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| |
Collapse
|
10
|
Dang Y, Ouyang X, Ren W, Wang L, Huang Q. LncRNA AFAP1-AS1 Modulates the Proliferation and Invasion of Gastric Cancer Cells by Regulating AFAP1 via miR-205-5p. Cancer Manag Res 2021; 13:5163-5175. [PMID: 34234560 PMCID: PMC8255651 DOI: 10.2147/cmar.s307424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022] Open
Abstract
Purpose The present study investigated the expression and function of the long noncoding RNA (lncRNA) actin filament associated protein 1 antisense RNA1 (AFAP1-AS1) related to gastric cancer (GC), based on previous results from a microarray analysis. Methods Real-time quantitative polymerase chain reaction (qPCR) was used to verify the expression of AFAP1-AS1 in 97 fresh GC tissues and paired non-GC tissues, as well as in six different GC cell lines (BGC-823, SGC-7901, MGC-803, AGS, MKN-45, and MKN-28). The expression levels were subsequently correlated with the clinicopathological features of patients. siRNA against AFAP1-AS1 was transfected into GC cell lines, and cell proliferation, migration, and invasion were detected before and after silencing of AFAP1-AS1 expression. Luciferase reporter gene analysis was used to confirm the target gene of microRNA-205-5p (miR-205-5p) in 293T cells. The potential mechanism was subsequently investigated. Results qPCR results showed that AFAP1-AS1 was significantly overexpressed in GC tumor tissues and also GC cell lines, comparing to their paired non-GC tissues. Furthermore, statistical analysis revealed that the overexpression of AFAP1-AS1 was significantly correlated with tumor size (p=0.018) and grade of differentiation (p=0.042). Subsequently, artificially decreasing the expression of AFAP1-AS1 with its specific siRNA dramatically inhibited the proliferation, migration and invasion of GC cell lines (SGC-7901 and BGC-823 cells). Mechanical analysis suggested that AFAP1-AS1 is involved in regulation of its maternal gene, AFAP1, at both mRNA level and protein level. Luciferase reporter gene assay indicated that lncRNA AFAP1-AS1, as a ceRNA, is able to sponge miR-205-5p. Moreover, miR-205-5p has been well demonstrated to participate in the regulation of AFAP1 expression and the phenotypes of GC cells, including proliferation, migration and invasion. Conclusion AFAP1-AS1, as a novel biomarker of GC, promotes the proliferation migration and invasion of GC cells and function as ceRNA to target AFAP1 by sponging miR-205-5p.
Collapse
Affiliation(s)
- Yuan Dang
- Laboratory of Basic Medicine, 900 Hospital of the Joint Logistics Team (Dongfang Hospital)(Former Fuzhou General Hospital), Xiamen University Medical College, Fuzhou, 350025, Fujian, People's Republic of China
| | - Xiaojuan Ouyang
- Department of Department of Pathology, 900 Hospital of the Joint Logistics Team (Dongfang Hospital) (Former Fuzhou General Hospital), Fuzhou, 350025, Fujian, People's Republic of China
| | - Wenjun Ren
- Department of General Surgery, 900 Hospital of the Joint Logistics Team (Dongfang Hospital) (Former Fuzhou General Hospital), Fuzhou, 350025, Fujian, People's Republic of China
| | - Lie Wang
- Department of General Surgery, 900 Hospital of the Joint Logistics Team (Dongfang Hospital) (Former Fuzhou General Hospital), Fuzhou, 350025, Fujian, People's Republic of China
| | - Qiaojia Huang
- Laboratory of Basic Medicine, 900 Hospital of the Joint Logistics Team (Dongfang Hospital)(Former Fuzhou General Hospital), Xiamen University Medical College, Fuzhou, 350025, Fujian, People's Republic of China
| |
Collapse
|
11
|
Tian H, Pan J, Fang S, Zhou C, Tian H, He J, Shen W, Meng X, Jin X, Gong Z. LncRNA DPP10-AS1 promotes malignant processes through epigenetically activating its cognate gene DPP10 and predicts poor prognosis in lung cancer patients. Cancer Biol Med 2021; 18:675-692. [PMID: 34106559 PMCID: PMC8330531 DOI: 10.20892/j.issn.2095-3941.2020.0136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/21/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE The purpose of this study was to explore the function and gene expression regulation of the newly identified lncRNA DPP10-AS1 in lung cancer, and its potential value as a prognostic biomarker. METHODS qRT-PCR and Western blot were conducted to detect the expression of DDP10-AS1 and DPP10 in lung cancer cell lines and tissues. The effects of DDP10-AS1 on DPP10 expression, cell growth, invasion, apoptosis, and in vivo tumor growth were investigated in lung cancer cells by Western blot, rescue experiments, colony formation, flow cytometry, and xenograft animal experiments. RESULTS The novel antisense lncRNA DPP10-AS1 was found to be highly expressed in cancer tissues (P < 0.0001), and its upregulation predicted poor prognosis in patients with lung cancer (P = 0.0025). Notably, DPP10-AS1 promoted lung cancer cell growth, colony formation, and cell cycle progression, and repressed apoptosis in lung cancer cells by upregulating DPP10 expression. Additionally, DPP10-AS1 facilitated lung tumor growth via upregulation of DPP10 protein in a xenograft mouse model. Importantly, DPP10-AS1 positively regulated DPP10 gene expression, and both were coordinately upregulated in lung cancer tissues. Mechanically, DPP10-AS1 was found to associate with DPP10 mRNA but did not enhance DPP10 mRNA stability. Hypomethylation of DPP10-AS1 and DPP10 contributed to their coordinate upregulation in lung cancer. CONCLUSIONS These findings indicated that the upregulation of the antisense lncRNA DPP10-AS1 promotes lung cancer malignant processes and facilitates tumorigenesis by epigenetically regulating its cognate sense gene DPP10. DPP10-AS1 may serve as a candidate prognostic biomarker and a potential therapeutic target in lung cancer.
Collapse
Affiliation(s)
- Haihua Tian
- Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo 315211, China
- Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
| | - Jinchang Pan
- Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo 315211, China
- Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
| | - Shuai Fang
- Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo 315211, China
- Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
| | - Chengwei Zhou
- Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo 315211, China
- Department of Thoracic Surgery, The Affiliated Hospital of Ningbo University School of Medicine, Ningbo 315020, China
| | - Hui Tian
- Department of Thoracic Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo 315048, China
| | - Jinxian He
- Department of Thoracic Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo 315048, China
| | - Weiyu Shen
- Department of Thoracic Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo 315048, China
| | - Xiaodan Meng
- Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo 315211, China
- Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo 315211, China
- Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
| | - Zhaohui Gong
- Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo 315211, China
- Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
| |
Collapse
|
12
|
Hao Y, Li C, Zhao T, Liu H. Long Non-Coding RNA GATA3-AS1 Promotes 5-Fluorouracil Resistance of Ovarian Cancer via Mediating miR-6771-3p/SOX4 Target Axis. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ovarian cancer (OC) ranks as the 5th highest cause of cancer-related deaths worldwide. Long non-coding RNAs (lncRNAs) exert significant effects on chemotherapy resistance. The effects of lncRNA GATA3-AS1 on the 5-Fluorouracil (5-FU) resistance in ovarian carcinoma were explored in the
current study. The results showed that GATA3-AS1 was highly expressed in OC tissues and 5-FU resistant OC cells. Moreover, GATA3-AS1 knockdown reduced 50% inhibitory concentration (IC50) of 5-Fluorouracil and promoted cell apoptosis, while GATA3-AS1-overexpression showed the opposite effect.
In vivo experiment and murine xenograft assay indicated GATA3-AS1 knockdown inhibited neoplasm growth, promoted cell apoptosis, and altered the expression level of apoptosis-associated proteins. GATA3-AS1 promoted SOX4 expression, a well-known transcription factor regulating apoptosis,
via targeting miR-6771-3p. In summary, our findings suggested GATA3-AS1 was associated with OC 5-Fluorouracil viaregulating miR-6771-3p/SOX4, providing novel insights into OC chemoresistance.
Collapse
Affiliation(s)
- Yafei Hao
- Department of Gynecology, Taian City Central Hospital, Taian 271000, PR China
| | - Changzhou Li
- Reproductive Medicine Centre, Taian City Central Hospital, Taian 271000, PR China
| | - Teng Zhao
- Department of Gynecology, Ningyang County People’s Hospital, Taian 271400, PR China
| | - Hansheng Liu
- Department of Gynecology, Taian City Central Hospital, Taian 271000, PR China
| |
Collapse
|
13
|
Mungamuri SK, Nagasuryaprasad K. Epigenetic mechanisms of hepatocellular carcinoma progression: Potential therapeutic opportunities. EPIGENETICS AND METABOLOMICS 2021:279-296. [DOI: 10.1016/b978-0-323-85652-2.00008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
14
|
The Long Noncoding RNA LOXL1-AS1 Promotes the Proliferation, Migration, and Invasion in Hepatocellular Carcinoma. ACTA ACUST UNITED AC 2020; 2020:4182092. [PMID: 33381389 PMCID: PMC7759407 DOI: 10.1155/2020/4182092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/07/2020] [Accepted: 12/05/2020] [Indexed: 12/27/2022]
Abstract
Objective To investigate the expression of long noncoding RNA lysyl oxidase-like 1-antisense 1 (LOXL1-AS1) in hepatocellular carcinoma tissues and its effect on cell proliferation, migration, and invasion. Methods Quantitative real-time PCR was used to analyze the expression of LOXL1-AS1 RNA in tumor tissues, adjacent normal tissues, and cell lines. MTT assay, colony formation assay, flow cytometry analysis, transwell assays, and lentivirus-mediated RNA interference (RNAi) technology were used to evaluate cell proliferation and migration. Results In the present study, we observed that the expression level of LOXL1-AS1 in hepatocellular carcinoma tissue was significantly higher than that in adjacent nontumor tissues, and its expression in three hepatic carcinoma cell lines was obviously higher than that in a normal cell line. In addition, in the Hep-G2 cell line, LOXL1-AS1 downregulation significantly inhibited cell proliferation in the light of the MTT and colony formation assays in vitro, which was consistent with animal experiment in vivo. What is more, cell migration was also inhibited in vitro in Matrigel Transwell Assay by LOXL1-AS1 knockdown, which might be partly attributed to the reduction of MMP-2 and MMP-9 protein expressions. Finally, cell cycle analysis revealed that knockdown of LOXL1-AS1 induced significantly a G0/G1 phase cell cycle arrest, which might be partly attributed to the downregulation of Cdc2, Cdc25A, and cyclin B1 protein expression. Conclusion In conclusion, we demonstrated that reduced LOXL1-AS1 expression could inhibit hepatocellular carcinoma cell proliferation, migration, and invasion. The application of RNAi targeting LOXL1-AS1 might be a potential treatment strategy in advanced cases.
Collapse
|
15
|
Han M, Liao Z, Liu F, Chen X, Zhang B. Modulation of the TGF-β signaling pathway by long noncoding RNA in hepatocellular carcinoma. Biomark Res 2020; 8:70. [PMID: 33292618 PMCID: PMC7709261 DOI: 10.1186/s40364-020-00252-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a type of liver cancer with poor prognosis. There have been demonstrated to exist many possible mechanisms in HCC tumorigenesis, and recent investigations have provided some promising therapy targets. However, further mechanisms remain to be researched to improve the therapeutic strategy and diagnosis of HCC. Transforming growth factor-β (TGF-β) is a pleiotropic cytokine which plays critical roles in networks of different cellular processes, and TGF-β signaling has been found to participate in tumor initiation and development of HCC in recent years. Moreover, among the molecules and signaling pathways, researchers paid more attention to lncRNAs (long non-coding RNAs), but the connection between lncRNAs and TGF-βremain poorly understood. In this review, we conclude the malignant procedure which lncRNAs and TGF-β involved in, and summarize the mechanisms of lncRNAs and TGF-βin HCC initiation and development. Furthermore, the interaction between lncRNA and TGF-β are paid more attention, and the potential therapy targets are mentioned.
Collapse
Affiliation(s)
- Mengzhen Han
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China. .,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China. .,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China.
| |
Collapse
|
16
|
Li Y, Li X, Yang J, He Y. Natural antisense transcripts of MIR398 genes suppress microR398 processing and attenuate plant thermotolerance. Nat Commun 2020; 11:5351. [PMID: 33093449 PMCID: PMC7582911 DOI: 10.1038/s41467-020-19186-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) and natural antisense transcripts (NATs) control many biological processes and have been broadly applied for genetic manipulation of eukaryotic gene expression. Still unclear, however, are whether and how NATs regulate miRNA production. Here, we report that the cis-NATs of MIR398 genes repress the processing of their pri-miRNAs. Through genome-wide analysis of RNA sequencing data, we identify cis-NATs of MIRNA genes in Arabidopsis and Brassica. In Arabidopsis, MIR398b and MIR398c are coexpressed in vascular tissues with their antisense genes NAT398b and NAT398c, respectively. Knock down of NAT398b and NAT398c promotes miR398 processing, resulting in stronger plant thermotolerance owing to silencing of miR398-targeted genes; in contrast, their overexpression activates NAT398b and NAT398c, causing poorer thermotolerance due to the upregulation of miR398-targeted genes. Unexpectedly, overexpression of MIR398b and MIR398c activates NAT398b and NAT398c. Taken together, these results suggest that NAT398b/c repress miR398 biogenesis and attenuate plant thermotolerance via a regulatory loop. MiRNAs and natural antisense transcripts can both regulate gene expression and plant development. Here, the authors show that cis-NATs to MIR398 repress processing of pri-miR398 and that cis-NAT expression is downregulated at high temperatures, contributing to miR398 mediated thermotolerance responses.
Collapse
Affiliation(s)
- Yajie Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China.,University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaorong Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China.,University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China.
| | - Yuke He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China.
| |
Collapse
|
17
|
Antineoplastic Activity of Chrysin against Human Hepatocellular Carcinoma: New Insight on GPC3/SULF2 Axis and lncRNA-AF085935 Expression. Int J Mol Sci 2020; 21:ijms21207642. [PMID: 33076548 PMCID: PMC7589298 DOI: 10.3390/ijms21207642] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/06/2020] [Accepted: 10/13/2020] [Indexed: 12/17/2022] Open
Abstract
The natural flavonoid chrysin possesses antiproliferative activity against various types of cancers, including hepatocellular carcinoma (HCC), which is a common malignancy. However, the exact mechanism of chrysin antiproliferative activity remains unclear. This research was executed to explore the impact of chrysin on glypican-3 (GPC3)/sulfatase-2 (SULF2) axis and lncRNA-AF085935 expression in HCC using HepG2 cells. Cisplatin (20, 50, 100 μg/mL), chrysin (15, 30, and 60 μg/mL) and the combination of 50 μg/mL cisplatin with different concentrations of chrysin were applied for 24/48 h. Cell viability was determined by MTT assay. Protein levels of GPC3 and SULF2 were measured by ELISA at 24/48 h. GPC3 immunoreactivity was detected by immunocytochemistry. Moreover, GPC3 and SULF2 mRNA expressions in addition to lncRNA-AF085935 expression were assessed by qPCR at 48 h. The GPC3 protein, immunostaining and mRNA levels, SULF2 protein and mRNA levels, as well as lncRNA-AF085935 expression, were decreased significantly with cisplatin and chrysin alone when compared with the control untreated HepG2 cells. However, the combination treatment exhibited a better chemopreventive effect in a dose- and time-dependent manner. This study demonstrated, for the first time, the antiproliferative activity of chrysin against HCC through the suppression of the GPC3/SULF2 axis along with the downregulation of lncRNA-AF085935 expression. Synergistic effect of chrysin with cisplatin could potentiate their antiproliferative action in a dose- and time-dependent manner.
Collapse
|
18
|
Chen QF, Shi F, Huang T, Huang C, Shen L, Wu P, Li W. ASTN1 is associated with immune infiltrates in hepatocellular carcinoma, and inhibits the migratory and invasive capacity of liver cancer via the Wnt/β‑catenin signaling pathway. Oncol Rep 2020; 44:1425-1440. [PMID: 32945491 PMCID: PMC7448461 DOI: 10.3892/or.2020.7704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
Astrotactin 1 (ASTN1) is known to serve a physiological role in neuronal migration; however its role in liver cancer remains to be determined. In the present study, ASTN1 levels were lower in liver cancer tissues compared with those in matching normal tissue. ASTN1 levels were negatively associated with microscopic vascular invasion, advanced clinical stage and a less favorable prognosis in patients with hepatocellular carcinoma (HCC). Furthermore, ASTN1 overexpression in a liver cancer cell line reduced the migratory and invasive capacity of the cells. Based on bioinformatics analysis, ASTN1 levels were negatively associated with the Wnt signaling pathway. In addition, ASTN1 downregulated the protein expression levels of β-catenin, T-cell factor (TCF)1, TCF4, Jun proto-oncogene (C-jun), Myc proto-oncogene (C-myc), cyclooxygenase-2 (COX2), metalloproteinase (MMP)2, MMP9 and vascular endothelial growth factor (VEGF) protein levels, indicative of suppression of Wnt signaling. Furthermore, XAV939-induced Wnt signaling suppression reversed the ASTN1-mediated inhibition of invasion and migration in cells. Overexpression of ASTN1 in xenografts reduced cancer development as well as Wnt signaling. TIMER analysis showed that ASTN1 expression was negatively correlated with B cell, macrophage and neutrophil infiltrating levels in HCC. Together, the results of the present study showed that ASTN1 reduced the migratory and invasive capacity of liver cancer cells, potentially served as a candidate biomarker for diagnosis and prediction of the prognosis of HCC, and was associated with immune infiltration. Understanding the underlying mechanisms of action of ASTN1 may facilitate the development of novel strategies for prevention and treatment of liver cancer.
Collapse
Affiliation(s)
- Qi-Feng Chen
- Department of Medical Imaging and Interventional Radiology, Sun Yat‑sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Feng Shi
- Department of Interventional Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Tao Huang
- Department of Medical Imaging and Interventional Radiology, Sun Yat‑sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Chaoyun Huang
- State Key Laboratory of Oncology in South China, Sun Yat‑sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Lujun Shen
- Department of Medical Imaging and Interventional Radiology, Sun Yat‑sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Peihong Wu
- Department of Medical Imaging and Interventional Radiology, Sun Yat‑sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Wang Li
- Department of Medical Imaging and Interventional Radiology, Sun Yat‑sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
19
|
Sun J, Jiang R, Song M, Yao J, Hou S, Zhu Y, Ji X, Sheng H, Tang Z, Liu Q, Jia Z, Shi W, Shi J. Pathological Grade-Associated Transcriptome Profiling of lncRNAs and mRNAs in Gliomas. Front Oncol 2020; 10:253. [PMID: 32211318 PMCID: PMC7076085 DOI: 10.3389/fonc.2020.00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/14/2020] [Indexed: 11/19/2022] Open
Abstract
The aim of the present study was to explore the expression profiles of lncRNAs and mRNAs in glioma patients and to elucidate any potential relationship between lncRNAs and mRNAs in glioma. High-throughput transcriptome sequencing of mRNAs and lncRNAs from six normal tissues and 16 glioma tissues (grade II, six cases; grade III, four cases; and grade IV, six cases) was performed. Series test of cluster (STC) analysis was used to screen significant trending models associated with glioma. Gene co-expression networks were constructed for the differentially expressed lncRNAs and mRNAs, and gene-ontology (GO) and pathway-enrichment analyses were further performed. Quantitative real-time PCR was performed to validate the five most differentially expressed lncRNAs and mRNAs. After filtering the raw sequencing data, we found 578 lncRNAs and 3,216 mRNAs that were significantly dysregulated in glioma (fold change ≥ 2, p < 0.05). Twenty model profiles of lncRNA and 10 model profiles of mRNA were summarized, and three patterns of lncRNAs and two patterns of mRNAs were of clinical significance. Three gene co-expression networks between mRNAs and lncRNAs were built to clarify the relationship between lncRNAs and mRNAs in glioma. GO and pathway analyses indicated that the differentially expressed lncRNAs and mRNAs were enriched in several biological processes and signaling pathways associated with tumorigenesis. Both lncRNAs and mRNAs exhibited dynamic differential expression profiles that indicated their potential roles in different degrees of glioma malignancy. A series of bioinformatics analyses indicated that most of these lncRNAs and mRNAs are involved in important biological processes and pathways associated with the pathogenesis of glioma. These results provide potential directions and valuable resources for future investigations via the comprehensive integration of these lncRNAs and mRNAs.
Collapse
Affiliation(s)
- Junlong Sun
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair and Department of Neurosurgery, The Affiliated Hospital of Nantong University, Nantong, China
- Department of Neurosurgery, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
- Department of Clinic Research Center, The Affiliated Hospital of Nantong University, Nantong, China
| | - Rui Jiang
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair and Department of Neurosurgery, The Affiliated Hospital of Nantong University, Nantong, China
- Department of Clinic Research Center, The Affiliated Hospital of Nantong University, Nantong, China
| | - Mengruo Song
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair and Department of Neurosurgery, The Affiliated Hospital of Nantong University, Nantong, China
- Department of Clinic Research Center, The Affiliated Hospital of Nantong University, Nantong, China
| | - Junzhong Yao
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair and Department of Neurosurgery, The Affiliated Hospital of Nantong University, Nantong, China
- Department of Clinic Research Center, The Affiliated Hospital of Nantong University, Nantong, China
| | - Shiqiang Hou
- Department of Neurosurgery, Chuzhou Clinical College of Anhui Medical University, The First Peoples Hospital Chuzhou, Chuzhou, China
| | - Yunhua Zhu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair and Department of Neurosurgery, The Affiliated Hospital of Nantong University, Nantong, China
- Department of Clinic Research Center, The Affiliated Hospital of Nantong University, Nantong, China
| | - Xiang Ji
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair and Department of Neurosurgery, The Affiliated Hospital of Nantong University, Nantong, China
- Department of Clinic Research Center, The Affiliated Hospital of Nantong University, Nantong, China
| | - Hao Sheng
- Department of Clinic Research Center, The Affiliated Hospital of Nantong University, Nantong, China
| | - Zhongyu Tang
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair and Department of Neurosurgery, The Affiliated Hospital of Nantong University, Nantong, China
- Department of Clinic Research Center, The Affiliated Hospital of Nantong University, Nantong, China
| | - Qianqian Liu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair and Department of Neurosurgery, The Affiliated Hospital of Nantong University, Nantong, China
- Department of Clinic Research Center, The Affiliated Hospital of Nantong University, Nantong, China
| | - Zhongzheng Jia
- Medical Image Center, The Affiliated Hospital of Nantong University, Nantong, China
| | - Wei Shi
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair and Department of Neurosurgery, The Affiliated Hospital of Nantong University, Nantong, China
- Department of Clinic Research Center, The Affiliated Hospital of Nantong University, Nantong, China
| | - Jinlong Shi
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair and Department of Neurosurgery, The Affiliated Hospital of Nantong University, Nantong, China
- Department of Clinic Research Center, The Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
20
|
Yu S, Li N, Wang J, Fu Y, Huang Y, Yi P, Chen R, Tang D, Hu X, Fan X. Correlation of Long Noncoding RNA SEMA6A-AS1 Expression with Clinical Outcome in HBV-Related Hepatocellular Carcinoma. Clin Ther 2020; 42:439-447. [PMID: 32070484 DOI: 10.1016/j.clinthera.2020.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is the seventh most commonly diagnosed cancer and the fourth-leading cause of cancer-related death worldwide. Chronic hepatitis B virus (HBV) is the leading cause of HCC in China. Emerging evidence suggests that long noncoding (lnc)-RNAs are deregulated and are involved in the development of HCC. Our previous study found that HBV X protein can promote HCC by altering lncRNA expression profiles. The purpose of this study was to investigate the expression of the lncRNA semaphorin 6A-antisense RNA 1 (SEMA6A-AS1) and its prognostic value in HBV-related HCC. METHODS Samples of HCC tissues and adjacent nontumor tissues were collected from patients who were pathologically diagnosed with HBV-related HCC after hepatectomy. Eligible patients had not received preoperative radiotherapy, chemotherapy, or embolotherapy. Real-time quantitative reverse-transcription polymerase chain reaction was performed to evaluate the expression levels of SEMA6A-AS1 in all tissue specimens. The correlations between SEMA6A-AS1 expression and clinicopathologic characteristics were analyzed using the χ2 test and the Fisher exact test. Overall survival curves constructed by the Kaplan-Meier method and univariate analysis made by Cox proportional hazards modeling were used for determining the prognostic significance of SEMA6A-AS1. FINDINGS Specimens were collected from 47 patients (45 men, 2 women; mean age, 48.4 [10.7] years). SEMA6A-AS1 expression was significantly downregulated in HBV-related HCC tissues compared with that in adjacent noncancerous hepatic tissues (P < 0.01). Low levels of SEMA6A-AS1 were correlated with high α-fetoprotein level (P = 0.002), high Edmondson-Steiner tumor grade (P = 0.047), high tumor node metastasis stage (P = 0.01), capsular invasion (P = 0.005), and poor clinical response (P = 0.002). Additionally, both Kaplan-Meier estimator and univariate Cox regression analysis revealed that low SEMA6A-AS1 expression was significantly associated with poor overall survival (P < 0.05). IMPLICATIONS The results show that low expression of SEMA6A-AS1 was associated with a poor prognosis in patients with HBV-related HCC. It is necessary to determine the function and mechanism of SEMA6A-AS1 in HCC in order to identify it as a prognostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Songman Yu
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Ning Li
- Department of Blood Transfusion, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Wang
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Yongming Fu
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Huang
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Panpan Yi
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Ruochan Chen
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Daolin Tang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xingwang Hu
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China.
| | - Xuegong Fan
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
21
|
Wu C, Zhu XT, Xia L, Wang L, Yu W, Guo Q, Zhao M, Lou J. High Expression of Long Noncoding RNA PCNA-AS1 Promotes Non-Small-Cell Lung Cancer Cell Proliferation and Oncogenic Activity via Upregulating CCND1. J Cancer 2020; 11:1959-1967. [PMID: 32194807 PMCID: PMC7052854 DOI: 10.7150/jca.39087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/01/2019] [Indexed: 12/16/2022] Open
Abstract
Accumulating evidences showed that aberrantly expressed long noncoding RNAs (lncRNAs) have critical roles in many cancers. However, the expression and roles of a poorly studied lncRNA PCNA-AS1 in non-small-cell lung cancer (NSCLC) remain unknown. In this study, we investigated the expression, clinical significance, biological roles, and functional mechanism of PCNA-AS1 in NSCLC. Our results showed that PCNA-AS1 was upregulated in NSCLC tissues and cell lines, and correlated with TNM stages. Functional experiments showed that overexpression of PCNA-AS1 promoted NSCLC cell proliferation and cell cycle progression. Depletion of PCNA-AS1 inhibited NSCLC cell proliferation and cell cycle progression, and also inhibited NSCLC tumor growth in vivo. Mechanistically, we found that PCNA-AS1 upregulated CCND1 expression. The expression of PCNA-AS1 was positively correlated with that of CCND1 in NSCLC tissues. Moreover, depletion of CCND1 abrogated the oncogenic roles of PCNA-AS1 in NSCLC. In conclusion, highly expressed PCNA-AS1 promotes NSCLC cell proliferation and oncogenic activity via upregulating CCND1. Our results imply that PCNA-AS1 might serve as a therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Chuanyong Wu
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China.,Department of Laboratory Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xiao-Ting Zhu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lei Xia
- Department of orthopedics, Hospital of No.83 army, Xinxiang, 453000, China
| | - Lin Wang
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Wenjun Yu
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qiaomei Guo
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Mingna Zhao
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jiatao Lou
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
22
|
Zhao D, Peng Q, Wang L, Li C, Lv Y, Liu Y, Wang Z, Fang R, Wang J, Liu Z, Xu W. Identification of a six-lncRNA signature based on a competing endogenous RNA network for predicting the risk of tumour recurrence in bladder cancer patients. J Cancer 2020; 11:108-120. [PMID: 31892978 PMCID: PMC6930402 DOI: 10.7150/jca.35801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/11/2019] [Indexed: 12/15/2022] Open
Abstract
Bladder cancer (BC) is the most common malignancy involving the urinary system, and is characterized by a high recurrence rate. It is important to identify potential lncRNA signatures capable of predicting tumour recurrence risk and assessing recurrence prognosis in BC patients. We extracted data from The Cancer Genome Atlas and identified 381 differentially expressed lncRNAs, 855 mRNAs and 70 miRNAs between non-recurrent and recurrent BC tissues. Subsequently, a competing endogenous RNA (ceRNA) network composed of 29 lncRNAs, 13 miRNAs and 4 mRNAs was established. We used univariate and multivariate Cox regression to analyse the relationship between the 29 lncRNAs and recurrence-free survival (RFS) in BC patients. Six lncRNAs had significant prognostic values, and their cumulative risk score indicated that this 6-lncRNA signature independently predicted RFS in BC patients. We applied a receiver operating characteristic (ROC) analysis to assess the efficiency of our prognostic models. High-risk patients exhibited a poorer prognosis than low-risk patients did. Additionally, the 6-lncRNA signature showed a significant correlation with BC clinicopathological characteristics, which indicates that it could be used for effective risk stratification. The current study provides novel insights into the lncRNA-related ceRNA network and this 6-lncRNA signature may be an independent prognostic factor in predicting the recurrence of BC patients.
Collapse
Affiliation(s)
- Danfeng Zhao
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, P. R. China.,Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, P. R. China
| | - Qiang Peng
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, P. R. China
| | - Lu Wang
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, P. R. China.,Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, P. R. China
| | - Cong Li
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, P. R. China
| | - Yulin Lv
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, P. R. China.,Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, P. R. China
| | - Yong Liu
- Department of Urology, Qitaihe People's Hospital, Qitaihe, P.R. China
| | - Zhichao Wang
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, P. R. China
| | - Ruizhe Fang
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, P. R. China
| | - Jiaqi Wang
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, P. R. China.,Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, P. R. China
| | - Zhongqing Liu
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, P. R. China
| | - Wanhai Xu
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, P. R. China.,Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, P. R. China
| |
Collapse
|
23
|
Chen J, Huang X, Wang W, Xie H, Li J, Hu Z, Zheng Z, Li H, Teng L. LncRNA CDKN2BAS predicts poor prognosis in patients with hepatocellular carcinoma and promotes metastasis via the miR-153-5p/ARHGAP18 signaling axis. Aging (Albany NY) 2019; 10:3371-3381. [PMID: 30510148 PMCID: PMC6286843 DOI: 10.18632/aging.101645] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/04/2018] [Indexed: 01/25/2023]
Abstract
Background: Growing evidence shows that long noncoding RNAs (lncRNAs) play a crucial role in cancer progression. However, whether lncRNA CDKN2BAS is involved in human hepatocellular carcinoma (HCC) metastasis remains unclear. Methods: Human lncRNA microarray analysis was performed to detect differential expression levels of lncRNAs in metastatic HCC tissues. Effects of CDKN2BAS on cell proliferation, migration, and apoptosis were determined by MTT assay, colony formation assay, migration assay, scratch assay, and flow cytometry. The xenograft experiment was used to confirm the effect of CDKN2BAS on HCC in vivo. qRT-PCR and Western blot were performed to determine the expression levels of mRNAs and proteins. Luciferase reporter assay was used to identify the specific target relationships. Results: CDKN2BAS was remarkably up-regulated in metastatic HCC tissues compared with the adjacent non-tumor tissues. CDKN2BAS promotes HCC cell growth and migration in vitro and in vivo. Additionally, CDKN2BAS upregulated the expression of Rho GTPase activating protein 18 (ARHGAP18) by sponging microRNA-153-5p (miR-153-5p), and thus promoted HCC cell migration. Besides, CDKN2BAS downregulated the expression of Krüppel-like factor 13 (KLF13) and activated MEK-ERK1/2 signaling, thus reducing apoptosis in HCC cells. Conclusions: Our study revealed that lncRNA CDKN2BAS promotes HCC metastasis by regulating the miR-153-5p/ARHGAP18 signaling.
Collapse
Affiliation(s)
- Junzheng Chen
- Surgical Center, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling 317500, Zhejiang Province, China
| | - Xitian Huang
- Department of Hepatology, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling 317500, Zhejiang Province, China
| | - Weijun Wang
- Department of Hepatobiliary Surgery, Sanxinmeide Geriatrics Hospital of Wenling, Wenling 317500, Zhejiang Province, China
| | - Hongcheng Xie
- Department of Hepatology, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling 317500, Zhejiang Province, China
| | - Jianfeng Li
- Surgical Center, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling 317500, Zhejiang Province, China
| | - Zhenfen Hu
- Surgical Center, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling 317500, Zhejiang Province, China
| | - Zhijian Zheng
- Surgical Center, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling 317500, Zhejiang Province, China
| | - Huiyong Li
- Surgical Center, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling 317500, Zhejiang Province, China
| | - Lingfang Teng
- Surgical Center, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling 317500, Zhejiang Province, China
| |
Collapse
|
24
|
Long Noncoding RNA GATA3-AS1 Promotes Cell Proliferation and Metastasis in Hepatocellular Carcinoma by Suppression of PTEN, CDKN1A, and TP53. Can J Gastroenterol Hepatol 2019; 2019:1389653. [PMID: 31871924 PMCID: PMC6913283 DOI: 10.1155/2019/1389653] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) have been known to play important roles in the progression of various types of human cancer. LncRNA GATA3 antisense RNA 1, GATA3-AS1, has been reported to be associated with T-cell development and differentiation. However, the expression pattern and function of GATA3-AS1 in hepatocellular carcinoma (HCC) remain unknown. METHODS Real-time quantitative PCR (RT-qPCR) assay was conducted to detect GATA3-AS1 expression levels in 80 cases of pairs HCC tissues and matched normal tissues. Chi-squared (χ 2) test was used to analyze the correlation between GATA3-AS1 expression and clinicopathologic variables. Survival curves were plotted using the Kaplan-Meier method and were compared via the log-rank test. The cell counting kit-8 (CCK-8) and wound scratch assays were applied to detect the effect of GATA3-AS1 knockdown and overexpression on cell growth and migration of HCC. RT-qPCR was performed for the detection of the phosphatase and tensin homolog (PTEN), cyclin-dependent kinase inhibitor 1A (CDKN1A), and tumor protein p53 (TP53) expression in HCC cells after GATA3-AS1 knockdown and overexpression. RESULTS GATA3-AS1 was significantly upregulated in HCC tissues compared with matched normal tissues. The high expression of GATA3-AS1 was significantly correlated with larger tumor size, advanced TNM stage, and more lymph node metastasis. High GATA3-AS1 expression was markedly correlated with shorter overall survival times of HCC patients. Furthermore, knockdown of GATA3-AS1 obviously inhibited Hep3B and HCCLM3 cell growth and migration, whereas overexpression of GATA3-AS1 had the opposite effects. In addition, GATA3-AS1 knockdown resulted in upregulated expression levels of tumor-suppressive genes, PTEN, CDKN1A, and TP53, in Hep3B and HCCLM3 cells, while restoration of GATA3-AS1 decreased PTEN, CDKN1A, and TP53 expression levels. CONCLUSION Our data suggested that GATA3-AS1 promotes cell proliferation and metastasis of HCC by suppression of PTEN, CDKN1A, and TP53.
Collapse
|
25
|
Wang JJ, Huang YQ, Song W, Li YF, Wang H, Wang WJ, Huang M. Comprehensive analysis of the lncRNA‑associated competing endogenous RNA network in breast cancer. Oncol Rep 2019; 42:2572-2582. [PMID: 31638237 PMCID: PMC6826329 DOI: 10.3892/or.2019.7374] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 09/19/2019] [Indexed: 12/14/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been confirmed to be potential prognostic markers in a variety of cancers and to interact with microRNAs (miRNAs) as competing endogenous RNAs (ceRNAs) to regulate target gene expression. However, the role of lncRNA‑mediated ceRNAs in breast cancer (BC) remains unclear. In the present study, a ceRNA network was generated to explore their role in BC. The expression profiles of mRNAs, miRNAs and lncRNAs in 1,109 BC tissues and 113 normal breast tissues were obtained from The Cancer Genome Atlas database (TCGA). A total of 3,198 differentially expressed (DE) mRNAs, 150 differentially DEmiRNAs and 1,043 DElncRNAs were identified between BC and normal tissues. A lncRNA‑miRNA‑mRNA network associated with BC was successfully constructed based on the combined data obtained from RNA databases, and comprised 97 lncRNA nodes, 24 miRNA nodes and 74 mRNA nodes. The biological functions of the 74 DEmRNAs were further investigated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The results demonstrated that the DEmRNAs were significantly enriched in two GO biological process categories; the main biological process enriched term was 'positive regulation of GTPase activity'. By KEGG analysis, four key enriched pathways were obtained, including the 'MAPK signaling pathway', the 'Ras signaling pathway', 'prostate cancer', and the 'FoxO signaling pathway'. Kaplan‑Meier survival analysis revealed that six DElncRNAs (INC AC112721.1, LINC00536, MIR7‑3HG, ADAMTS9‑AS1, AL356479.1 and LINC00466), nine DEmRNAs (KPNA2, RACGAP1, SHCBP1, ZNF367, NTRK2, ORS1, PTGS2, RASGRP1 and SFRP1) and two DEmiRNAs (hsa‑miR‑301b and hsa‑miR‑204) had significant effects on overall survival in BC. The present results demonstrated the aberrant expression of INC AC112721.1, AL356479.1, LINC00466 and MIR7‑3HG in BC, indicating their potential prognostic role in patients with BC.
Collapse
Affiliation(s)
- Jing-Jing Wang
- Department of Oncology, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Jiangsu 225300, P.R. China
| | - Yue-Qing Huang
- Department of General Practice, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215001, P.R. China
| | - Wei Song
- Department of Intervention and Vascular Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215001, P.R. China
| | - Yi-Fan Li
- Department of Oncology, Binzhou People's Hospital, Binzhou, Shandong 256600, P.R. China
| | - Han Wang
- Department of Oncology, Jining Cancer Hospital, Jining, Shandong 272000, P.R. China
| | - Wen-Jie Wang
- Department of Radio‑Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215001, P.R. China
| | - Min Huang
- Department of General Practice, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215001, P.R. China
| |
Collapse
|
26
|
Lim LJ, Wong SYS, Huang F, Lim S, Chong SS, Ooi LL, Kon OL, Lee CG. Roles and Regulation of Long Noncoding RNAs in Hepatocellular Carcinoma. Cancer Res 2019; 79:5131-5139. [PMID: 31337653 DOI: 10.1158/0008-5472.can-19-0255] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/06/2019] [Accepted: 07/19/2019] [Indexed: 01/21/2023]
Abstract
Next-generation sequencing has uncovered thousands of long noncoding RNAs (lncRNA). Many are reported to be aberrantly expressed in various cancers, including hepatocellular carcinoma (HCC), and play key roles in tumorigenesis. This review provides an in-depth discussion of the oncogenic mechanisms reported to be associated with deregulated HCC-associated lncRNAs. Transcriptional expression of lncRNAs in HCC is modulated through transcription factors, or epigenetically by aberrant histone acetylation or DNA methylation, and posttranscriptionally by lncRNA transcript stability modulated by miRNAs and RNA-binding proteins. Seventy-four deregulated lncRNAs have been identified in HCC, of which, 52 are upregulated. This review maps the oncogenic roles of these deregulated lncRNAs by integrating diverse datasets including clinicopathologic features, affected cancer phenotypes, associated miRNA and/or protein-interacting partners as well as modulated gene/protein expression. Notably, 63 deregulated lncRNAs are significantly associated with clinicopathologic features of HCC. Twenty-three deregulated lncRNAs associated with both tumor and metastatic clinical features were also tumorigenic and prometastatic in experimental models of HCC, and eight of these mapped to known cancer pathways. Fifty-two upregulated lncRNAs exhibit oncogenic properties and are associated with prominent hallmarks of cancer, whereas 22 downregulated lncRNAs have tumor-suppressive properties. Aberrantly expressed lncRNAs in HCC exert pleiotropic effects on miRNAs, mRNAs, and proteins. They affect multiple cancer phenotypes by altering miRNA and mRNA expression and stability, as well as through effects on protein expression, degradation, structure, or interactions with transcriptional regulators. Hence, these insights reveal novel lncRNAs as potential biomarkers and may enable the design of precision therapy for HCC.
Collapse
Affiliation(s)
- Lee Jin Lim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Samuel Y S Wong
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Feiyang Huang
- NUS High School of Math and Science, Singapore, Singapore
| | - Sheng Lim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, Singapore.,Raffles Institution, Singapore, Singapore
| | - Samuel S Chong
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - London Lucien Ooi
- Duke-NUS Graduate Medical School, Singapore, Singapore.,Department of Hepato-Pancreato-Biliary and Transplant Surgery, Singapore General Hospital, Singapore, Singapore
| | - Oi Lian Kon
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Caroline G Lee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, Singapore.,Duke-NUS Graduate Medical School, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
27
|
LncRNAs with miRNAs in regulation of gastric, liver, and colorectal cancers: updates in recent years. Appl Microbiol Biotechnol 2019; 103:4649-4677. [PMID: 31062053 DOI: 10.1007/s00253-019-09837-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 04/07/2019] [Accepted: 04/08/2019] [Indexed: 12/15/2022]
Abstract
Long noncoding RNA (lncRNA) is a kind of RNAi molecule composed of hundreds to thousands of nucleotides. There are several major types of functional lncRNAs which participate in some important cellular pathways. LncRNA-RNA interaction controls mRNA translation and degradation or serves as a microRNA (miRNA) sponge for silencing. LncRNA-protein interaction regulates protein activity in transcriptional activation and silencing. LncRNA guide, decoy, and scaffold regulate transcription regulators of enhancer or repressor region of the coding genes for alteration of expression. LncRNA plays a role in cellular responses including the following activities: regulation of chromatin structural modification and gene expression for epigenetic and cell function control, promotion of hematopoiesis and maturation of immunity, cell programming in stem cell and somatic cell development, modulation of pathogen infection, switching glycolysis and lipid metabolism, and initiation of autoimmune diseases. LncRNA, together with miRNA, are considered the critical elements in cancer development. It has been demonstrated that tumorigenesis could be driven by homeostatic imbalance of lncRNA/miRNA/cancer regulatory factors resulting in biochemical and physiological alterations inside the cells. Cancer-driven lncRNAs with other cellular RNAs, epigenetic modulators, or protein effectors may change gene expression level and affect the viability, immortality, and motility of the cells that facilitate cancer cell cycle rearrangement, angiogenesis, proliferation, and metastasis. Molecular medicine will be the future trend for development. LncRNA/miRNA could be one of the potential candidates in this category. Continuous studies in lncRNA functional discrepancy between cancer cells and normal cells and regional and rational genetic differences of lncRNA profiles are critical for clinical research which is beneficial for clinical practice.
Collapse
|
28
|
Sabry D, Abdelaleem OO, El Amin Ali AM, Mohammed RA, Abdel-Hameed ND, Hassouna A, Khalifa WA. Anti-proliferative and anti-apoptotic potential effects of epigallocatechin-3-gallate and/or metformin on hepatocellular carcinoma cells: in vitro study. Mol Biol Rep 2019; 46:2039-2047. [PMID: 30710234 DOI: 10.1007/s11033-019-04653-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/24/2019] [Indexed: 12/11/2022]
Abstract
The effects of epigallocatechin-3-gallate (EGCG) and metformin single treatment have been tested against hepatocellular carcinoma (HCC). This study aimed to assess the combination effects of EGCG and metformin on proliferation and apoptosis of HepG2cells and identified new potential molecular targets. The effect of EGCG and metformin against cell proliferation in HepG2 was determined using MTT assay. Reverse transcription polymerase chain reaction was applied to examine the gene expression of cyclin D1, lncRNA-AF085935, caspase-3, survivin and VEGF. The level of protein expression of glypican-3 was assessed by western blot. In HepG2 cells, EGCG and metformin combination treatment exhibited high significant effect against tumor proliferation. It significantly reduced cyclin D1, lncRNA-AF085935, glypican-3 and promoted apoptosis through increasing caspase3 and decreasing survivin compared to control cells. Moreover, EGCG and metformin treated cells showed decreased expression levels of VEGF. Our study provided new insights of the anticarcinogenic effects of EGCG and metformin on HCC through their effects on glypican-3 and lncRNA-AF085935.
Collapse
Affiliation(s)
- Dina Sabry
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Omayma O Abdelaleem
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Fayoum University, Fayoum, Egypt.
| | - Amani M El Amin Ali
- Medical Physiology Department, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Rehab A Mohammed
- Medical Physiology Department, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Nehal D Abdel-Hameed
- Clinical Pathology Departments, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Amira Hassouna
- School of Interprofessional Health Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology (AUT), Auckland, New Zealand
| | - Warda A Khalifa
- Biotechnology Department, Faculty of Science, Sebha University, Sabha, Libya
| |
Collapse
|
29
|
Fan CN, Ma L, Liu N. Systematic analysis of lncRNA-miRNA-mRNA competing endogenous RNA network identifies four-lncRNA signature as a prognostic biomarker for breast cancer. J Transl Med 2018; 16:264. [PMID: 30261893 PMCID: PMC6161429 DOI: 10.1186/s12967-018-1640-2] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/20/2018] [Indexed: 12/13/2022] Open
Abstract
Background Increasing evidence has underscored the role of long non-coding RNAs (lncRNAs) acting as competing endogenous RNAs (ceRNAs) in the development and progression of tumors. Nevertheless, lncRNA biomarkers in lncRNA-related ceRNA network that can predict the prognosis of breast cancer (BC) are still lacking. The aim of our study was to identify potential lncRNA signatures capable of predicting overall survival (OS) of BC patients. Methods The RNA sequencing data and clinical characteristics of BC patients were obtained from the Cancer Genome Atlas database, and differentially expressed lncRNA (DElncRNAs), DEmRNAs, and DEmiRNAs were then identified between BC and normal breast tissue samples. Subsequently, the lncRNA–miRNA–mRNA ceRNA network of BC was established, and the gene oncology enrichment analyses for the DEmRNAs interacting with lncRNAs in the ceRNA network was implemented. Using univariate and multivariate Cox regression analyses, a four-lncRNA signature was developed and used for predicting the survival in BC patients. We applied receiver operating characteristic analysis to assess the performance of our model. Results A total of 1061 DElncRNAs, 2150 DEmRNAs, and 82 DEmiRNAs were identified between BC and normal breast tissue samples. A lncRNA–miRNA–mRNA ceRNA network of BC was established, which comprised of 8 DEmiRNAs, 48 DElncRNAs, and 10 DEmRNAs. Further gene oncology enrichment analyses revealed that the DEmRNAs interacting with lncRNAs in the ceRNA network participated in cell leading edge, protease binding, alpha-catenin binding, gamma-catenin binding, and adenylate cyclase binding. A univariate regression analysis of the DElncRNAs revealed 7 lncRNAs (ADAMTS9-AS1, AC061992.1, LINC00536, HOTAIR, AL391421.1, TLR8-AS1 and LINC00491) that were associated with OS of BC patients. A multivariate Cox regression analysis demonstrated that 4 of those lncRNAs (ADAMTS9-AS1, LINC00536, AL391421.1 and LINC00491) had significant prognostic value, and their cumulative risk score indicated that this 4-lncRNA signature independently predicted OS in BC patients. Furthermore, the area under the curve of the 4-lncRNA signature associated with 3-year survival was 0.696. Conclusions The current study provides novel insights into the lncRNA-related ceRNA network in BC and the 4 lncRNA biomarkers may be independent prognostic signatures in predicting the survival of BC patients. Electronic supplementary material The online version of this article (10.1186/s12967-018-1640-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chun-Ni Fan
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, NO. 126, Xian Tai Street, Changchun, 130033, Jilin, China
| | - Lei Ma
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, NO. 126, Xian Tai Street, Changchun, 130033, Jilin, China
| | - Ning Liu
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, NO. 126, Xian Tai Street, Changchun, 130033, Jilin, China.
| |
Collapse
|
30
|
Melatonin Sensitizes Hepatocellular Carcinoma Cells to Chemotherapy Through Long Non-Coding RNA RAD51-AS1-Mediated Suppression of DNA Repair. Cancers (Basel) 2018; 10:cancers10090320. [PMID: 30201872 PMCID: PMC6162454 DOI: 10.3390/cancers10090320] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/20/2018] [Accepted: 09/07/2018] [Indexed: 12/26/2022] Open
Abstract
DNA repair systems are abnormally active in most hepatocellular carcinoma (HCC) cells due to accumulated mutations, resulting in elevated DNA repair capacity and resistance to chemotherapy and radiotherapy. Thus, targeting DNA repair mechanisms is a common treatment approach in HCC to sensitize cancer cells to DNA damage. In this study, we examined the anti-HCC effects of melatonin and elucidated the regulatory mechanisms. The results of functional assays showed that in addition to inhibiting the proliferation, migration, and invasion abilities of HCC cells, melatonin suppressed their DNA repair capacity, thereby promoting the cytotoxicity of chemotherapy and radiotherapy. Whole-transcriptome and gain- and loss-of-function analyses revealed that melatonin induces expression of the long noncoding RNA RAD51-AS1, which binds to RAD51 mRNA to inhibit its translation, effectively decreasing the DNA repair capacity of HCC cells and increasing their sensitivity to chemotherapy and radiotherapy. Animal models further demonstrated that a combination of melatonin and the chemotherapeutic agent etoposide (VP16) can significantly enhance tumor growth inhibition compared with monotherapy. Our results show that melatonin is a potential adjuvant treatment for chemotherapy and radiotherapy in HCC.
Collapse
|
31
|
Huang Z, Lei W, Tan J, Hu HB. Long noncoding RNA LINC00961 inhibits cell proliferation and induces cell apoptosis in human non-small cell lung cancer. J Cell Biochem 2018; 119:9072-9080. [PMID: 30010215 DOI: 10.1002/jcb.27166] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/18/2018] [Indexed: 12/19/2022]
Abstract
Long noncoding RNAs (LncRNAs) have been identified in multiple human cancer types, including lung cancer. An increasing number of studies have indicated that lncRNAs can function as important gene regulators. However, the biological mechanism of LINC00961 in lung cancerremains poorly understood. In our current study, we recognized lncRNA LINC00961, and we observed that it was significantly reduced in human non-small cell lung cancer (NSCLC) tissues. LINC00961 was elevated by infecting LV-LINC00961, while decreased by LV-shLINC00961 in H226 and A549 cells. Furthermore, it was shown that LINC00961 overexpression greatly inhibited lung cancer cell proliferation, whereas downregulated LINC00961 induced cell proliferation. In addition, further experiments showed that restoration of LINC00961 could dramatically increase apoptotic ratios of NSCLC H226 and A549 cells, and knockdown of LINC00961 exhibited an opposite effect. Moreover, Western blot analysis showed that upregulation of LINC00961 repressed proliferating cell nuclear antigen expression and increased Bax expression, indicating that it acts as an important pro-apoptosis gene. Conversely, inhibition of LINC00961 induced proliferating cell nuclear antigen expression and restrained Bax protein levels. Taking these together, LINC00961 might play a tumor suppressive role in NSCLC progression, and it could serve as a novel prognostic biomarker in NSCLC diagnosis and treatment.
Collapse
Affiliation(s)
- Zhiwen Huang
- Department of Respiratory Medicine, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Wei Lei
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jin Tan
- Department of Thoracic Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Hai-Bo Hu
- Department of Thoracic Surgery, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| |
Collapse
|
32
|
Hu X, Jiang J, Xu Q, Ni C, Yang L, Huang D. A Systematic Review of Long Noncoding RNAs in Hepatocellular Carcinoma: Molecular Mechanism and Clinical Implications. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8126208. [PMID: 30105249 PMCID: PMC6076971 DOI: 10.1155/2018/8126208] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/10/2018] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) has the second highest mortality rate worldwide among all cancers. Previous studies have revealed the significant involvement of long noncoding RNAs (lncRNAs) in numerous human cancers including HCC. Both oncogenic and tumor repressive lncRNAs have been identified and implicated in the complex process of hepatocarcinogenesis. They can be further explored as prospective diagnostic, prognostic, and therapeutic markers for HCC. An in-depth understanding of lncRNAs' mechanism in HCC is therefore required to fully explore their potential role. In the current review, we will concentrate on the underlying function, molecular mechanisms, and potential clinical implications of lncRNA in HCC.
Collapse
Affiliation(s)
- Xiaoge Hu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Jiahong Jiang
- Department of Second Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, Zhejiang 310053, China
| | - Qiuran Xu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Chao Ni
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Department of General Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Liu Yang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Dongsheng Huang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
33
|
Ma P, Wang H, Sun J, Liu H, Zheng C, Zhou X, Lu Z. LINC00152 promotes cell cycle progression in hepatocellular carcinoma via miR-193a/b-3p/CCND1 axis. Cell Cycle 2018; 17:974-984. [PMID: 29895195 PMCID: PMC6103663 DOI: 10.1080/15384101.2018.1464834] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 04/08/2018] [Indexed: 01/08/2023] Open
Abstract
Long intergenic non-coding RNA 00152 (LINC00152) is aberrantly expressed in various human malignancies and plays an important role in the pathogenesis. Here, we found that LINC00152 is upregulated in hepatocellular carcinoma (HCC) tissues as compared to adjacent non-neoplastic tissues; gain-and-loss-of-function analyses in vitro showed that LINC00152 facilitates HCC cell cycle progression through regulating the expression of CCND1. LINC00152 knockdown inhibits tumorigenesis in vivo. MS2-RIP analysis indicated that LINC00152 binds directly to miR-193a/b-3p, as confirmed by luciferase reporter assays. Furthermore, ectopic expression of LINC00152 partially halted the decrease in CCND1 expression and cell proliferation capacity induced by miR-193a/b-3p overexpression. Thus, LINC00152 acts as a competing endogenous RNA (ceRNA) by sponging miR-193a/b-3p to modulate its target gene, CCND1. Our findings establish a ceRNA mechanism regulating cell proliferation in HCC via the LINC00152/miR-193a/b-3p/CCND1 signalling axis, and identify LINC00152 as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Pei Ma
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haitao Wang
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jiangyang Sun
- Department of Hepatobiliary and Pancreas, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongzhou Liu
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Zheng
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Zhou
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhongxin Lu
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
34
|
Li Y, Liang X, Wang P, Long X, Wang X, Meng Z. Long non-coding RNA CACNA1G-AS1 promotes calcium channel protein expression and positively affects human keloid fibroblast migration. Oncol Lett 2018; 16:891-897. [PMID: 29963160 PMCID: PMC6019917 DOI: 10.3892/ol.2018.8717] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 11/20/2017] [Indexed: 11/06/2022] Open
Abstract
Keloids are a type of benign hyperplasia that cause dermatologic dysfunction and esthetic deformity by invading adjacent normal tissues. Little is known about their etiology, therefore, they are a challenge to treat using plastic surgery. In a previous study, it was demonstrated that the expression of the long non-coding RNA CACNA1G-AS1 (CAS1) is high in keloid tissue, suggesting that CAS1 is involved in keloid formation. In the present study, the aim was to identify potential keloid target proteins by exploring CAS1 biological function during cell proliferation and migration, cytokine secretion, collagen secretion and the control of calcium channel protein expression in human keloid fibroblasts. Three biopsy samples were collected from each patient with keloids at The Peking Union Medical College Hospital, which were then used to investigate the role of CAS1 in cell proliferation and migration. CAS1 silencing was also carried out using small interfering RNA; cell factors, collagen and calcium channel protein levels were compared with control cells. The interference of CAS1 expression reached 50% compared with the control group. CACNA1G and type I collagen expression was significantly downregulated by CAS1 knockdown, while the expression of transforming growth factor-β and type III collagen was not affected. Wound healing time was longer in the CAS1-knockdown group, but there was no visible change in cell proliferation. In conclusion, CAS1 appeared to promote calcium channel protein and type I collagen expression, and to have a positive effect on cell migration in human keloid fibroblasts. Therefore it has potential as a novel therapeutic target for keloids.
Collapse
Affiliation(s)
- Ye Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Xuebing Liang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Peng Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Xiao Long
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Xiaojun Wang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
35
|
Corylin increases the sensitivity of hepatocellular carcinoma cells to chemotherapy through long noncoding RNA RAD51-AS1-mediated inhibition of DNA repair. Cell Death Dis 2018; 9:543. [PMID: 29749376 PMCID: PMC5945779 DOI: 10.1038/s41419-018-0575-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 12/22/2022]
Abstract
Corylin, a biologically active agent extracted from Psoralea corylifolia L. (Fabaceae), promotes bone differentiation and inhibits inflammation. Currently, few reports have addressed the biological functions that are regulated by corylin, and to date, no studies have investigated its antitumor activity. In this study, we used cell functional assays to analyze the antitumor activity of corylin in hepatocellular carcinoma (HCC). Furthermore, whole-transcriptome assays were performed to identify the downstream genes that were regulated by corylin, and gain-of-function and loss-of-function experiments were conducted to examine the regulatory roles of the above genes. We found that corylin significantly inhibited the proliferation, migration, and invasion of HCC cells and increased the toxic effects of chemotherapeutic agents against HCC cells. These properties were due to the induction of a long noncoding RNA, RAD51-AS1, which bound to RAD51 mRNA, thereby inhibiting RAD51 protein expression, thus inhibiting the DNA damage repair ability of HCC cells. Animal experiments also showed that a combination treatment with corylin significantly increased the inhibitory effects of the chemotherapeutic agent etoposide (VP16) on tumor growth. These findings indicate that corylin has strong potential as an adjuvant drug in HCC treatment and that corylin can strengthen the therapeutic efficacy of chemotherapy and radiotherapy.
Collapse
|
36
|
Cătană CS, Pichler M, Giannelli G, Mader RM, Berindan-Neagoe I. Non-coding RNAs, the Trojan horse in two-way communication between tumor and stroma in colorectal and hepatocellular carcinoma. Oncotarget 2018; 8:29519-29534. [PMID: 28392501 PMCID: PMC5438748 DOI: 10.18632/oncotarget.15706] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/24/2017] [Indexed: 12/29/2022] Open
Abstract
In a continuous and mutual exchange of information, cancer cells are invariably exposed to microenvironment transformation. This continuous alteration of the genetic, molecular and cellular peritumoral stroma background has become as critical as the management of primary tumor progression events in cancer cells. The communication between stroma and tumor cells within the extracellular matrix is one of the triggers in colon and liver carcinogenesis. All non- codingRNAs including long non-coding RNAs, microRNAs and ultraconserved genes play a critical role in almost all cancers and are responsible for the modulation of the tumor microenvironment in several malignant processes such as initiation, progression and dissemination. This review details the involvement of non codingRNAs in the evolution of human colorectal carcinoma and hepatocellular carcinoma in relationship with the microenvironment. Recent research has shown that a considerable number of dysregulated non- codingRNAs could be valuable diagnostic and prognostic biomarkers in cancer. Therefore, more in-depth knowledge of the role non- codingRNAs play in stroma-tumor communication and of the complex regulatory mechanisms between ultraconserved genes and microRNAs supports the validation of future effective therapeutic targets in patients suffering from hepatocellular and colorectal carcinoma, two distinctive entities which share quite a lot common non-coding RNAs.
Collapse
Affiliation(s)
- Cristina- Sorina Cătană
- Department of Medical Biochemistry, ""Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Martin Pichler
- Department of Internal Medicine, Division of Oncology, Medical University of Graz, Graz, Austria
| | - Gianluigi Giannelli
- Department of Internal Medicine, Immunology and Infectious Diseases, Section of Internal Medicine, University of Bari Medical School, Bari, Italy
| | - Robert M Mader
- Department of Medicine I, Comprehensive Cancer Center of the Medical University of Vienna, Austria
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Institute of Doctoral Studies, ""Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Experimental Pathology, "Ion Chiricuta" Institute of Oncology, Cluj-Napoca, Romania.,Medfuture Research Center for Advanced Medicine, Cluj-Napoca, Romania
| |
Collapse
|
37
|
ncRNA-disease association prediction based on sequence information and tripartite network. BMC SYSTEMS BIOLOGY 2018; 12:37. [PMID: 29671405 PMCID: PMC5907179 DOI: 10.1186/s12918-018-0527-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background Current technology has demonstrated that mutation and deregulation of non-coding RNAs (ncRNAs) are associated with diverse human diseases and important biological processes. Therefore, developing a novel computational method for predicting potential ncRNA-disease associations could benefit pathologists in understanding the correlation between ncRNAs and disease diagnosis, treatment, and prevention. However, only a few studies have investigated these associations in pathogenesis. Results This study utilizes a disease-target-ncRNA tripartite network, and computes prediction scores between each disease-ncRNA pair by integrating biological information derived from pairwise similarity based upon sequence expressions with weights obtained from a multi-layer resource allocation technique. Our proposed algorithm was evaluated based on a 5-fold-cross-validation with optimal kernel parameter tuning. In addition, we achieved an average AUC that varies from 0.75 without link cut to 0.57 with link cut methods, which outperforms a previous method using the same evaluation methodology. Furthermore, the algorithm predicted 23 ncRNA-disease associations supported by other independent biological experimental studies. Conclusions Taken together, these results demonstrate the capability and accuracy of predicting further biological significant associations between ncRNAs and diseases and highlight the importance of adding biological sequence information to enhance predictions.
Collapse
|
38
|
Non-coding RNAs in hepatocellular carcinoma: molecular functions and pathological implications. Nat Rev Gastroenterol Hepatol 2018; 15:137-151. [PMID: 29317776 DOI: 10.1038/nrgastro.2017.169] [Citation(s) in RCA: 338] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is a leading lethal malignancy worldwide. However, the molecular mechanisms underlying liver carcinogenesis remain poorly understood. Over the past two decades, overwhelming evidence has demonstrated the regulatory roles of different classes of non-coding RNAs (ncRNAs) in liver carcinogenesis related to a number of aetiologies, including HBV, HCV and NAFLD. Among the ncRNAs, microRNAs, which belong to a distinct class of small ncRNAs, have been proven to play a crucial role in the post-transcriptional regulation of gene expression. Deregulation of microRNAs has been broadly implicated in the inactivation of tumour-suppressor genes and activation of oncogenes in HCC. Modern high-throughput sequencing analyses have unprecedentedly identified a very large number of non-coding transcripts. Divergent groups of long ncRNAs have been implicated in liver carcinogenesis through interactions with DNA, RNA or proteins. Overall, ncRNAs represent a burgeoning field of cancer research, and we are only beginning to understand the importance and complicity of the ncRNAs in liver carcinogenesis. In this Review, we summarize the common deregulation of small and long ncRNAs in human HCC. We also comprehensively review the pathological roles of ncRNAs in liver carcinogenesis, epithelial-to-mesenchymal transition and HCC metastasis and discuss the potential applications of ncRNAs as diagnostic tools and therapeutic targets in human HCC.
Collapse
|
39
|
The Role of Long Non-Coding RNAs in Hepatocarcinogenesis. Int J Mol Sci 2018; 19:ijms19030682. [PMID: 29495592 PMCID: PMC5877543 DOI: 10.3390/ijms19030682] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 02/23/2018] [Accepted: 02/24/2018] [Indexed: 02/07/2023] Open
Abstract
Whole-transcriptome analyses have revealed that a large proportion of the human genome is transcribed in non-protein-coding transcripts, designated as long non-coding RNAs (lncRNAs). Rather than being “transcriptional noise”, increasing evidence indicates that lncRNAs are key players in the regulation of many biological processes, including transcription, post-translational modification and inhibition and chromatin remodeling. Indeed, lncRNAs are widely dysregulated in human cancers, including hepatocellular carcinoma (HCC). Functional studies are beginning to provide insights into the role of oncogenic and tumor suppressive lncRNAs in the regulation of cell proliferation and motility, as well as oncogenic and metastatic potential in HCC. A better understanding of the molecular mechanisms and the complex network of interactions in which lncRNAs are involved could reveal novel diagnostic and prognostic biomarkers. Crucially, it may provide novel therapeutic opportunities to add to the currently limited number of therapeutic options for HCC patients. In this review, we summarize the current status of the field, with a focus on the best characterized dysregulated lncRNAs in HCC.
Collapse
|
40
|
Zhang F, Li J, Xiao H, Zou Y, Liu Y, Huang W. AFAP1-AS1: A novel oncogenic long non-coding RNA in human cancers. Cell Prolif 2018; 51:e12397. [PMID: 29057544 PMCID: PMC6528908 DOI: 10.1111/cpr.12397] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 09/24/2017] [Indexed: 02/05/2023] Open
Abstract
Long non-coding RNAs (lncRNAs), a group of non-protein-coding RNAs with more than 200 nucleotides in length, are involved in multiple biological processes, such as the proliferation, apoptosis, migration and invasion. Moreover, numerous studies have shown that lncRNAs play important roles as oncogenes or tumour suppressor genes in human cancers. In this paper, we concentrate on actin filament-associated protein 1-antisense RNA 1 (AFAP1-AS1), a well-known long non-coding RNA that is overexpressed in various tumour tissues and cell lines, including oesophageal cancer, pancreatic ductal adenocarcinoma, nasopharyngeal carcinoma, lung cancer, hepatocellular carcinoma, ovarian cancer, colorectal cancer, biliary tract cancer and gastric cancer. Moreover, high expression of AFAP1-AS1 was associated with the clinicopathological features and cancer progression. In this review, we sum up the current studies on the characteristics of AFAP1-AS1 in the biological function and mechanism of human cancers.
Collapse
Affiliation(s)
- Fuyou Zhang
- Key Laboratory of Medical Reprogramming TechnologyShenzhen Second People's HospitalFirst Affiliated Hospital of Shenzhen UniversityShenzhen518039Guangdong ProvinceChina
| | - Jianfa Li
- Key Laboratory of Medical Reprogramming TechnologyShenzhen Second People's HospitalFirst Affiliated Hospital of Shenzhen UniversityShenzhen518039Guangdong ProvinceChina
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and GeneticsInstitute of UrologyPeking University Shenzhen HospitalShenzhen PKU‐HKUST Medical CenterShenzhen518036China
| | - Huizhong Xiao
- Key Laboratory of Medical Reprogramming TechnologyShenzhen Second People's HospitalFirst Affiliated Hospital of Shenzhen UniversityShenzhen518039Guangdong ProvinceChina
- University of South ChinaHengyangHunan421001China
| | - Yifan Zou
- Key Laboratory of Medical Reprogramming TechnologyShenzhen Second People's HospitalFirst Affiliated Hospital of Shenzhen UniversityShenzhen518039Guangdong ProvinceChina
- Shantou University Medical CollegeShantou515041Guangdong ProvinceChina
| | - Yuchen Liu
- Key Laboratory of Medical Reprogramming TechnologyShenzhen Second People's HospitalFirst Affiliated Hospital of Shenzhen UniversityShenzhen518039Guangdong ProvinceChina
| | - Weiren Huang
- Key Laboratory of Medical Reprogramming TechnologyShenzhen Second People's HospitalFirst Affiliated Hospital of Shenzhen UniversityShenzhen518039Guangdong ProvinceChina
- University of South ChinaHengyangHunan421001China
- Shantou University Medical CollegeShantou515041Guangdong ProvinceChina
| |
Collapse
|
41
|
Wang ZY, Hu M, Dai MH, Xiong J, Zhang S, Wu HJ, Zhang SS, Gong ZJ. Upregulation of the long non-coding RNA AFAP1-AS1 affects the proliferation, invasion and survival of tongue squamous cell carcinoma via the Wnt/β-catenin signaling pathway. Mol Cancer 2018; 17:3. [PMID: 29310682 PMCID: PMC5757289 DOI: 10.1186/s12943-017-0752-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/26/2017] [Indexed: 02/08/2023] Open
Abstract
Background Long non-coding RNA (lncRNA) actin filament associated protein 1 antisense RNA1 (AFAP1-AS1) is oriented in an antisense direction to the protein-coding gene AFAP1 in the opposite strand. Previous studies showed that lncRNA AFAP1-AS1 was upregulated and acted as an oncogene in a variety of tumors. However, the expression and biological functions of lncRNA AFAP1-AS1 in tongue squamous cell carcinoma (TSCC) are still unknown. Methods The expression level of AFAP1-AS1 was measured in 103 pairs of human TSCC tissues and corresponding adjacent normal tongue mucous tissues. The correlation between AFAP1-AS1 and the clinicopathological features was evaluated using the chi-square test. The effects of AFAP1-AS1 on TSCC cells were determined via a CCK-8 assay, clone formation assay, flow cytometry, wound healing assay and transwell assay. Furthermore, the effect of AFAP1-AS1 knockdown on the activation of the Wnt/β-catenin signaling pathway was investigated. Finally, CAL-27 cells with AFAP1-AS1 knockdown were subcutaneously injected into nude mice to evaluate the effect of AFAP1-AS1 on tumor growth in vivo. Results In this study, we found that lncRNA AFAP1-AS1 was increased in TSCC tissues and that patients with high AFAP1-AS1 expression had a shorter overall survival. Short hairpin RNA (shRNA)-mediated AFAP1-AS1 knockdown significantly decreased the proliferation of TSCC cells. Furthermore, AFAP1-AS1 silencing partly inhibited cell migration and invasion. Inhibition of AFAP1-AS1 decreased the activity of the Wnt/β-catenin pathway and suppressed the expression of EMT-related genes (SLUG, SNAIL1, VIM, CADN, ZEB1, ZEB2, SMAD2 and TWIST1) in TSCC cells. In addition, CAL-27 cells with AFAP1-AS1 knockdown were injected into nude mice to investigate the effect of AFAP1-AS1 on tumorigenesis in vivo. Downregulation of AFAP1-AS1 suppressed tumor growth and inhibited the expression of EMT-related genes (SLUG, SNIAL1, VIM, ZEB1, NANOG, SMAD2, NESTIN and SOX2) in vivo. Conclusions Taken together, our findings present a road map for targeting the newly identified lncRNA AFAP1-AS1 to suppress TSCC progression, and these results elucidate a novel potential therapeutic strategy for TSCC.
Collapse
Affiliation(s)
- Ze-You Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Min Hu
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Min-Hui Dai
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jing Xiong
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Shuai Zhang
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, 350100, China.,Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Han-Jiang Wu
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Shan-Shan Zhang
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China. .,Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Zhao-Jian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
42
|
Li J, Li Z, Leng K, Xu Y, Ji D, Huang L, Cui Y, Jiang X. ZEB1-AS1: A crucial cancer-related long non-coding RNA. Cell Prolif 2017; 51. [PMID: 29226522 DOI: 10.1111/cpr.12423] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 11/15/2017] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) recently emerge as a novel class of non-coding RNAs (ncRNAs) with larger than 200 nucleotides in length. Due to lack an obvious open reading frame, lncRNAs have no or limited protein-coding potential. To date, accumulating evidence indicates the vital regulatory function of lncRNAs in pathological processes of human diseases, especially in carcinogenesis and development. Deregulation of lncRNAs not only alters cellular biological behavior, such as proliferation, migration and invasion, but also represents the poor clinical outcomes. Zinc finger E-box binding homeobox 1 antisense 1 (ZEB1-AS1), an outstanding cancer-related lncRNA, is identified as an oncogenic regulator in diverse malignancies. Dysregulation of ZEB1-AS1 has been demonstrated to exhibit a pivotal role in tumorigenesis and progression, suggesting its potential clinical value as a promising biomarker or therapeutic target for cancers. In this review, we make a summary on the current findings regarding the biological functions, underlying mechanisms and clinical significance of ZEB1-AS1 in cancer progression.
Collapse
Affiliation(s)
- Jinglin Li
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhenglong Li
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kaiming Leng
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Daolin Ji
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lining Huang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xingming Jiang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
43
|
Huo X, Han S, Wu G, Latchoumanin O, Zhou G, Hebbard L, George J, Qiao L. Dysregulated long noncoding RNAs (lncRNAs) in hepatocellular carcinoma: implications for tumorigenesis, disease progression, and liver cancer stem cells. Mol Cancer 2017; 16:165. [PMID: 29061150 PMCID: PMC5651571 DOI: 10.1186/s12943-017-0734-4] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/16/2017] [Indexed: 12/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumours with a poor prognosis worldwide. While early stage tumours can be treated with curative approaches such as liver transplantation or surgical resection, these are only suitable for a minority of patients. Those with advanced stage disease are only suitable for supportive approaches and most are resistant to the conventional chemotherapy or radiotherapy. Liver cancer stem cells (LCSCs) are a small subset of cancer cells with unlimited differentiation ability and tumour forming potential. In order to develop novel therapeutic approaches for HCC, we need to understand how the cancer develops and why treatment resistance occurs. Using high-throughput sequencing techniques, a large number of dysregulated long noncoding RNAs (lncRNAs) have been identified, and some of which are closely linked to key aspects of liver cancer pathology, progression, outcomes and for the maintenance of cancer stem cell-like properties. In addition, some lncRNAs are potential biomarkers for HCC diagnosis and may serve as the therapeutic targets. This review summarizes data recently reported lncRNAs that might be critical for the maintenance of the biological properties of LCSCs.
Collapse
Affiliation(s)
- Xiaoqi Huo
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Shuanglin Han
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, 2145, Australia
- Department of Gastroenterology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116027, China
| | - Guang Wu
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Olivier Latchoumanin
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Gang Zhou
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Lionel Hebbard
- Department of Molecular and Cell Biology, Centre for Comparative Genomics, The Centre for Biodiscovery and Molecular Development of Therapeutics, James Cook University, Australian Institute of Tropical Health and Medicine, QLD, Townsville, 4811, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, 2145, Australia.
| |
Collapse
|
44
|
Qiu L, Tang Q, Li G, Chen K. Long non-coding RNAs as biomarkers and therapeutic targets: Recent insights into hepatocellular carcinoma. Life Sci 2017; 191:273-282. [PMID: 28987633 DOI: 10.1016/j.lfs.2017.10.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/19/2017] [Accepted: 10/03/2017] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer worldwide, and the survival rates of patients with HCC remains quite low after 5years. Long non-coding RNAs (LncRNAs) are a novel class of non-coding RNAs that are capable of regulating gene expression at various levels. Recent works have demonstrated that lncRNAs are often dysregulated in HCC, and the dysregulation of some of these lncRNAs are associated with the clinicopathological features of HCC. They regulate cell proliferation, apoptosis, autophagy, Epithelial-Mesenchymal Transition (EMT), invasion and metastasis of HCC by modulating gene expression and cancer-related signaling pathways, and thus contribute to the onset and progression of HCC. In this review, we provide a comprehensive survey of dysregulated lncRNAs in HCC, with particular focus on the functions and regulatory mechanisms of several essential and important lncRNAs, and discuss their potential clinical application as early diagnostic and/or prognostic biomarkers or therapeutic targets for HCC.
Collapse
Affiliation(s)
- Lipeng Qiu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Qi Tang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Guohui Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| |
Collapse
|
45
|
Acharya S, Hartmann M, Erhardt S. Chromatin-associated noncoding RNAs in development and inheritance. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28840663 DOI: 10.1002/wrna.1435] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 12/13/2022]
Abstract
Noncoding RNAs (ncRNAs) have emerged as crucial players in chromatin regulation. Their diversity allows them to partake in the regulation of numerous cellular processes across species. During development, long and short ncRNAs act in conjunction with each other where long ncRNAs (lncRNAs) are best understood in establishing appropriate gene expression patterns, while short ncRNAs (sRNAs) are known to establish constitutive heterochromatin and suppress mobile elements. Additionally, increasing evidence demonstrates roles of sRNAs in several typically lncRNA-mediated processes such as dosage compensation, indicating a complex regulatory network of noncoding RNAs. Together, various ncRNAs establish many mitotically heritable epigenetic marks during development. Additionally, they participate in mechanisms that regulate maintenance of these epigenetic marks during the lifespan of the organism. Interestingly, some epigenetic traits are transmitted to the next generation(s) via paramutations or transgenerational inheritance mediated by sRNAs. In this review, we give an overview of the various functions and regulations of ncRNAs and the mechanisms they employ in the establishment and maintenance of epigenetic marks and multi-generational transmission of epigenetic traits. WIREs RNA 2017, 8:e1435. doi: 10.1002/wrna.1435 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Sreemukta Acharya
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, and CellNetworks, Im Neuenheimer Feld 282, Heidelberg, Germany
| | - Mark Hartmann
- Regulation of Cellular Differentiation Group, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sylvia Erhardt
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, and CellNetworks, Im Neuenheimer Feld 282, Heidelberg, Germany
| |
Collapse
|
46
|
Yang Y, Ren M, Song C, Li D, Soomro SH, Xiong Y, Zhang H, Fu H. LINC00461, a long non-coding RNA, is important for the proliferation and migration of glioma cells. Oncotarget 2017; 8:84123-84139. [PMID: 29137410 PMCID: PMC5663582 DOI: 10.18632/oncotarget.20340] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/25/2017] [Indexed: 12/31/2022] Open
Abstract
An increasing number of reports have revealed that long non-coding RNAs are important players in tumorigenesis. Here we showed that long non-coding RNA LINC00461 is highly expressed in glioma tissues compared to non-neoplastic brain tissues. The knockdown of LINC00461 suppressed cyclinD1/A/E expression which led to G0/G1 cell cycle arrest and inhibited cell proliferation in glioma cells. LINC00461 suppression also inhibited glioma cell migration and invasion. The function of LINC00461 in glioma cells is partially mediated by MAPK/ERK and PI3K/AKT signaling pathways as down-regulation of LINC00461 expression suppressed ERK1/2 and AKT activities. Moreover, LINC00461 knockdown decreased expression levels of microRNA miR-9 and flanking genes MEF2C and TMEM161B. Taken together, our results demonstrate that LINC00461 is important for glioma progression affecting cell proliferation, migration and invasion via MAPK/ERK, PI3K/AKT, and possibly other signaling pathways.
Collapse
Affiliation(s)
- Yali Yang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Mingxin Ren
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Chao Song
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Dan Li
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Shahid Hussain Soomro
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yajie Xiong
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Hongfeng Zhang
- Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Hui Fu
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
47
|
Yeh MM, Boukhar S, Roberts B, Dasgupta N, Daoud SS. Genomic variants link to hepatitis C racial disparities. Oncotarget 2017; 8:59455-59475. [PMID: 28938650 PMCID: PMC5601746 DOI: 10.18632/oncotarget.19755] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 07/03/2017] [Indexed: 02/07/2023] Open
Abstract
Chronic liver diseases are one of the major public health issues in United States, and there are substantial racial disparities in liver cancer-related mortality. We previously identified racially distinct alterations in the expression of transcripts and proteins of hepatitis C (HCV)-induced hepatocellular carcinoma (HCC) between Caucasian (CA) and African American (AA) subgroups. Here, we performed a comparative genome-wide analysis of normal vs. HCV+ (cirrhotic state), and normal adjacent tissues (HCCN) vs. HCV+HCC (tumor state) of CA at the gene and alternative splicing levels using Affymetrix Human Transcriptome Array (HTA2.0). Many genes and splice variants were abnormally expressed in HCV+ more than in HCV+HCC state compared with normal tissues. Known biological pathways related to cell cycle regulations were altered in HCV+HCC, whereas acute phase reactants were deregulated in HCV+ state. We confirmed by quantitative RT-PCR that SAA1, PCNA-AS1, DAB2, and IFI30 are differentially deregulated, especially in AA compared with CA samples. Likewise, IHC staining analysis revealed altered expression patterns of SAA1 and HNF4α isoforms in HCV+ liver samples of AA compared with CA. These results demonstrate that several splice variants are primarily deregulated in normal vs. HCV+ stage, which is certainly in line with the recent observations showing that the pre-mRNA splicing machinery may be profoundly remodeled during disease progression, and may, therefore, play a major role in HCV racial disparity. The confirmation that certain genes are deregulated in AA compared to CA tissues also suggests that there is a biological basis for the observed racial disparities.
Collapse
Affiliation(s)
- Matthew M Yeh
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Sarag Boukhar
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Benjamin Roberts
- The Liver Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Nairanjana Dasgupta
- Department of Mathematics and Statistics, Washington State University, Pullman, WA 99164, USA
| | - Sayed S Daoud
- Department of Pharmaceutical Sciences, Washington State University Health Sciences, Spokane, WA 99210, USA
| |
Collapse
|
48
|
Deng Q, Chen S, Fu C, Jiang J, Zou M, Tan Y, Wang X, Xia F, Feng K, Ma K, Bie P. Long noncoding RNA expression profiles in sub-lethal heat-treated hepatoma carcinoma cells. World J Surg Oncol 2017; 15:136. [PMID: 28732507 PMCID: PMC5521104 DOI: 10.1186/s12957-017-1194-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/22/2017] [Indexed: 02/06/2023] Open
Abstract
Background Sub-lethal heat treatment characterizes a transition zone of radiofrequency ablation (RFA) which explains hepatocellular carcinoma (HCC) residual cancer occurrence in this area after RFA treatment. The biochemistry of residual cancer cell recurrence is poorly understood, but long noncoding RNAs (lncRNAs) may have aberrant expression that is associated with diverse cancers. Thus, we measured lncRNA gene expression in sub-lethally heat-treated HCC cells using microarray. Method Differentially expressed lncRNA and mRNA were measured with an Agilent Human lncRNA + mRNA Array V4.0 (4 × 180 K format) containing 41,000 lncRNAs and 34,000 mRNAs. Bioinformatics analysis was used to assess differentially expressed lncRNA and mRNA. Seven lncRNA and seven mRNA were validated by qRT-PCR analysis in HCC cells. Results Genome-wide lncRNA and mRNA expression data in sub-lethal heat-treated SMMC-7721 HCC cells 558 lncRNA and 250 mRNA were significantly up-regulated and 224 lncRNA and 1031 mRNA down-regulated compared to normal cultured SMMC-7721 cells. We demonstrated for the first time that ENST00000570843.1, ENST00000567668.1, ENST00000582249.1, ENST00000450304.1, TCONS_00015544, ENST00000602478.1, TCONS_00001266 and ARC, IL12RB1, HSPA6 were upregulated, whereas STAT3, PRPSAP1, MCU, URB2 were down-regulated in sub-lethally heat-treated HCC cells. Conclusions lncRNA expression data in sub-lethally heat-treated HCC cells will provide important insights about lncRNAs’ contribution to HCC recurrence after RFA treatment. Electronic supplementary material The online version of this article (doi:10.1186/s12957-017-1194-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qingsong Deng
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Shihan Chen
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Chunchuan Fu
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Jiayun Jiang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Mengda Zou
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Yunhua Tan
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Xiaofei Wang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Feng Xia
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Kai Feng
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| | - Kuansheng Ma
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| | - Ping Bie
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
49
|
Li H, Zhu H, Zhou Y, Wang H, Niu Z, Shen Y, Lv L. Long non-coding RNA MSTO2P promotes the proliferation and colony formation in gastric cancer by indirectly regulating miR-335 expression. Tumour Biol 2017; 39:1010428317705506. [PMID: 28618927 DOI: 10.1177/1010428317705506] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Long non-coding RNAs are emerging as new players in gene regulation, but whether long non-coding RNAs influence the expression of microRNA is unclear. The expression levels of misato family member 2, pseudogene were significantly associated with lymphatic metastasis and distal metastasis in 80 paired gastric cancer tissues using real-time quantitative reverse transcription polymerase chain reaction experiments. The effects of long non-coding RNA misato family member 2, pseudogene were assessed by overexpressing or downexpressing long non-coding RNA misato family member 2, pseudogene in gastric cancer cells. Long non-coding RNA misato family member 2, pseudogene promoted gastric cancer cell growth, colony formation, migration, and invasion in gastric cancer cells. Long non-coding RNA misato family member 2, pseudogene influenced biologic functions in gastric cancer cells via indirectly regulating the activation of miR-335. Our results reveal long non-coding RNA misato family member 2, pseudogene as an oncogenic long non-coding RNA that promotes cell growth and invasion. Therefore, long non-coding RNAs might function as key regulatory hubs in gastric cancer progression.
Collapse
Affiliation(s)
- Han Li
- 1 Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Hua Zhu
- 2 Department of General Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yanbing Zhou
- 1 Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Haibo Wang
- 1 Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Zhaojian Niu
- 1 Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Yi Shen
- 1 Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Liang Lv
- 1 Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| |
Collapse
|
50
|
Hao QQ, Chen GY, Zhang JH, Sheng JH, Gao Y. Diagnostic value of long noncoding RNAs for hepatocellular carcinoma: A PRISMA-compliant meta-analysis. Medicine (Baltimore) 2017; 96:e7496. [PMID: 28700498 PMCID: PMC5515770 DOI: 10.1097/md.0000000000007496] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Increasing evidences have shown that long noncoding RNAs (lncRNAs) are involved in cancer diagnosis and prognosis. However, the overall diagnostic accuracy of lncRNAs for hepatocellular carcinoma (HCC) remains unclear. Herein, we perform a meta-analysis to assess diagnostic value of lncRNAs for HCC. METHODS The online PubMed, Cochrane, Web of Science, and Embase database were searched for eligible studies published until October 5, 2016. Study quality was evaluated with the Quality Assessment for Studies of Diagnostic Accuracy (QUADAS). All statistical analyses were conducted with Stata 12.0 and Meta-Disc 1.4. RESULTS We included 19 studies from 10 articles with 1454 patients with HCC and 1300 controls. The pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and AUC for lncRNAs in the diagnosis of HCC were 0.83 (95% confidence interval [CI]: 0.76-0.88), 0.80 (95% CI: 0.73-0.86), 4.2 (95% CI: 3.00-5.80), 0.21 (95% CI: 0.15-0.31), 20 (95% CI: 11-34), and 0.88 (95% CI: 0.85-0.91), respectively. Additionally, the diagnostic value of lncRNAs varied based on sex ratio of cases and characteristics of methods (specimen type and reference gen). CONCLUSION This meta-analysis suggests lncRNAs show a moderate diagnostic accuracy for HCC. However, prospective studies are required to confirm its diagnostic value.
Collapse
|