1
|
Wu H, Shang J, Bao Y, Liu H, Zhang H, Xiao Y, Li Y, Huang Z, Cheng X, Ma Z, Zhang W, Mo P, Wang D, Zhang M, Zhan Y. Identification of a novel prognostic marker ADGRG6 in pancreatic adenocarcinoma: multi-omics analysis and experimental validation. Front Immunol 2025; 16:1530789. [PMID: 40226617 PMCID: PMC11986822 DOI: 10.3389/fimmu.2025.1530789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/10/2025] [Indexed: 04/15/2025] Open
Abstract
Background Pancreatic adenocarcinoma (PAAD) ranks among the most lethal malignancies worldwide. Current treatment options have limited efficacy, underscoring the need for new therapeutic targets. Methods This study employed a multi-omics analytical framework to delve into the expression profiles and prognostic implications of ADGRG6 within the pan-cancer dataset of The Cancer Genome Atlas (TCGA) database, highlighting the prognostic value and potential carcinogenic role of ADGRG6 in PAAD, which was further validated using data from multiple PAAD cohorts in the Gene Expression Omnibus (GEO) database. To assess the role of ADGRG6 in the tumor microenvironment of PAAD, we evaluated immune infiltration using CIBERSORT, ssGSEA, xCell and Tracking Tumor Immunophenotype (TIP), and utilized single-cell sequencing data to explore cell-cell interactions. Further cellular and animal experiments, such as colony formation assay, transwell assay, western blot, real-time PCR, and tumor xenograft experiments, were used to investigate the effect of ADGRG6 on the proliferation, metastatic potential and immune marker expression of PAAD and the underlying mechanisms. Results ADGRG6 emerged as a potential prognostic biomarker and a therapeutic target for PAAD, which was further corroborated by data extracted from multiple PAAD cohorts archived in the GEO database. Single-cell sequencing and immune infiltration analyses predicted the positive correlation of ADGRG6 with the infiltration of immune cells and with the interaction between malignant cells and fibroblasts/macrophages within the PAAD microenvironment. In vitro cell assays demonstrated that ADGRG6 promoted the proliferation, metastatic potential and immune marker expression of PAAD cells by increasing protein level of mutated p53 (mutp53), which activated a spectrum of gain-of-functions to promote cancer progression via the EGFR, AMPK and NF-κB signaling cascades. Furthermore, subcutaneous xenograft experiments in mice demonstrated that ADGRG6 knockdown substantially suppressed the growth of engrafted PAAD tumors. Conclusions ADGRG6 may serve as a novel prognostic marker and a therapeutic targets for PAAD, playing a crucial role in the proliferation, metastasis, and immune marker regulation of PAAD through elevating protein level of mutated p53.
Collapse
Affiliation(s)
- Han Wu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Gastroenterology, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, Fujian, China
| | - Jin Shang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yuanyan Bao
- Department of Gastroenterology, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, Fujian, China
| | - Huajie Liu
- Department of Gastroenterology, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, Fujian, China
| | - Haoran Zhang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yaosheng Xiao
- Department of Infectious Disease, Xiang’an Hospital Affiliated to Xiamen University, Xiamen, Fujian, China
| | - Yangtaobo Li
- Department of Gastroenterology, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, Fujian, China
| | - Zhaozhang Huang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiaolei Cheng
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zixuan Ma
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Wenqing Zhang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Pingli Mo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Science, Xiamen University, Xiamen, Fujian, China
| | - Daxuan Wang
- Provincial College of Clinical Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Mingqing Zhang
- Department of Gastroenterology, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, Fujian, China
| | - Yanyan Zhan
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
2
|
Aswathy R, Suganya K, Varghese CA, Sumathi S. Deciphering the Expression, Functional Role, and Prognostic Significance of P53 in Cervical Cancer Through Bioinformatics Analysis. J Obstet Gynaecol India 2025; 75:36-45. [PMID: 40092388 PMCID: PMC11904074 DOI: 10.1007/s13224-024-01954-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/13/2024] [Indexed: 03/19/2025] Open
Abstract
Background Cervical cancer (CC) poses a persistent global health challenge, and it increases the mortality risk among women. P53 gene plays a pivotal role in CC regulation; yet, a comprehensive exploration of its expression levels and prognostic relevance is not fully understood. Aim The aim of this research was to utilize bioinformatics analysis on publicly available patient data to investigate and understand the expression patterns of the TP53 gene in CC. Materials and Methods The study utilizes the TIMER 2.0 and UALCAN databases to assess TP53 expression and its relationship with immune cell infiltration in CC. Additionally, genetic alterations in TP53 are explored using the cBioPortal database. Functional enrichment analysis unveils the molecular processes associated with TP53. Kaplan-Meier analysis examines TP53 prognostic significance. Results The study reveals that TP53 expression is significantly up regulated in CC, potentially driven by genetic alterations. TP53 expression positively correlates with immune cell infiltration, including CD8 + T cells, CD4 + T cells, neutrophils, and macrophages, suggesting its role in shaping the tumor microenvironment. Functional analysis identifies TP53 involvement in essential cellular processes, including chromatin assembly, DNA conformation change, and carbohydrate kinase activity. Kaplan-Meier analysis highlights the prognostic significance of TP53, showing a poorer overall survival in CC patients with high TP53 expression. Conclusion The results underscore the prognostic potential of P53 in CC and its utility as a biomarker for assessing prognosis associated to tumor-immune infiltration. This study provides valuable insights into the multifaceted role of P53 in cervical carcinogenesis and its implications for therapeutic interventions and personalized medicine.
Collapse
Affiliation(s)
- Raghu Aswathy
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu 641 043 India
| | - Kanagaraj Suganya
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu 641 043 India
| | - Chalos Angel Varghese
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu 641 043 India
| | - Sundaravadivelu Sumathi
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu 641 043 India
| |
Collapse
|
3
|
Janssen LM, Lemaire F, Sanchez-Calero CL, Huaux F, Ronsmans S, Hoet PH, Ghosh M. External and internal exposome as triggers of biological signalling in systemic sclerosis - A narrative synthesis. J Autoimmun 2025; 150:103342. [PMID: 39643962 DOI: 10.1016/j.jaut.2024.103342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
Systemic sclerosis (SSc) is an autoimmune chronic connective tissue disorder with a complex pathogenesis and a strong gene-environment interaction. Despite the low prevalence of SSc, with around 100-250 cases per million, the morbidity and mortality are high and disproportionately affecting women. In this context, we review the influence of the external and internal exposome on the "immunome" in SSc. While several studies have addressed aspects of exposure-induced autoimmunity in general, very few have focused on SSc-specific phenotypes. In epidemiological studies, targeted characterization of the external exposome component in relation to SSc has often been limited to a single exposure. Despite the selective characterization of exposure, such studies play an important role in providing evidence that can be used towards reduction of exposure of modifiable factors, and can lead to proper management and prevention of SSc. Additionally, there is an effort towards integration of external exposome data with health data (health records, medical imaging, diagnostic results, etc.), to significantly improve our understanding of the environmental and occupational causes of SSc. A limited number of studies have identified biological processes related to the vascular homeostasis, fibrotic processes and the immune system. The key findings of the current review show advances in our understanding of the SSc disease phenotype and associated biomarkers in relation to specific pathophysiological features, however most often such studies are not supplemented with external exposome data.
Collapse
Affiliation(s)
- Lisa Mf Janssen
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Frauke Lemaire
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | | | - François Huaux
- Louvain Center for Toxicology and Applied Pharmacology, UCLouvain, Brussels, Belgium
| | - Steven Ronsmans
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Peter Hm Hoet
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Manosij Ghosh
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
4
|
Qiu L, Ma Z, Wu X. Mutant p53-Mediated Tumor Secretome: Bridging Tumor Cells and Stromal Cells. Genes (Basel) 2024; 15:1615. [PMID: 39766882 PMCID: PMC11675497 DOI: 10.3390/genes15121615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/06/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
The tumor secretome comprises the totality of protein factors secreted by various cell components within the tumor microenvironment, serving as the primary medium for signal transduction between tumor cells and between tumor cells and stromal cells. The deletion or mutation of the p53 gene leads to alterations in cellular secretion characteristics, contributing to the construction of the tumor microenvironment in a cell non-autonomous manner. This review discusses the critical roles of mutant p53 in regulating the tumor secretome to remodel the tumor microenvironment, drive tumor progression, and influence the plasticity of cancer-associated fibroblasts (CAFs) as well as the dynamics of tumor immunity by focusing on both secreted protein expression and secretion pathways. The aim is to provide new insights for targeted cancer therapies.
Collapse
Affiliation(s)
| | | | - Xiaoming Wu
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming 650500, China; (L.Q.); (Z.M.)
| |
Collapse
|
5
|
Qayoom H, Haq BU, Sofi S, Jan N, Jan A, Mir MA. Targeting mutant p53: a key player in breast cancer pathogenesis and beyond. Cell Commun Signal 2024; 22:484. [PMID: 39390510 PMCID: PMC11466041 DOI: 10.1186/s12964-024-01863-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
The p53 mutation is the most common genetic mutation associated with human neoplasia. TP53 missense mutations, which frequently arise early in breast cancer, are present in over thirty percent of breast tumors. In breast cancer, p53 mutations are linked to a more aggressive course of the disease and worse overall survival rates. TP53 mutations are mostly seen in triple-negative breast cancer, a very diverse kind of the disease. The majority of TP53 mutations originate in the replacement of individual amino acids within the p53 protein's core domain, giving rise to a variety of variations referred to as "mutant p53s." In addition to gaining carcinogenic qualities through gain-of-function pathways, these mutants lose the typical tumor-suppressive features of p53 to variable degrees. The gain-of-function impact of stabilized mutant p53 causes tumor-specific dependency and resistance to therapy. P53 is a prospective target for cancer therapy because of its tumor-suppressive qualities and the numerous alterations that it experiences in tumors. Phenotypic abnormalities in breast cancer, notably poorly differentiated basal-like tumors are frequently linked to high-grade tumors. By comparing data from cell and animal models with clinical outcomes in breast cancer, this study investigates the molecular mechanisms that convert gene alterations into the pathogenic consequences of mutant p53's tumorigenic activity. The study delves into current and novel treatment approaches aimed at targeting p53 mutations, taking into account the similarities and differences in p53 regulatory mechanisms between mutant and wild-type forms, as well.
Collapse
Affiliation(s)
- Hina Qayoom
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India
| | - Burhan Ul Haq
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India
| | - Shazia Sofi
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India
| | - Nusrat Jan
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India
| | - Asma Jan
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India
| | - Manzoor A Mir
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India.
| |
Collapse
|
6
|
Barati T, Mirzaei Z, Ebrahimi A, Shekari Khaniani M, Mansoori Derakhshan S. miR-449a: A Promising Biomarker and Therapeutic Target in Cancer and Other Diseases. Cell Biochem Biophys 2024; 82:1629-1650. [PMID: 38809350 DOI: 10.1007/s12013-024-01322-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 05/30/2024]
Abstract
In the regulation of gene expression, epigenetic factors like non-coding RNAs (ncRNAs) play an equal role in genetics. The role of microRNAs (miRNAs), which are members of the ncRNA family, in post-transcriptional gene regulation is well-documented and has important implications for both normal and abnormal biological processes, such as angiogenesis, proliferation, survival, and apoptosis. The purpose of this study was to synthesize previous research on miR-449a by analyzing published results from various databases, as there have been a number of investigations on miR-449's potential involvement in the development of human disorders. Based on our findings, miR-449 is strongly dysregulated in a wide range of diseases, from various cancers to cardiovascular diseases, cognitive impairments, and respiratory diseases, and it may play a pivotal role in the development of these problems. In addition, miR-449a functions as a crucial regulator of the expression of several well-known genes, including E2F-3, BCL2, NOTCH1, and SOX4. This, in turn, modulates various pathways and processes related to cancer, including Notch, PI3K, and TGF-β, and contributes to the improvement of cancer drug sensitivity. Curiously, abnormalities in the expression of this miRNA may serve as diagnostic or prognostic indicators for distinguishing between healthy people and patients or to evaluate the survival rates for specific disorders. This article provides a synopsis of the current understanding of miR-449a's role in human disease development through its regulation of gene expression and the biological processes related to these genes and their linked processes. In addition, we have covered the topic of miR-449a's potential as a clinical feature (diagnosis and prognosis) indicator for a range of disorders, both neoplastic and non-neoplastic. In general, our goal was to gain a thorough comprehension of the numerous functions of miR-449a in different disorders.
Collapse
Affiliation(s)
- Tahereh Barati
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Mirzaei
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ebrahimi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Shekari Khaniani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sima Mansoori Derakhshan
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Mehrtabar E, Khalaji A, Pandeh M, Farhoudian A, Shafiee N, Shafiee A, Ojaghlou F, Mahdavi P, Soleymani-Goloujeh M. Impact of microRNA variants on PI3K/AKT signaling in triple-negative breast cancer: comprehensive review. Med Oncol 2024; 41:222. [PMID: 39120634 DOI: 10.1007/s12032-024-02469-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Breast cancer (BC) is a significant cause of cancer-related mortality, and triple-negative breast cancer (TNBC) is a particularly aggressive subtype associated with high mortality rates, especially among younger females. TNBC poses a considerable clinical challenge due to its aggressive tumor behavior and limited therapeutic options. Aberrations within the PI3K/AKT pathway are prevalent in TNBC and correlate with increased therapeutic intervention resistance and poor outcomes. MicroRNAs (miRs) have emerged as crucial PI3K/AKT pathway regulators influencing various cellular processes involved in TNBC pathogenesis. The levels of miRs, including miR-193, miR-4649-5p, and miR-449a, undergo notable changes in TNBC tumor tissues, emphasizing their significance in cancer biology. This review explored the intricate interplay between miR variants and PI3K/AKT signaling in TNBC. The review focused on the molecular mechanisms underlying miR-mediated dysregulation of this pathway and highlighted specific miRs and their targets. In addition, we explore the clinical implications of miR dysregulation in TNBC, particularly its correlation with TNBC prognosis and therapeutic resistance. Elucidating the roles of miRs in modulating the PI3K/AKT signaling pathway will enhance our understanding of TNBC biology and unveil potential therapeutic targets. This comprehensive review aims to discuss current knowledge and open promising avenues for future research, ultimately facilitating the development of precise and effective treatments for patients with TNBC.
Collapse
Affiliation(s)
- Ehsan Mehrtabar
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
| | - Amirreza Khalaji
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojtaba Pandeh
- School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Aram Farhoudian
- School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Nadia Shafiee
- Children's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Atefe Shafiee
- Board-Certified Cardiologist, Rajaie Cardiovascular Medical and Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ojaghlou
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parinaz Mahdavi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Mehdi Soleymani-Goloujeh
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
8
|
Cordani M, Garufi A, Benedetti R, Tafani M, Aventaggiato M, D’Orazi G, Cirone M. Recent Advances on Mutant p53: Unveiling Novel Oncogenic Roles, Degradation Pathways, and Therapeutic Interventions. Biomolecules 2024; 14:649. [PMID: 38927053 PMCID: PMC11201733 DOI: 10.3390/biom14060649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
The p53 protein is the master regulator of cellular integrity, primarily due to its tumor-suppressing functions. Approximately half of all human cancers carry mutations in the TP53 gene, which not only abrogate the tumor-suppressive functions but also confer p53 mutant proteins with oncogenic potential. The latter is achieved through so-called gain-of-function (GOF) mutations that promote cancer progression, metastasis, and therapy resistance by deregulating transcriptional networks, signaling pathways, metabolism, immune surveillance, and cellular compositions of the microenvironment. Despite recent progress in understanding the complexity of mutp53 in neoplastic development, the exact mechanisms of how mutp53 contributes to cancer development and how they escape proteasomal and lysosomal degradation remain only partially understood. In this review, we address recent findings in the field of oncogenic functions of mutp53 specifically regarding, but not limited to, its implications in metabolic pathways, the secretome of cancer cells, the cancer microenvironment, and the regulating scenarios of the aberrant proteasomal degradation. By analyzing proteasomal and lysosomal protein degradation, as well as its connection with autophagy, we propose new therapeutical approaches that aim to destabilize mutp53 proteins and deactivate its oncogenic functions, thereby providing a fundamental basis for further investigation and rational treatment approaches for TP53-mutated cancers.
Collapse
Affiliation(s)
- Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
| | - Alessia Garufi
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Rossella Benedetti
- Department of Experimental Medicine, University La Sapienza, 00161 Rome, Italy; (R.B.); (M.T.); (M.A.); (M.C.)
| | - Marco Tafani
- Department of Experimental Medicine, University La Sapienza, 00161 Rome, Italy; (R.B.); (M.T.); (M.A.); (M.C.)
| | - Michele Aventaggiato
- Department of Experimental Medicine, University La Sapienza, 00161 Rome, Italy; (R.B.); (M.T.); (M.A.); (M.C.)
| | - Gabriella D’Orazi
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
- Department of Neurosciences, Imaging and Clinical Sciences, University G. D’Annunzio, 00131 Chieti, Italy
| | - Mara Cirone
- Department of Experimental Medicine, University La Sapienza, 00161 Rome, Italy; (R.B.); (M.T.); (M.A.); (M.C.)
| |
Collapse
|
9
|
Jia MH, Zhang SL, Liu TB, Jue YF, Liu XL, Liu JB. Systematic review and meta-analysis of relationship between p53 protein expression and lymph node metastasis, vascular invasion, and perineural invasion in pancreatic cancer. WORLD CHINESE JOURNAL OF DIGESTOLOGY 2024; 32:376-386. [DOI: 10.11569/wcjd.v32.i5.376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
|
10
|
Chauhan S, Jaiswal S, Jakhmola V, Singh B, Bhattacharya S, Garg M, Sengupta S. Potential role of p53 deregulation in modulating immune responses in human malignancies: A paradigm to develop immunotherapy. Cancer Lett 2024; 588:216766. [PMID: 38408603 PMCID: PMC7615729 DOI: 10.1016/j.canlet.2024.216766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
The crucial role played by the oncogenic expression of TP53, stemming from mutation or amyloid formation, in various human malignancies has been extensively studied over the past two decades. Interestingly, the potential role of TP53 as a crucial player in modulating immune responses has provided new insight into the field of cancer biology. The loss of p53's transcriptional functions and/or the acquisition of tumorigenic properties can efficiently modulate the recruitment and functions of myeloid and lymphoid cells, ultimately leading to the evasion of immune responses in human tumors. Consequently, the oncogenic nature of the tumor suppressor p53 can dynamically alter the function of immune cells, providing support for tumor progression and metastasis. This review comprehensively explores the dual role of p53 as both the guardian of the genome and an oncogenic driver, especially in the context of regulation of autophagy, apoptosis, the tumor microenvironment, immune cells, innate immunity, and adaptive immune responses. Additionally, the focus of this review centers on how p53 status in the immune response can be harnessed for the development of tailored therapeutic strategies and their potential application in immunotherapy against human malignancies.
Collapse
Affiliation(s)
- Shivi Chauhan
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India
| | - Shivani Jaiswal
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India
| | - Vibhuti Jakhmola
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India
| | - Bhavana Singh
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India
| | - Sujata Bhattacharya
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India.
| | - Shinjinee Sengupta
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India.
| |
Collapse
|
11
|
Song B, Yang P, Zhang S. Cell fate regulation governed by p53: Friends or reversible foes in cancer therapy. Cancer Commun (Lond) 2024; 44:297-360. [PMID: 38311377 PMCID: PMC10958678 DOI: 10.1002/cac2.12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Cancer is a leading cause of death worldwide. Targeted therapies aimed at key oncogenic driver mutations in combination with chemotherapy and radiotherapy as well as immunotherapy have benefited cancer patients considerably. Tumor protein p53 (TP53), a crucial tumor suppressor gene encoding p53, regulates numerous downstream genes and cellular phenotypes in response to various stressors. The affected genes are involved in diverse processes, including cell cycle arrest, DNA repair, cellular senescence, metabolic homeostasis, apoptosis, and autophagy. However, accumulating recent studies have continued to reveal novel and unexpected functions of p53 in governing the fate of tumors, for example, functions in ferroptosis, immunity, the tumor microenvironment and microbiome metabolism. Among the possibilities, the evolutionary plasticity of p53 is the most controversial, partially due to the dizzying array of biological functions that have been attributed to different regulatory mechanisms of p53 signaling. Nearly 40 years after its discovery, this key tumor suppressor remains somewhat enigmatic. The intricate and diverse functions of p53 in regulating cell fate during cancer treatment are only the tip of the iceberg with respect to its equally complicated structural biology, which has been painstakingly revealed. Additionally, TP53 mutation is one of the most significant genetic alterations in cancer, contributing to rapid cancer cell growth and tumor progression. Here, we summarized recent advances that implicate altered p53 in modulating the response to various cancer therapies, including chemotherapy, radiotherapy, and immunotherapy. Furthermore, we also discussed potential strategies for targeting p53 as a therapeutic option for cancer.
Collapse
Affiliation(s)
- Bin Song
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Ping Yang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Shuyu Zhang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduSichuanP. R. China
- Laboratory of Radiation MedicineNHC Key Laboratory of Nuclear Technology Medical TransformationWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduSichuanP. R. China
| |
Collapse
|
12
|
Zhu KL, Su F, Yang JR, Xiao RW, Wu RY, Cao MY, Ling XL, Zhang T. TP53 to mediate immune escape in tumor microenvironment: an overview of the research progress. Mol Biol Rep 2024; 51:205. [PMID: 38270700 PMCID: PMC10811008 DOI: 10.1007/s11033-023-09097-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024]
Abstract
Increasing evidence suggests that key cancer-causing driver genes continue to exert a sustained influence on the tumor microenvironment (TME), highlighting the importance of immunotherapeutic targeting of gene mutations in governing tumor progression. TP53 is a prominent tumor suppressor that encodes the p53 protein, which controls the initiation and progression of different tumor types. Wild-type p53 maintains cell homeostasis and genomic instability through complex pathways, and mutant p53 (Mut p53) promotes tumor occurrence and development by regulating the TME. To date, it has been wildly considered that TP53 is able to mediate tumor immune escape. Herein, we summarized the relationship between TP53 gene and tumors, discussed the mechanism of Mut p53 mediated tumor immune escape, and summarized the progress of applying p53 protein in immunotherapy. This study will provide a basic basis for further exploration of therapeutic strategies targeting p53 protein.
Collapse
Affiliation(s)
- Kai-Li Zhu
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Fei Su
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Jing-Ru Yang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Ruo-Wen Xiao
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Rui-Yue Wu
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Meng-Yue Cao
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Xiao-Ling Ling
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| | - Tao Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
13
|
Robinson CM, Duggan A, Forrester A. ER exit in physiology and disease. Front Mol Biosci 2024; 11:1352970. [PMID: 38314136 PMCID: PMC10835805 DOI: 10.3389/fmolb.2024.1352970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/05/2024] [Indexed: 02/06/2024] Open
Abstract
The biosynthetic secretory pathway is comprised of multiple steps, modifications and interactions that form a highly precise pathway of protein trafficking and secretion, that is essential for eukaryotic life. The general outline of this pathway is understood, however the specific mechanisms are still unclear. In the last 15 years there have been vast advancements in technology that enable us to advance our understanding of this complex and subtle pathway. Therefore, based on the strong foundation of work performed over the last 40 years, we can now build another level of understanding, using the new technologies available. The biosynthetic secretory pathway is a high precision process, that involves a number of tightly regulated steps: Protein folding and quality control, cargo selection for Endoplasmic Reticulum (ER) exit, Golgi trafficking, sorting and secretion. When deregulated it causes severe diseases that here we categorise into three main groups of aberrant secretion: decreased, excess and altered secretion. Each of these categories disrupts organ homeostasis differently, effecting extracellular matrix composition, changing signalling events, or damaging the secretory cells due to aberrant intracellular accumulation of secretory proteins. Diseases of aberrant secretion are very common, but despite this, there are few effective therapies. Here we describe ER exit sites (ERES) as key hubs for regulation of the secretory pathway, protein quality control and an integratory hub for signalling within the cell. This review also describes the challenges that will be faced in developing effective therapies, due to the specificity required of potential drug candidates and the crucial need to respect the fine equilibrium of the pathway. The development of novel tools is moving forward, and we can also use these tools to build our understanding of the acute regulation of ERES and protein trafficking. Here we review ERES regulation in context as a therapeutic strategy.
Collapse
Affiliation(s)
- Claire M Robinson
- School of Medicine, Health Sciences Centre, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Aislinn Duggan
- School of Medicine, Health Sciences Centre, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Alison Forrester
- Research Unit of Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| |
Collapse
|
14
|
Wang J, Liu W, Zhang L, Zhang J. Targeting mutant p53 stabilization for cancer therapy. Front Pharmacol 2023; 14:1215995. [PMID: 37502209 PMCID: PMC10369794 DOI: 10.3389/fphar.2023.1215995] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Over 50% cancer bears TP53 mutation, the highly stabilized mutant p53 protein drives the tumorigenesis and progression. Mutation of p53 not only cause loss-of-function and dominant-negative effects (DNE), but also results in the abnormal stability by the regulation of the ubiquitin-proteasome system and molecular chaperones that promote tumorigenesis through gain-of-function effects. The accumulation of mutant p53 is mainly regulated by molecular chaperones, including Hsp40, Hsp70, Hsp90 and other biomolecules such as TRIM21, BAG2 and Stat3. In addition, mutant p53 forms prion-like aggregates or complexes with other protein molecules and result in the accumulation of mutant p53 in tumor cells. Depleting mutant p53 has become one of the strategies to target mutant p53. This review will focus on the mechanism of mutant p53 stabilization and discuss how the strategies to manipulate these interconnected processes for cancer therapy.
Collapse
Affiliation(s)
- Jiajian Wang
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Wenjun Liu
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Lanqing Zhang
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Jihong Zhang
- Medical School, Kunming University of Science and Technology, Kunming, China
- Yunnan Province Clinical Research Center for Hematologic Disease, Kunming, China
| |
Collapse
|
15
|
Boudreau HE, Korzeniowska A, Leto TL. Mutant p53 and NOX4 are modulators of a CCL5-driven pro-migratory secretome. Free Radic Biol Med 2023; 199:17-25. [PMID: 36804453 PMCID: PMC10081791 DOI: 10.1016/j.freeradbiomed.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
Previously, we showed wild-type (WT) and mutant (mt) forms of p53 differentially regulate ROS generation by NADPH oxidase-4 (NOX4). We found that WT-p53 suppresses TGF-β-induced NOX4, ROS production, and cell migration, whereas tumor-associated mt-p53 proteins enhance NOX4 expression and cell migration by TGF-β/SMAD3-dependent mechanisms. In this study, we investigated the role of mutant p53-induced NOX4 on the cancer cell secretome and the effects NOX4 signaling have on the tumor microenvironment (TME). We found conditioned media collected from H1299 lung epithelial cells stably expressing either mutant p53-R248Q or R273H promotes the migration and invasion of naïve H1299 cells and chemotactic recruitment of THP-1 monocytes. These effects were diminished with conditioned media from cells co-transfected with dominant negative NOX4 (P437H). We utilized immunoblot-based cytokine array analysis to identify factors in mutant p53 H1299 cell conditioned media that promote cell migration and invasion. We found CCL5 was significantly reduced in conditioned media from H1299 cells co-expressing p53-R248Q and dominant negative NOX4. Moreover, neutralization of CCL5 reduced autocrine-mediated H1299 cell mobility. Furthermore, CCL5 and TGF-beta from M2-polarized macrophages have a significant role in crosstalk and H1299 cell migration and invasion. Collectively, our findings provide further insight into NOX4-based communication in the tumor microenvironment and its potential as a therapeutic target affecting metastatic disease progression.
Collapse
Affiliation(s)
- Howard E Boudreau
- Laboratory of Clinical Immunology and Microbiology, Molecular Defenses Section, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Agnieszka Korzeniowska
- Laboratory of Clinical Immunology and Microbiology, Molecular Defenses Section, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Thomas L Leto
- Laboratory of Clinical Immunology and Microbiology, Molecular Defenses Section, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
16
|
Asl ER, Rostamzadeh D, Duijf PHG, Mafi S, Mansoori B, Barati S, Cho WC, Mansoori B. Mutant P53 in the formation and progression of the tumor microenvironment: Friend or foe. Life Sci 2023; 315:121361. [PMID: 36608871 DOI: 10.1016/j.lfs.2022.121361] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023]
Abstract
TP53 is the most frequently mutated gene in human cancer. It encodes the tumor suppressor protein p53, which suppresses tumorigenesis by acting as a critical transcription factor that can induce the expression of many genes controlling a plethora of fundamental cellular processes, including cell cycle progression, survival, apoptosis, and DNA repair. Missense mutations are the most frequent type of mutations in the TP53 gene. While these can have variable effects, they typically impair p53 function in a dominant-negative manner, thereby altering intra-cellular signaling pathways and promoting cancer development. Additionally, it is becoming increasingly apparent that p53 mutations also have non-cell autonomous effects that influence the tumor microenvironment (TME). The TME is a complex and heterogeneous milieu composed of both malignant and non-malignant cells, including cancer-associated fibroblasts (CAFs), adipocytes, pericytes, different immune cell types, such as tumor-associated macrophages (TAMs) and T and B lymphocytes, as well as lymphatic and blood vessels and extracellular matrix (ECM). Recently, a large body of evidence has demonstrated that various types of p53 mutations directly affect TME. They fine-tune the inflammatory TME and cell fate reprogramming, which affect cancer progression. Notably, re-educating the p53 signaling pathway in the TME may be an effective therapeutic strategy in combating cancer. Therefore, it is timely to here review the recent advances in our understanding of how TP53 mutations impact the fate of cancer cells by reshaping the TME.
Collapse
Affiliation(s)
- Elmira Roshani Asl
- Department of Biochemistry, Saveh University of Medical Sciences, Saveh, Iran
| | - Davoud Rostamzadeh
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran; Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Pascal H G Duijf
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia; Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia; Centre for Data Science, Queensland University of Technology, Brisbane, QLD, Australia; Cancer and Aging Research Program, Queensland University of Technology, Brisbane, QLD, Australia; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Sahar Mafi
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran; Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Behnaz Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Barati
- Department of Anatomy, Saveh University of Medical Sciences, Saveh, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, Hong Kong
| | - Behzad Mansoori
- The Wistar Institute, Molecular & Cellular Oncogenesis Program, Philadelphia, PA, United States.
| |
Collapse
|
17
|
Zhang W, Qian W, Gu J, Gong M, Zhang W, Zhang S, Zhou C, Jiang Z, Jiang J, Han L, Wang X, Wu Z, Ma Q, Wang Z. Mutant p53 driven-LINC00857, a protein scaffold between FOXM1 and deubiquitinase OTUB1, promotes the metastasis of pancreatic cancer. Cancer Lett 2023; 552:215976. [PMID: 36272615 DOI: 10.1016/j.canlet.2022.215976] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 02/09/2023]
Abstract
Tumour metastasis is the major adverse factor for recurrence and death in pancreatic cancer (PC) patients. P53 mutations are considered to be the second most common type of mutation in PC and significantly promote PC metastasis. However, the molecular mechanisms underlying the effects of p53 mutations, especially the regulatory relationship of the protein with long noncoding RNAs (lncRNAs), remain unclear. In the present study, we demonstrated that the lncRNA LINC00857 exhibits a significantly elevated level in PC and that it is associated with poor prognosis; furthermore, TCGA data showed that LINC00857 expression was significantly upregulated in the mutant p53 group compared with the wild-type p53 group. Gain- and loss-of-function experiments showed that LINC00857 promotes the metastasis of PC cells. We further found that LINC00857 upregulates FOXM1 protein expression and thus accelerates metastasis in vitro and in vivo. Mechanistically, LINC00857 bound simultaneously to FOXM1 and to the deubiquitinase OTUB1, thereby serving as a protein scaffold and enhancing the interaction between FOXM1 and OTUB1, which inhibits FOXM1 degradation through the ubiquitin-proteasome pathway. Interestingly, we found that mutant p53 promotes LINC00857 transcription by binding to its promoter region. Finally, atorvastatin, a commonly prescribe lipid-lowering drug, appeared to inhibit PC metastasis by inhibiting the mutant p53-LINC00857 axis. Taken together, our results provide new insights into the biology driving PC metastasis and indicate that the mutant p53-LINC00857 axis might represent a novel therapeutic target for PC metastasis.
Collapse
Affiliation(s)
- Weifan Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China; Pancreatic Disease Center of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China
| | - Weikun Qian
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China; Pancreatic Disease Center of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China
| | - Jingtao Gu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China; Pancreatic Disease Center of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China
| | - Mengyuan Gong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China; Pancreatic Disease Center of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China
| | - Wunai Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China; Pancreatic Disease Center of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China
| | - Simei Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China; Pancreatic Disease Center of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China
| | - Cancan Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China; Pancreatic Disease Center of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China
| | - Zhengdong Jiang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China
| | - Jie Jiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China; Pancreatic Disease Center of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China
| | - Liang Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China; Pancreatic Disease Center of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China
| | - Xiaoqin Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China; Pancreatic Disease Center of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China; Pancreatic Disease Center of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China; Pancreatic Disease Center of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China.
| |
Collapse
|
18
|
Mireștean CC, Iancu RI, Iancu DPT. p53 Modulates Radiosensitivity in Head and Neck Cancers-From Classic to Future Horizons. Diagnostics (Basel) 2022; 12:3052. [PMID: 36553058 PMCID: PMC9777383 DOI: 10.3390/diagnostics12123052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/08/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
p53, initially considered a tumor suppressor, has been the subject of research related to cancer treatment resistance in the last 30 years. The unfavorable response to multimodal therapy and the higher recurrence rate, despite an aggressive approach, make HNSCC a research topic of interest for improving therapeutic outcomes, even if it is only the sixth most common malignancy worldwide. New advances in molecular biology and genetics include the involvement of miRNA in the control of the p53 pathway, the understanding of mechanisms such as gain/loss of function, and the development of different methods to restore p53 function, especially for HPV-negative cases. The different ratio between mutant p53 status in the primary tumor and distant metastasis originating HNSCC may serve to select the best therapeutic target for activating an abscopal effect by radiotherapy as a "booster" of the immune system. P53 may also be a key player in choosing radiotherapy fractionation regimens. Targeting any pathway involving p53, including tumor metabolism, in particular the Warburg effect, could modulate the radiosensitivity and chemo-sensitivity of head and neck cancers.
Collapse
Affiliation(s)
- Camil Ciprian Mireștean
- Department of Oncology and Radiotherapy, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania
- Department of Surgery, Railways Clinical Hospital Iasi, 700506 Iași, Romania
| | - Roxana Irina Iancu
- Oral Pathology Department, Faculty of Dental Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Department of Clinical Laboratory, “St. Spiridon” Emergency Universitary Hospital, 700111 Iași, Romania
| | - Dragoș Petru Teodor Iancu
- Oncology and Radiotherapy Department, Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Department of Radiation Oncology, Regional Institute of Oncology, 700483 Iași, Romania
| |
Collapse
|
19
|
Vadakekolathu J, Boocock DJ, Pandey K, Guinn BA, Legrand A, Miles AK, Coveney C, Ayala R, Purcell AW, McArdle SE. Multi-Omic Analysis of Two Common P53 Mutations: Proteins Regulated by Mutated P53 as Potential Targets for Immunotherapy. Cancers (Basel) 2022; 14:cancers14163975. [PMID: 36010968 PMCID: PMC9406384 DOI: 10.3390/cancers14163975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 12/05/2022] Open
Abstract
Simple Summary TP53 is the most frequently mutated gene in many cancers, but it has failed to be a very effective target for treatment to date. To overcome this, we have examined what else changes in cells when the TP53 gene is mutated. We modified cells that had no TP53 expression to have one of the two most common mutations, either R175H or R273H. We examined how the presence of these TP53 mutations caused cellular changes including microscopic, gene expression and peptide presentation to the immune system. This has allowed us to identify new (secondary) targets that could be used to facilitate the treatment of tumors that harbor p53 mutations. Abstract The p53 protein is mutated in more than 50% of human cancers. Mutated p53 proteins not only lose their normal function but often acquire novel oncogenic functions, a phenomenon termed mutant p53 gain-of-function. Mutant p53 has been shown to affect the transcription of a range of genes, as well as protein–protein interactions with transcription factors and other effectors; however, no one has intensively investigated and identified these proteins, or their MHC presented epitopes, from the viewpoint of their ability to act as targets for immunotherapeutic interventions. We investigated the molecular changes that occurred after the TP53 null osteosarcoma cells, SaOS-2, were transfected with one of two conformational p53-mutants, either R175H or R273H. We then examined the phenotypic and functional changes using macroscopic observations, proliferation, gene expression and proteomics alongside immunopeptidome profiling of peptide antigen presentation in the context of major histocompatibility complex (MHC) class I molecules. We identified several candidate proteins in both TP53 mutant cell lines with differential expression when compared to the TP53 null vector control, SaOS-V. Quantitative SWATH proteomics combined with immune-peptidome analysis of the class-I eluted peptides identified several epitopes presented on pMHC and in silico analysis shortlisted which antigens were expressed in a range of cancerous but not adjacent healthy tissues. Out of all the candidates, KLC1 and TOP2A showed high levels of expression in every tumor type examined. From these proteins, three A2 and four pan HLA-A epitopes were identified in both R175H and R273H from TOP2A. We have now provided a short list of future immunotherapy targets for the treatment of cancers harboring mutated TP53.
Collapse
Affiliation(s)
- Jayakumar Vadakekolathu
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK or
| | - David J. Boocock
- Centre for Health, Ageing and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham NG1 4FQ, UK
| | - Kirti Pandey
- Infection and Immunology Program, Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Barbara-ann Guinn
- Department of Biomedical Sciences, University of Hull, Hull HU6 7RX, UK
| | - Antoine Legrand
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK or
| | - Amanda K. Miles
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK or
- Centre for Health, Ageing and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham NG1 4FQ, UK
| | - Clare Coveney
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK or
| | - Rochelle Ayala
- Infection and Immunology Program, Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Anthony W. Purcell
- Infection and Immunology Program, Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Stephanie E. McArdle
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK or
- Centre for Health, Ageing and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham NG1 4FQ, UK
- Correspondence:
| |
Collapse
|
20
|
Chaberek K, Mrowiec M, Kaczmarek M, Dutsch-Wicherek M. The Creation of the Suppressive Cancer Microenvironment in Patients with HPV-Positive Cervical Cancer. Diagnostics (Basel) 2022; 12:diagnostics12081906. [PMID: 36010256 PMCID: PMC9406692 DOI: 10.3390/diagnostics12081906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/02/2022] Open
Abstract
The development of malignancy is closely connected with the process of cancer microenvironment remodeling. As a malignancy develops, it stimulates the creation of the suppressive microenvironment of the tumor through the presence of cells that express membrane proteins. These proteins are secreted into the cancer microenvironment, where they enable tumor growth. In patients with cancer of the cervix, the development of the disease is also linked to high-risk HPV (hr-HPV) infection. Such infections are common, and most clear spontaneously; however, a small percentage of these infections can persist and progress into precancerous cervical intraepithelial neoplasia and invasive cervical carcinoma. Consequently, it is assumed that the presence of hr-HPV infection alone is not sufficient for the development of cancer. However, chronic HPV infection is associated with the induction of the remodeling of the microenvironment of the epithelium. Furthermore, the local microenvironment is recognized as a cofactor that participates in the persistence of the HPV infection and disease progression. This review presents the selected immune evasion mechanisms responsible for the persistence of HPV infection, beginning with the delay in the virus replication process prior to the maturation of keratinocytes, the shift to the suppressive microenvironment by a change in keratinocyte immunomodulating properties, the alteration of the Th1/Th2 polarization of the immune response in the microenvironment, and, finally, the role of HLA-G antigen expression.
Collapse
Affiliation(s)
- Katarzyna Chaberek
- 2nd Department of Obstetrics and Gynaecology, Center of Postgraduate Medical Education (CMKP), 01-813 Warsaw, Poland
| | - Martyna Mrowiec
- Department of Endoscopic Otorhinolaryngology, Center of Postgraduate Medical Education (CMKP), 01-813 Warsaw, Poland
| | - Magdalena Kaczmarek
- Department of Endoscopic Otorhinolaryngology, Center of Postgraduate Medical Education (CMKP), 01-813 Warsaw, Poland
| | - Magdalena Dutsch-Wicherek
- Department of Endoscopic Otorhinolaryngology, Center of Postgraduate Medical Education (CMKP), 01-813 Warsaw, Poland
- Correspondence:
| |
Collapse
|
21
|
Butera G, Manfredi M, Fiore A, Brandi J, Pacchiana R, De Giorgis V, Barberis E, Vanella V, Galasso M, Scupoli MT, Marengo E, Cecconi D, Donadelli M. Tumor Suppressor Role of Wild-Type P53-Dependent Secretome and Its Proteomic Identification in PDAC. Biomolecules 2022; 12:305. [PMID: 35204804 PMCID: PMC8869417 DOI: 10.3390/biom12020305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 12/10/2022] Open
Abstract
The study of the cancer secretome is gaining even more importance in cancers such as pancreatic ductal adenocarcinoma (PDAC), whose lack of recognizable symptoms and early detection assays make this type of cancer highly lethal. The wild-type p53 protein, frequently mutated in PDAC, prevents tumorigenesis by regulating a plethora of signaling pathways. The importance of the p53 tumor suppressive activity is not only primarily involved within cells to limit tumor cell proliferation but also in the extracellular space. Thus, loss of p53 has a profound impact on the secretome composition of cancer cells and marks the transition to invasiveness. Here, we demonstrate the tumor suppressive role of wild-type p53 on cancer cell secretome, showing the anti-proliferative, apoptotic and chemosensitivity effects of wild-type p53 driven conditioned medium. By using high-resolution SWATH-MS technology, we characterized the secretomes of p53-deficient and p53-expressing PDAC cells. We found a great number of secreted proteins that have known roles in cancer-related processes, 30 of which showed enhanced and 17 reduced secretion in response to p53 silencing. These results are important to advance our understanding on the link between wt-p53 and cancer microenvironment. In conclusion, this approach may detect a secreted signature specifically driven by wild-type p53 in PDAC.
Collapse
Affiliation(s)
- Giovanna Butera
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (A.F.); (R.P.); (M.G.); (M.T.S.)
| | - Marcello Manfredi
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (M.M.); (V.D.G.); (E.B.); (V.V.)
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy;
- ISALIT, Spin-off at the University of Piemonte Orientale, 28100 Novara, Italy
| | - Alessandra Fiore
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (A.F.); (R.P.); (M.G.); (M.T.S.)
| | - Jessica Brandi
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (J.B.); (D.C.)
| | - Raffaella Pacchiana
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (A.F.); (R.P.); (M.G.); (M.T.S.)
| | - Veronica De Giorgis
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (M.M.); (V.D.G.); (E.B.); (V.V.)
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy;
| | - Elettra Barberis
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (M.M.); (V.D.G.); (E.B.); (V.V.)
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy;
- ISALIT, Spin-off at the University of Piemonte Orientale, 28100 Novara, Italy
| | - Virginia Vanella
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (M.M.); (V.D.G.); (E.B.); (V.V.)
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy;
| | - Marilisa Galasso
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (A.F.); (R.P.); (M.G.); (M.T.S.)
- Department of Medicine, Section of Hematology, University of Verona, 37134 Verona, Italy
| | - Maria Teresa Scupoli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (A.F.); (R.P.); (M.G.); (M.T.S.)
- Research Center LURM, Interdepartmental Laboratory of Medical Research, University of Verona, 37134 Verona, Italy
| | - Emilio Marengo
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy;
- ISALIT, Spin-off at the University of Piemonte Orientale, 28100 Novara, Italy
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, 28100 Novara, Italy
| | - Daniela Cecconi
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (J.B.); (D.C.)
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (A.F.); (R.P.); (M.G.); (M.T.S.)
| |
Collapse
|
22
|
García-Garrido E, Cordani M, Somoza Á. Modified Gold Nanoparticles to Overcome the Chemoresistance to Gemcitabine in Mutant p53 Cancer Cells. Pharmaceutics 2021; 13:2067. [PMID: 34959348 PMCID: PMC8703659 DOI: 10.3390/pharmaceutics13122067] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/27/2021] [Accepted: 11/28/2021] [Indexed: 12/29/2022] Open
Abstract
Mutant p53 proteins result from missense mutations in the TP53 gene, the most mutated in human cancer, and have been described to contribute to cancer initiation and progression. Therapeutic strategies for targeting mutant p53 proteins in cancer cells are limited and have proved unsuitable for clinical application due to problems related to drug delivery and toxicity to healthy tissues. Therefore, the discovery of efficient and safe therapeutic strategies that specifically target mutant p53 remains challenging. In this study, we generated gold nanoparticles (AuNPs) chemically modified with low molecular branched polyethylenimine (bPEI) for the efficient delivery of gapmers targeting p53 mutant protein. The AuNPs formulation consists of a combination of polymeric mixed layer of polyethylene glycol (PEG) and PEI, and layer-by-layer assembly of bPEI through a sensitive linker. These nanoparticles can bind oligonucleotides through electrostatic interactions and release them in the presence of a reducing agent as glutathione. The nanostructures generated here provide a non-toxic and powerful system for the delivery of gapmers in cancer cells, which significantly downregulated mutant p53 proteins and altered molecular markers related to cell growth and apoptosis, thus overcoming chemoresistance to gemcitabine.
Collapse
Affiliation(s)
- Eduardo García-Garrido
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Faraday 9, 28049 Madrid, Spain
| | - Marco Cordani
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Faraday 9, 28049 Madrid, Spain
| | - Álvaro Somoza
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Faraday 9, 28049 Madrid, Spain
- Unidad Asociada al Centro Nacional de Biotecnología (CSIC), Darwin 3, 28049 Madrid, Spain
| |
Collapse
|
23
|
Abstract
While p53 is the most highly mutated and perhaps best studied tumor suppressor protein related to cancer, it remains refractory to targeted therapeutic strategies. In this issue of the JCI, Tan and colleagues investigated the mechanistic basis of the mutant p53 secretome in preclinical models of lung adenocarcinoma. The authors uncovered miR-34a as a regulator of a conventional protein secretion axis, which is mediated by three proteins: the Golgi reassembly and stacking protein 55 kDa (GRASP55), basic leucine zipper nuclear factor 1, and myosin IIA. Inhibition of GRASP55 in TP53-deficient lung adenocarcinoma suppressed protumorigenic secretion of osteopontin/secreted phosphoprotein 1 and insulin-like growth factor binding protein 2 and reduced tumor growth and metastases in mice as well as in patient-derived xenografts. These results provide a therapeutic opportunity to target downstream effects of p53 loss.
Collapse
Affiliation(s)
- Kartik Sehgal
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Huang G, Zhong X, Yao L, Ma Q, Liao H, Xu L, Zou J, Sun R, Wang D, Guo X. MicroRNA-449a inhibits cell proliferation and migration by regulating mutant p53 in MDA-MB-468 cells. Exp Ther Med 2021; 22:1020. [PMID: 34373706 PMCID: PMC8343910 DOI: 10.3892/etm.2021.10452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to investigate the role of microRNA (miR)-449a in the proliferation, migration and apoptosis of MDA-MB-468 breast cancer cells and examine the association between miR-449a and mutant p53 in these cells. Cell proliferation, migration and invasion were examined using a crystal violet staining assay, wound healing scratch assay and Transwell assay, respectively. The expression level of miR-449a and p53 was detected by reverse transcription-quantitative PCR or western blotting. The results indicated that knockdown of mutant p53 suppressed the proliferation and migration of MDA-MB-468 cells by inhibiting the PI3K/AKT/mTOR signaling pathway. In addition, miR-449a suppressed proliferation and migration via downregulation of mutant p53 expression in MDA-MB-468 cells. Therefore, miR-449a may function as a tumor suppressor by regulating p53 expression in breast cancer cells, which may have potential implications in the treatment of patients with triple-negative breast cancer carrying mutant p53.
Collapse
Affiliation(s)
- Guangcheng Huang
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Xiaowu Zhong
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China.,Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan 637007, P.R. China.,Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637007, P.R. China
| | - Lihua Yao
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Qiang Ma
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Hebin Liao
- Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan 637007, P.R. China
| | - Lei Xu
- Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan 637007, P.R. China
| | - Jiang Zou
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637007, P.R. China
| | - Ru Sun
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637007, P.R. China
| | - Dongsheng Wang
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637007, P.R. China
| | - Xiaolan Guo
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China.,Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan 637007, P.R. China.,Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637007, P.R. China
| |
Collapse
|
25
|
Tan X, Banerjee P, Shi L, Xiao GY, Rodriguez BL, Grzeskowiak CL, Liu X, Yu J, Gibbons DL, Russell WK, Creighton CJ, Kurie JM. p53 loss activates prometastatic secretory vesicle biogenesis in the Golgi. SCIENCE ADVANCES 2021; 7:eabf4885. [PMID: 34144984 PMCID: PMC8213221 DOI: 10.1126/sciadv.abf4885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 05/05/2021] [Indexed: 05/04/2023]
Abstract
Cancer cells exhibit hyperactive secretory states that maintain cancer cell viability and remodel the tumor microenvironment. However, the oncogenic signals that heighten secretion remain unclear. Here, we show that p53 loss activates prometastatic secretory vesicle biogenesis in the Golgi. p53 loss up-regulates the expression of a Golgi scaffolding protein, progestin and adipoQ receptor 11 (PAQR11), which recruits an adenosine diphosphate ribosylation factor 1-containing protein complex that loads cargos into secretory vesicles. PAQR11-dependent secretion of a protease, PLAU, prevents anoikis and initiates autocrine activation of a PLAU receptor/signal transducer and activator of transcription-3-dependent pathway that up-regulates PAQR11 expression, thereby completing a feedforward loop that amplifies prometastatic effector protein secretion. Pharmacologic inhibition of PLAU receptor impairs the growth and metastasis of p53-deficient cancers. Blockade of PAQR11-dependent secretion inhibits immunosuppressive processes in the tumor microenvironment. Thus, Golgi reprogramming by p53 loss is a key driver of hypersecretion in cancer.
Collapse
Affiliation(s)
- Xiaochao Tan
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Priyam Banerjee
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lei Shi
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guan-Yu Xiao
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - B Leticia Rodriguez
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Caitlin L Grzeskowiak
- Department of Molecular and Human Genetics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Xin Liu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiang Yu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Chad J Creighton
- Department of Medicine, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jonathan M Kurie
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
26
|
Michel M, Kaps L, Maderer A, Galle PR, Moehler M. The Role of p53 Dysfunction in Colorectal Cancer and Its Implication for Therapy. Cancers (Basel) 2021; 13:2296. [PMID: 34064974 PMCID: PMC8150459 DOI: 10.3390/cancers13102296] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common and fatal cancers worldwide. The carcinogenesis of CRC is based on a stepwise accumulation of mutations, leading either to an activation of oncogenes or a deactivation of suppressor genes. The loss of genetic stability triggers activation of proto-oncogenes (e.g., KRAS) and inactivation of tumor suppression genes, namely TP53 and APC, which together drive the transition from adenoma to adenocarcinoma. On the one hand, p53 mutations confer resistance to classical chemotherapy but, on the other hand, they open the door for immunotherapy, as p53-mutated tumors are rich in neoantigens. Aberrant function of the TP53 gene product, p53, also affects stromal and non-stromal cells in the tumor microenvironment. Cancer-associated fibroblasts together with other immunosuppressive cells become valuable assets for the tumor by p53-mediated tumor signaling. In this review, we address the manifold implications of p53 mutations in CRC regarding therapy, treatment response and personalized medicine.
Collapse
Affiliation(s)
- Maurice Michel
- I. Department of Medicine, University Medical Center Mainz, 55131 Mainz, Germany; (M.M.); (L.K.); (A.M.); (P.R.G.)
| | - Leonard Kaps
- I. Department of Medicine, University Medical Center Mainz, 55131 Mainz, Germany; (M.M.); (L.K.); (A.M.); (P.R.G.)
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center Mainz, 55131 Mainz, Germany
| | - Annett Maderer
- I. Department of Medicine, University Medical Center Mainz, 55131 Mainz, Germany; (M.M.); (L.K.); (A.M.); (P.R.G.)
| | - Peter R. Galle
- I. Department of Medicine, University Medical Center Mainz, 55131 Mainz, Germany; (M.M.); (L.K.); (A.M.); (P.R.G.)
| | - Markus Moehler
- I. Department of Medicine, University Medical Center Mainz, 55131 Mainz, Germany; (M.M.); (L.K.); (A.M.); (P.R.G.)
| |
Collapse
|
27
|
Abstract
In this review, Pilley et al. examine the impact of different p53 mutations and focus on how heterogeneity of p53 status can affect relationships between cells within a tumor. p53 is an important tumor suppressor, and the complexities of p53 function in regulating cancer cell behaviour are well established. Many cancers lose or express mutant forms of p53, with evidence that the type of alteration affecting p53 may differentially impact cancer development and progression. It is also clear that in addition to cell-autonomous functions, p53 status also affects the way cancer cells interact with each other. In this review, we briefly examine the impact of different p53 mutations and focus on how heterogeneity of p53 status can affect relationships between cells within a tumor.
Collapse
Affiliation(s)
- Steven Pilley
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Tristan A Rodriguez
- National Heart and Lung Institute, Imperial College, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | | |
Collapse
|
28
|
Hu C, Wang X, Pan Y, Shu L, Wu F. Occurrence of quadruple squamous cell carcinoma following allogeneic hematopoietic stem cell transplantation for leukemia: A case report. Oncol Lett 2021; 21:341. [PMID: 33747198 DOI: 10.3892/ol.2021.12602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 09/15/2020] [Indexed: 11/06/2022] Open
Abstract
The present case study investigated a rare case of quadruple squamous cell carcinoma following allogeneic hematopoietic stem cell transplantation (HSCT) for leukemia. The main aim of the case study was to determine the pathogenesis and provide novel methods for the diagnosis and treatment of similar cases. The presence of genetic mutations in the p53, EGFR, KRAS and BRAF genes were analyzed and the presence of microsatellite instability (MSI) was determined. In addition, the expression levels of the proteins p53 and EGFR were investigated. The results identified a genetic mutation in p53, of which its expression levels were upregulated. In addition, the majority of the tumor tissues presented with MSI. Therefore, the present findings suggested that the genetic mutations in p53 caused by MSI following allogeneic HSCT may promote tumorigenesis. In addition, the expression levels of the EGFR protein were upregulated, leading to an increase in MAPK signaling pathway activation, which may also serve an important role.
Collapse
Affiliation(s)
- Chunhong Hu
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Xue Wang
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Yue Pan
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Long Shu
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Fang Wu
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
29
|
D'Orazi G, Cordani M, Cirone M. Oncogenic pathways activated by pro-inflammatory cytokines promote mutant p53 stability: clue for novel anticancer therapies. Cell Mol Life Sci 2021; 78:1853-1860. [PMID: 33070220 PMCID: PMC11072129 DOI: 10.1007/s00018-020-03677-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/03/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022]
Abstract
Inflammation and cancerogenesis are strongly interconnected processes, not only because inflammation promotes DNA instability, but also because both processes are driven by pathways such as NF-kB, STAT3, mTOR and MAPKs. Interestingly, these pathways regulate the release of pro-inflammatory cytokines such as IL-6, TNF-α and IL-1β that in turn control their activation and play a crucial role in shaping immune response. The transcription factor p53 is the major tumor suppressor that is often mutated in cancer, contributing to tumor progression. In this overview, we highlight how the interplay between pro-inflammatory cytokines and pro-inflammatory/pro-oncogenic pathways, regulating and being regulated by UPR signaling and autophagy, affects the stability of mutp53 that in turn is able to control autophagy, UPR signaling, cytokine release and the activation of the same oncogenic pathways to preserve its own stability and promote tumorigenesis. Interrupting these positive feedback loops may represent a promising strategy in anticancer therapy, particularly against cancers carrying mutp53.
Collapse
Affiliation(s)
- Gabriella D'Orazi
- Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marco Cordani
- IMDEA Nanociencia, C/Faraday 9, Ciudad Universitaria de Cantoblanco, Madrid, Spain
| | - Mara Cirone
- Department of Experimental Medicine, Laboratory Affiliated to Pasteur Institute Italy Foundation Cenci Bolognetti, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
30
|
Capaci V, Mantovani F, Del Sal G. Amplifying Tumor-Stroma Communication: An Emerging Oncogenic Function of Mutant p53. Front Oncol 2021; 10:614230. [PMID: 33505920 PMCID: PMC7831039 DOI: 10.3389/fonc.2020.614230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022] Open
Abstract
TP53 mutations are widespread in human cancers. An expanding body of evidence highlights that, in addition to their manifold cell-intrinsic activities boosting tumor progression, missense p53 mutants enhance the ability of tumor cells to communicate amongst themselves and with the tumor stroma, by affecting both the quality and the quantity of the cancer secretome. In this review, we summarize recent literature demonstrating that mutant p53 enhances the production of growth and angiogenic factors, inflammatory cytokines and chemokines, modulates biochemical and biomechanical properties of the extracellular matrix, reprograms the cell trafficking machinery to enhance secretion and promote recycling of membrane proteins, and affects exosome composition. All these activities contribute to the release of a promalignant secretome with both local and systemic effects, that is key to the ability of mutant p53 to fuel tumor growth and enable metastatic competence. A precise knowledge of the molecular mechanisms underlying the interplay between mutant p53 and the microenvironment is expected to unveil non-invasive biomarkers and actionable targets to blunt tumor aggressiveness.
Collapse
Affiliation(s)
- Valeria Capaci
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
- Cancer Cell Signalling Unit, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Fiamma Mantovani
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
- Cancer Cell Signalling Unit, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Giannino Del Sal
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
- Cancer Cell Signalling Unit, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Milan, Italy
| |
Collapse
|
31
|
Abboodi F, Buckhaults P, Altomare D, Liu C, Hosseinipour M, Banister CE, Creek KE, Pirisi L. HPV-inactive cell populations arise from HPV16-transformed human keratinocytes after p53 knockout. Virology 2020; 554:9-16. [PMID: 33321328 DOI: 10.1016/j.virol.2020.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/24/2020] [Accepted: 12/08/2020] [Indexed: 10/22/2022]
Abstract
HPV-inactive head and neck and cervical cancers contain HPV DNA but do not express HPV E6/E7. HPV-positive primary head and neck tumors usually express E6/E7, however they may produce HPV-inactive metastases. These observations led to our hypothesis that HPV-inactive cancers begin as HPV-active lesions, losing dependence on E6/E7 expression during progression. Because HPV-inactive cervical cancers often have mutated p53, we investigated whether p53 loss may play a role in the genesis of HPV-inactive cancers. p53 knockout (p53-KO) by CRISPR-Cas9 resulted in a 5-fold reduction of E7 mRNA in differentiation-resistant HPV16 immortalized human keratinocytes (HKc/DR). E7 expression was restored by 5-Aza-2 deoxycytidine in p53 KO lines, suggesting a role of DNA methylation in this process. In-situ hybridization showed that p53 KO lines consist of mixed populations of E6/E7-positive and negative cells. Hence, loss of p53 predisposes HPV16 transformed cells to losing dependence on the continuous expression of HPV oncogenes for proliferation.
Collapse
Affiliation(s)
- Fadi Abboodi
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, USA; Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, USA; Department of Pediatrics, Mosul Medical College, University of Mosul, Iraq.
| | - Phillip Buckhaults
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, USA
| | - Diego Altomare
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, USA
| | - Changlong Liu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, USA
| | - Maria Hosseinipour
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, USA
| | - Carolyn E Banister
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, USA
| | - Kim E Creek
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, USA
| | - Lucia Pirisi
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, USA.
| |
Collapse
|
32
|
Belisario DC, Kopecka J, Pasino M, Akman M, De Smaele E, Donadelli M, Riganti C. Hypoxia Dictates Metabolic Rewiring of Tumors: Implications for Chemoresistance. Cells 2020; 9:cells9122598. [PMID: 33291643 PMCID: PMC7761956 DOI: 10.3390/cells9122598] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023] Open
Abstract
Hypoxia is a condition commonly observed in the core of solid tumors. The hypoxia-inducible factors (HIF) act as hypoxia sensors that orchestrate a coordinated response increasing the pro-survival and pro-invasive phenotype of cancer cells, and determine a broad metabolic rewiring. These events favor tumor progression and chemoresistance. The increase in glucose and amino acid uptake, glycolytic flux, and lactate production; the alterations in glutamine metabolism, tricarboxylic acid cycle, and oxidative phosphorylation; the high levels of mitochondrial reactive oxygen species; the modulation of both fatty acid synthesis and oxidation are hallmarks of the metabolic rewiring induced by hypoxia. This review discusses how metabolic-dependent factors (e.g., increased acidification of tumor microenvironment coupled with intracellular alkalinization, and reduced mitochondrial metabolism), and metabolic-independent factors (e.g., increased expression of drug efflux transporters, stemness maintenance, and epithelial-mesenchymal transition) cooperate in determining chemoresistance in hypoxia. Specific metabolic modifiers, however, can reverse the metabolic phenotype of hypoxic tumor areas that are more chemoresistant into the phenotype typical of chemosensitive cells. We propose these metabolic modifiers, able to reverse the hypoxia-induced metabolic rewiring, as potential chemosensitizer agents against hypoxic and refractory tumor cells.
Collapse
Affiliation(s)
- Dimas Carolina Belisario
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy; (D.C.B.); (J.K.); (M.P.); (M.A.)
| | - Joanna Kopecka
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy; (D.C.B.); (J.K.); (M.P.); (M.A.)
| | - Martina Pasino
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy; (D.C.B.); (J.K.); (M.P.); (M.A.)
| | - Muhlis Akman
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy; (D.C.B.); (J.K.); (M.P.); (M.A.)
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University of Roma, 00185 Roma, Italy;
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy;
| | - Chiara Riganti
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy; (D.C.B.); (J.K.); (M.P.); (M.A.)
- Correspondence: ; Tel.: +39-011-670-5857
| |
Collapse
|
33
|
Zhu G, Pan C, Bei JX, Li B, Liang C, Xu Y, Fu X. Mutant p53 in Cancer Progression and Targeted Therapies. Front Oncol 2020; 10:595187. [PMID: 33240819 PMCID: PMC7677253 DOI: 10.3389/fonc.2020.595187] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022] Open
Abstract
TP53 is the most frequently mutated tumor suppressor gene in human cancer. The majority of mutations of p53 are missense mutations, leading to the expression of the full length p53 mutant proteins. Mutant p53 (Mutp53) proteins not only lose wild-type p53-dependent tumor suppressive functions, but also frequently acquire oncogenic gain-of-functions (GOF) that promote tumorigenesis. In this review, we summarize the recent advances in our understanding of the oncogenic GOF of mutp53 and the potential therapies targeting mutp53 in human cancers. In particular, we discuss the promising drugs that are currently under clinical trials as well as the emerging therapeutic strategies, including CRISPR/Cas9 based genome edition of mutant TP53 allele, small peptide mediated restoration of wild-type p53 function, and immunotherapies that directly eliminate mutp53 expressing tumor cells.
Collapse
Affiliation(s)
- Gaoyang Zhu
- Postdoctoral Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Chaoyun Pan
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jin-Xin Bei
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Bo Li
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chen Liang
- Shenzhen International Institute for Biomedical Research, Shenzhen, China
| | - Yang Xu
- Department of Pediatrics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Xuemei Fu
- Department of Pediatrics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
34
|
Fiocchetti M, Solar Fernandez V, Segatto M, Leone S, Cercola P, Massari A, Cavaliere F, Marino M. Extracellular Neuroglobin as a Stress-Induced Factor Activating Pre-Adaptation Mechanisms against Oxidative Stress and Chemotherapy-Induced Cell Death in Breast Cancer. Cancers (Basel) 2020; 12:cancers12092451. [PMID: 32872414 PMCID: PMC7564643 DOI: 10.3390/cancers12092451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022] Open
Abstract
Components of tumor microenvironment, including tumor and/or stromal cells-derived factors, exert a critical role in breast cancer (BC) progression. Here we evaluated the possible role of neuroglobin (NGB), a monomeric globin that acts as a compensatory protein against oxidative and apoptotic processes, as part of BC microenvironment. The extracellular NGB levels were evaluated by immunofluorescence of BC tissue sections and by Western blot of the culture media of BC cell lines. Moreover, reactive oxygen species (ROS) generation, cell apoptosis, and cell migration were evaluated in different BC cells and non-tumorigenic epithelial mammary cells treated with BC cells (i.e., Michigan Cancer Foundation-7, MCF-7) conditioned culture media and extracellular NGB. Results demonstrate that NGB is a component of BC microenvironment. NGB is released in tumor microenvironment by BC cells only under oxidative stress conditions where it can act as autocrine/paracrine factor able to communicate cell resilience against oxidative stress and chemotherapeutic treatment.
Collapse
Affiliation(s)
- Marco Fiocchetti
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy; (V.S.F.); (S.L.)
- Correspondence: (M.F.); (M.M.); Tel.: +39-06-5733-6455 (M.F.); +39-06-5733-6320 (M.M.); Fax: +39-06-5733-6321 (M.F. & M.M.)
| | - Virginia Solar Fernandez
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy; (V.S.F.); (S.L.)
| | - Marco Segatto
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche (IS), Italy;
| | - Stefano Leone
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy; (V.S.F.); (S.L.)
| | - Paolo Cercola
- Division of Senology, Belcolle Hospital, Str. Sammartinese, 01100 Viterbo, Italy; (P.C.); (A.M.); (F.C.)
| | - Annalisa Massari
- Division of Senology, Belcolle Hospital, Str. Sammartinese, 01100 Viterbo, Italy; (P.C.); (A.M.); (F.C.)
| | - Francesco Cavaliere
- Division of Senology, Belcolle Hospital, Str. Sammartinese, 01100 Viterbo, Italy; (P.C.); (A.M.); (F.C.)
| | - Maria Marino
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy; (V.S.F.); (S.L.)
- Correspondence: (M.F.); (M.M.); Tel.: +39-06-5733-6455 (M.F.); +39-06-5733-6320 (M.M.); Fax: +39-06-5733-6321 (M.F. & M.M.)
| |
Collapse
|
35
|
Kohata T, Ito S, Masuda T, Furuta T, Nakada M, Ohtsuki S. Laminin Subunit Alpha-4 and Osteopontin Are Glioblastoma-Selective Secreted Proteins That Are Increased in the Cerebrospinal Fluid of Glioblastoma Patients. J Proteome Res 2020; 19:3542-3553. [PMID: 32628487 DOI: 10.1021/acs.jproteome.0c00415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glioblastoma (GBM) is the most common and aggressive brain tumor in adults. The purpose of the present study was to identify GBM cell-selective secreted proteins by analyzing conditioned media (CM) from GBM, breast, and colon cancer cell lines using sequential window acquisition of all theoretical spectra-mass spectrometry (SWATH-MS) and targeted proteomics. We identified 2371 proteins in the CM from GBM and the other cancer cell lines. Among the proteins identified, 15 showed significantly higher expression in the CM from GBM cell lines than in those from other cancer cell lines. These GBM-selective secreted proteins were further quantified in the cerebrospinal fluid (CSF) from patients with GBM. Laminin subunit alpha-4 (LAMA4) and osteopontin (OPN) had increased expression levels in the CSF from GBM patients compared to those from non-brain tumor patients. In addition, the areas under the curves in a receiver operating characteristic analysis of LAMA4 and OPN were greater than 0.9, allowing for discrimination of GBM patients from non-brain tumor patients. The CSF levels of LAMA4 and OPN were also significantly correlated with the GBM tumor volume. These results suggest that LAMA4 and OPN are secreted from GBM cells into the CSF and appear to be candidates as diagnostic markers and therapeutic targets for GBM.
Collapse
Affiliation(s)
- Tomohiro Kohata
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shingo Ito
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.,AMED-CREST, Tokyo, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.,AMED-CREST, Tokyo, Japan
| | - Takuya Furuta
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan.,Department of Neurosurgery, Kanazawa University, Kanazawa, Japan
| | | | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.,AMED-CREST, Tokyo, Japan
| |
Collapse
|
36
|
Garufi A, Baldari S, Pettinari R, Gilardini Montani MS, D’Orazi V, Pistritto G, Crispini A, Giorno E, Toietta G, Marchetti F, Cirone M, D’Orazi G. A ruthenium(II)-curcumin compound modulates NRF2 expression balancing the cancer cell death/survival outcome according to p53 status. J Exp Clin Cancer Res 2020; 39:122. [PMID: 32605658 PMCID: PMC7325274 DOI: 10.1186/s13046-020-01628-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Tumor progression and tumor response to anticancer therapies may be affected by activation of oncogenic pathways such as the antioxidant one induced by NRF2 (nuclear factor erythroid 2-related factor 2) transcription factor and the pathways modified by deregulation of oncosuppressor p53. Often, oncogenic pathways may crosstalk between them increasing tumor progression and resistance to anticancer therapies. Therefore, understanding that interplay is critical to improve cancer cell response to therapies. In this study we aimed at evaluating NRF2 and p53 in several cancer cell lines carrying different endogenous p53 status, using a novel curcumin compound since curcumin has been shown to target both NRF2 and p53 and have anti-tumor activity. METHODS We performed biochemical and molecular studies by using pharmacologic of genetic inhibition of NRF2 to evaluate the effect of curcumin compound in cancer cell lines of different tumor types bearing wild-type (wt) p53, mutant (mut) p53 or p53 null status. RESULTS We found that the curcumin compound induced a certain degree of cell death in all tested cancer cell lines, independently of the p53 status. At molecular level, the curcumin compound induced NRF2 activation, mutp53 degradation and/or wtp53 activation. Pharmacologic or genetic NRF2 inhibition further increased the curcumin-induced cell death in both mutp53- and wtp53-carrying cancer cell lines while it did not increase cell death in p53 null cells, suggesting a cytoprotective role for NRF2 and a critical role for functional p53 to achieve an efficient cancer cell response to therapy. CONCLUSIONS These findings underline the prosurvival role of curcumin-induced NRF2 expression in cancer cells even when cells underwent mutp53 downregulation and/or wtp53 activation. Thus, NRF2 inhibition increased cell demise particularly in cancer cells carrying p53 either wild-type or mutant suggesting that p53 is crucial for efficient cancer cell death. These results may represent a paradigm for better understanding the cancer cell response to therapies in order to design more efficient combined anticancer therapies targeting both NRF2 and p53.
Collapse
Affiliation(s)
- Alessia Garufi
- Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- University “G. D’Annunzio”, School of Medicine, Chieti, Italy
| | - Silvia Baldari
- Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- Department of Medical, Surgical Sciences, and Biotechnologies, Sapienza University, Latina, Italy
| | - Riccardo Pettinari
- School of Pharmacy, Chemistry Section, University of Camerino, Camerino Macerata, Italy
| | - Maria Saveria Gilardini Montani
- Department of Experimental Medicine, Sapienza University, laboratory affiliated to Pasteur Institute Italy Foundation Cenci Bolognetti, Rome, Italy
| | - Valerio D’Orazi
- Department of Surgical Sciences, Sapienza University, Rome, Italy
| | - Giuseppa Pistritto
- Italian medicines agency-Aifa, centralized procedure office, Rome, Italy
| | - Alessandra Crispini
- Department of Chemistry and Chemical Technologies, laboratory MAT-IN LAB, Calabria University, Rende, Italy
| | - Eugenia Giorno
- Department of Chemistry and Chemical Technologies, laboratory MAT-IN LAB, Calabria University, Rende, Italy
| | - Gabriele Toietta
- Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Fabio Marchetti
- School of Science and Technology, Chemistry Section, University of Camerino, Camerino Macerata, Italy
| | - Mara Cirone
- Department of Experimental Medicine, Sapienza University, laboratory affiliated to Pasteur Institute Italy Foundation Cenci Bolognetti, Rome, Italy
| | - Gabriella D’Orazi
- Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
37
|
Butera G, Brandi J, Cavallini C, Scarpa A, Lawlor RT, Scupoli MT, Marengo E, Cecconi D, Manfredi M, Donadelli M. The Mutant p53-Driven Secretome Has Oncogenic Functions in Pancreatic Ductal Adenocarcinoma Cells. Biomolecules 2020; 10:biom10060884. [PMID: 32526853 PMCID: PMC7356389 DOI: 10.3390/biom10060884] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/30/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
The cancer secretome is a rich repository of useful information for both cancer biology and clinical oncology. A better understanding of cancer secretome is particularly relevant for pancreatic ductal adenocarcinoma (PDAC), whose extremely high mortality rate is mainly due to early metastasis, resistance to conventional treatments, lack of recognizable symptoms, and assays for early detection. TP53 gene is a master transcriptional regulator controlling several key cellular pathways and it is mutated in ~75% of PDACs. We report the functional effect of the hot-spot p53 mutant isoforms R175H and R273H on cancer cell secretome, showing their influence on proliferation, chemoresistance, apoptosis, and autophagy, as well as cell migration and epithelial-mesenchymal transition. We compared the secretome of p53-null AsPC-1 PDAC cells after ectopic over-expression of R175H-mutp53 or R273H-mutp53 to identify the differentially secreted proteins by mutant p53. By using high-resolution SWATH-MS technology, we found a great number of differentially secreted proteins by the two p53 mutants, 15 of which are common to both mutants. Most of these secreted proteins are reported to promote cancer progression and epithelial-mesenchymal transition and might constitute a biomarker secreted signature that is driven by the hot-spot p53 mutants in PDAC.
Collapse
Affiliation(s)
- Giovanna Butera
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (G.B.); (M.T.S.)
| | - Jessica Brandi
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (J.B.); (D.C.)
| | - Chiara Cavallini
- Research Center LURM (Interdepartmental Laboratory of Medical Research), University of Verona, 37134 Verona, Italy;
| | - Aldo Scarpa
- Department of Diagnostics and Public health, Section of Pathology, University of Verona, 37134 Verona, Italy;
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, 37134 Verona, Italy;
| | - Rita T. Lawlor
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, 37134 Verona, Italy;
| | - Maria Teresa Scupoli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (G.B.); (M.T.S.)
- Research Center LURM (Interdepartmental Laboratory of Medical Research), University of Verona, 37134 Verona, Italy;
| | - Emílio Marengo
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, 28100 Novara, Italy;
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Italy, ISALIT, Spin-off at the University of Piemonte Orientale, 28100 Novara, Italy
| | - Daniela Cecconi
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (J.B.); (D.C.)
| | - Marcello Manfredi
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Italy, ISALIT, Spin-off at the University of Piemonte Orientale, 28100 Novara, Italy
- Department of Translational Medicine, University of Piemonte Orientale, Italy, CAAD, corso Trieste 15/A, 28100 Novara, Italy
- Correspondence: (M.M.); (M.D.); Tel.: +39-032-1660810 (M.M.); +39-045-8027281 (M.D.); Fax: +39-045-8027170 (M.D.)
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (G.B.); (M.T.S.)
- Correspondence: (M.M.); (M.D.); Tel.: +39-032-1660810 (M.M.); +39-045-8027281 (M.D.); Fax: +39-045-8027170 (M.D.)
| |
Collapse
|
38
|
Agupitan AD, Neeson P, Williams S, Howitt J, Haupt S, Haupt Y. P53: A Guardian of Immunity Becomes Its Saboteur through Mutation. Int J Mol Sci 2020; 21:E3452. [PMID: 32414156 PMCID: PMC7278985 DOI: 10.3390/ijms21103452] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Awareness of the importance of immunity in controlling cancer development triggered research into the impact of its key oncogenic drivers on the immune response, as well as their value as targets for immunotherapy. At the heart of tumour suppression is p53, which was discovered in the context of viral infection and now emerges as a significant player in normal and cancer immunity. Wild-type p53 (wt p53) plays fundamental roles in cancer immunity and inflammation. Mutations in p53 not only cripple wt p53 immune functions but also sinisterly subvert the immune function through its neomorphic gain-of-functions (GOFs). The prevalence of mutant p53 across different types of human cancers, which are associated with inflammatory and immune dysfunction, further implicates mutant p53 in modulating cancer immunity, thereby promoting tumorigenesis, metastasis and invasion. In this review, we discuss several mutant p53 immune GOFs in the context of the established roles of wt p53 in regulating and responding to tumour-associated inflammation, and regulating innate and adaptive immunity. We discuss the capacity of mutant p53 to alter the tumour milieu to support immune dysfunction, modulate toll-like receptor (TLR) signalling pathways to disrupt innate immunity and subvert cell-mediated immunity in favour of immune privilege and survival. Furthermore, we expose the potential and challenges associated with mutant p53 as a cancer immunotherapy target and underscore existing therapies that may benefit from inquiry into cancer p53 status.
Collapse
Affiliation(s)
- Arjelle Decasa Agupitan
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne 3000, Victoria, Australia; (A.D.A.); (S.H.)
| | - Paul Neeson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Victoria, Australia;
- Cancer Immunology Research, Peter MacCallum Cancer Centre, Melbourne 3000, Victoria, Australia
| | - Scott Williams
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne 3000, Victoria, Australia;
| | - Jason Howitt
- School of Health Sciences, Swinburne University, Melbourne 3122, Victoria, Australia;
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Sue Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne 3000, Victoria, Australia; (A.D.A.); (S.H.)
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Victoria, Australia;
| | - Ygal Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne 3000, Victoria, Australia; (A.D.A.); (S.H.)
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Victoria, Australia;
- Department of Clinical Pathology, University of Melbourne, Parkville 3010, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne 3800, Victoria, Australia
| |
Collapse
|
39
|
Cordani M, Butera G, Pacchiana R, Masetto F, Mullappilly N, Riganti C, Donadelli M. Mutant p53-Associated Molecular Mechanisms of ROS Regulation in Cancer Cells. Biomolecules 2020; 10:biom10030361. [PMID: 32111081 PMCID: PMC7175157 DOI: 10.3390/biom10030361] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 12/16/2022] Open
Abstract
The TP53 tumor suppressor gene is the most frequently altered gene in tumors and an increasing number of studies highlight that mutant p53 proteins can acquire oncogenic properties, referred to as gain-of-function (GOF). Reactive oxygen species (ROS) play critical roles as intracellular messengers, regulating numerous signaling pathways linked to metabolism and cell growth. Tumor cells frequently display higher ROS levels compared to healthy cells as a result of their increased metabolism as well as serving as an oncogenic agent because of its damaging and mutational properties. Several studies reported that in contrast with the wild type protein, mutant p53 isoforms fail to exert antioxidant activities and rather increase intracellular ROS, driving a pro-tumorigenic survival. These pro-oxidant oncogenic abilities of GOF mutant p53 include signaling and metabolic rewiring, as well as the modulation of critical ROS-related transcription factors and antioxidant systems, which lead ROS unbalance linked to tumor progression. The studies summarized here highlight that GOF mutant p53 isoforms might constitute major targets for selective therapeutic intervention against several types of tumors and that ROS enhancement driven by mutant p53 might represent an “Achilles heel” of cancer cells, suggesting pro-oxidant drugs as a therapeutic approach for cancer patients bearing the mutant TP53 gene.
Collapse
Affiliation(s)
- Marco Cordani
- IMDEA Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain;
| | - Giovanna Butera
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (R.P.); (F.M.); (N.M.)
| | - Raffaella Pacchiana
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (R.P.); (F.M.); (N.M.)
| | - Francesca Masetto
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (R.P.); (F.M.); (N.M.)
| | - Nidula Mullappilly
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (R.P.); (F.M.); (N.M.)
| | - Chiara Riganti
- Department of Oncology, University of Torino, 10126 Torino, Italy;
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (R.P.); (F.M.); (N.M.)
- Correspondence: ; Tel.: +39-045-8027281; Fax: +39-045-8027170
| |
Collapse
|
40
|
Piipponen M, Nissinen L, Riihilä P, Farshchian M, Kallajoki M, Peltonen J, Peltonen S, Kähäri VM. p53-Regulated Long Noncoding RNA PRECSIT Promotes Progression of Cutaneous Squamous Cell Carcinoma via STAT3 Signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 190:503-517. [PMID: 31837949 DOI: 10.1016/j.ajpath.2019.10.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 01/28/2023]
Abstract
Long noncoding RNAs (lncRNAs) have emerged as putative biomarkers and therapeutic targets in cancer. The role of lncRNA LINC00346 in cutaneous squamous carcinoma (cSCC) was examined. The expression of LINC00346 was up-regulated in cSCC cells compared with normal human epidermal keratinocytes. Elevated expression of LINC00346 was noted in tumor cells in cSCC tissue sections in vivo, as compared with cSCC in situ, and actinic keratosis by RNA in situ hybridization; and the expression in seborrheic keratosis and normal skin was very low. Immunohistochemical analysis of cSCC tissue sections and functional assays of cSCC cells in culture showed that LINC00346 expression is down-regulated by p53. Knockdown of LINC00346 inhibited invasion of cSCC cells in culture and suppressed growth of human cSCC xenografts in vivo. Knockdown of LINC00346 inhibited expression of activated STAT3 and resulted in down-regulation of the expression of matrix metalloproteinase (MMP)-1, MMP-3, MMP-10, and MMP-13. Based on these observations LINC00346 was named p53 regulated carcinoma-associated STAT3-activating long intergenic non-protein coding transcript (PRECSIT). These results identify PRECSIT as a new p53-regulated lncRNA, which promotes progression of cSCC via STAT3 signaling.
Collapse
Affiliation(s)
- Minna Piipponen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland; Cancer Research Laboratory, Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Liisa Nissinen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland; Cancer Research Laboratory, Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Pilvi Riihilä
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland; Cancer Research Laboratory, Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Mehdi Farshchian
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Markku Kallajoki
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland
| | - Juha Peltonen
- Department of Cell Biology and Anatomy, University of Turku, Turku, Finland
| | - Sirkku Peltonen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland; Cancer Research Laboratory, Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland.
| |
Collapse
|
41
|
Mutant p53 induces SIRT3/MnSOD axis to moderate ROS production in melanoma cells. Arch Biochem Biophys 2019; 679:108219. [PMID: 31812668 DOI: 10.1016/j.abb.2019.108219] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 11/12/2019] [Accepted: 12/03/2019] [Indexed: 12/15/2022]
Abstract
The TP53 tumor suppressor gene is the most frequently altered gene in tumors and mutant p53 isoforms can acquire oncogenic properties referred to as gain-of-function (GOF). In this study, we used wild-type (A375) and mutant p53 (MeWo) melanoma cell lines to assess the regulation of the mitochondrial antioxidant manganese superoxide dismutase (MnSOD) by mutant p53. The effects of mutant p53 were evaluated by qPCR, immunoblotting, enzyme activity assay, cell proliferation assay, reactive oxygen species (ROS) assay after cellular transfection. We demonstrate that mutant p53 induces MnSOD expression, which is recovered by the ROS scavenger N-acetyl-l-cysteine. This suggests MnSOD induction as a defense mechanism of melanoma cells to counterbalance the pro-oxidant conditions induced by mutant p53. We also demonstrate that mutant p53 induces the expression of Sirtuin3 (SIRT3), a major mitochondrial NAD+-dependent deacetylase, stimulating MnSOD deacetylation and enzymatic activity. Indeed, the restoration of SIRT3 reverses MnSOD activity decrease by mutant p53 knock-down. Finally, MnSOD knock-down further enhances mutant p53-mediated ROS increase, counteracting mutp53-dependent cell hyperproliferation. This indicates that SIRT3 and MnSOD act to maintain ROS levels controlled to promote cell proliferation and survival, providing new therapeutic opportunities to be further considered for clinical studies in cancer patients bearing mutant TP53 gene.
Collapse
|
42
|
Mironov AA, Beznoussenko GV. Models of Intracellular Transport: Pros and Cons. Front Cell Dev Biol 2019; 7:146. [PMID: 31440506 PMCID: PMC6693330 DOI: 10.3389/fcell.2019.00146] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022] Open
Abstract
Intracellular transport is one of the most confusing issues in the field of cell biology. Many different models and their combinations have been proposed to explain the experimental data on intracellular transport. Here, we analyse the data related to the mechanisms of endoplasmic reticulum-to-Golgi and intra-Golgi transport from the point of view of the main models of intracellular transport; namely: the vesicular model, the diffusion model, the compartment maturation–progression model, and the kiss-and-run model. This review initially describes our current understanding of Golgi function, while highlighting the recent progress that has been made. It then continues to discuss the outstanding questions and potential avenues for future research with regard to the models of these transport steps. To compare the power of these models, we have applied the method proposed by K. Popper; namely, the formulation of prohibitive observations according to, and the consecutive evaluation of, previous data, on the basis on the new models. The levels to which the different models can explain the experimental observations are different, and to date, the most powerful has been the kiss-and-run model, whereas the least powerful has been the diffusion model.
Collapse
Affiliation(s)
- Alexander A Mironov
- Department of Cell Biology, The FIRC Institute of Molecular Oncology, Milan, Italy
| | | |
Collapse
|
43
|
Brattås MK, Reikvam H, Tvedt THA, Bruserud Ø. Precision medicine for TP53-mutated acute myeloid leukemia. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2019. [DOI: 10.1080/23808993.2019.1644164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | - Håkon Reikvam
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- Section for Hematology, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Øystein Bruserud
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- Section for Hematology, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
44
|
Wu SZ, Xu HC, Wu XL, Liu P, Shi YC, Pang P, Deng L, Zhou GX, Chen XY. Dihydrosanguinarine suppresses pancreatic cancer cells via regulation of mut-p53/WT-p53 and the Ras/Raf/Mek/Erk pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 59:152895. [PMID: 30913453 DOI: 10.1016/j.phymed.2019.152895] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND There have been some reports implicating the pharmacologic action of Dihydrosanguinarine (DHSA), but little research including the effects of it on cancer cells. PANC-1 cells have mutations in K-Ras and TP53, which respectively express mutant K-Ras and p53 protein, and the mutations in Ras/p53 have been believed with closely relationship to the occurrence of various tumors. PURPOSE To reveal the inhibition of Dihydrosanguinarine on pancreatic cancer cells (PANC-1 and SW1990) proliferation by inducing G0/G1 and G2/M phase arrest via the downregulation of mut-p53 protein, inducing apoptosis and inhibiting invasiveness through the Ras/Mek/Erk signaling pathway. METHODS Human pancreatic cancer cell lines were cultured with cisplatin and DHSA. Then, cell proliferation, the cell cycle and apoptosis were measured by CCK-8 and flow cytometry. The migratory and invasive abilities of pancreatic cancer cells were evaluated by transwell assay. The expression levels of mRNA and protein were measured by RT-PCR and western blotting. RESULTS The results showed that DHSA treatment inhibited cell proliferation, migration and invasion in a time- and dose-dependent manner and led to induction of cell cycle arrest and apoptosis. G0/G1 and G2/M phase arrest inhibited the viability of PANC-1 cells by downregulating the expression of mut-p53 protein. Decreased levels of C-Raf and Erk phosphorylation in DHSA-treated PANC-1 and SW1990 cells were observed in a time- and dose-dependent manner. However, the total expression of p53 and Ras proteins had a different change in PANC-1 and SW1990 cells. CONCLUSIONS Our findings offer the novel perspective that DHSA inhibits pancreatic cancer cells through a bidirectional regulation between mut-p53/-Ras and WT-p53/-Ras to restore the dynamic balance by Ras and p53 proteins.
Collapse
Affiliation(s)
- Si-Zhi Wu
- College of Traditional Chinese Medicine, Jinan University, No. 601, West Huang-pu Avenue, Guangzhou, Guangdong CN510632, China.
| | - Hua-Chong Xu
- College of Traditional Chinese Medicine, Jinan University, No. 601, West Huang-pu Avenue, Guangzhou, Guangdong CN510632, China.
| | - Xian-Lin Wu
- Department of Pancreatic Disease, the First Affiliated Hospital of Jinan University, Guangzhou, China; Clinical Medicine Research Institute, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Pei Liu
- College of Traditional Chinese Medicine, Jinan University, No. 601, West Huang-pu Avenue, Guangzhou, Guangdong CN510632, China.
| | - Yu-Cong Shi
- College of Traditional Chinese Medicine, Jinan University, No. 601, West Huang-pu Avenue, Guangzhou, Guangdong CN510632, China.
| | - Peng Pang
- College of Traditional Chinese Medicine, Jinan University, No. 601, West Huang-pu Avenue, Guangzhou, Guangdong CN510632, China.
| | - Li Deng
- College of Traditional Chinese Medicine, Jinan University, No. 601, West Huang-pu Avenue, Guangzhou, Guangdong CN510632, China
| | - Guang-Xiong Zhou
- Department of Pharmacology, Pharmaceutical College of Jinan University, Guangzhou, China.
| | - Xiao-Yin Chen
- College of Traditional Chinese Medicine, Jinan University, No. 601, West Huang-pu Avenue, Guangzhou, Guangdong CN510632, China.
| |
Collapse
|
45
|
Mutant p53 and Cellular Stress Pathways: A Criminal Alliance That Promotes Cancer Progression. Cancers (Basel) 2019; 11:cancers11050614. [PMID: 31052524 PMCID: PMC6563084 DOI: 10.3390/cancers11050614] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 04/27/2019] [Accepted: 05/01/2019] [Indexed: 02/07/2023] Open
Abstract
The capability of cancer cells to manage stress induced by hypoxia, nutrient shortage, acidosis, redox imbalance, loss of calcium homeostasis and exposure to drugs is a key factor to ensure cancer survival and chemoresistance. Among the protective mechanisms utilized by cancer cells to cope with stress a pivotal role is played by the activation of heat shock proteins (HSP) response, anti-oxidant response induced by nuclear factor erythroid 2-related factor 2 (NRF2), the hypoxia-inducible factor-1 (HIF-1), the unfolded protein response (UPR) and autophagy, cellular processes strictly interconnected. However, depending on the type, intensity or duration of cellular stress, the balance between pro-survival and pro-death pathways may change, and cell survival may be shifted into cell death. Mutations of p53 (mutp53), occurring in more than 50% of human cancers, may confer oncogenic gain-of-function (GOF) to the protein, mainly due to its stabilization and interaction with the above reported cellular pathways that help cancer cells to adapt to stress. This review will focus on the interplay of mutp53 with HSPs, NRF2, UPR, and autophagy and discuss how the manipulation of these interconnected processes may tip the balance towards cell death or survival, particularly in response to therapies.
Collapse
|
46
|
Olszewski MB, Pruszko M, Snaar-Jagalska E, Zylicz A, Zylicz M. Diverse and cancer type‑specific roles of the p53 R248Q gain‑of‑function mutation in cancer migration and invasiveness. Int J Oncol 2019; 54:1168-1182. [PMID: 30968154 PMCID: PMC6411346 DOI: 10.3892/ijo.2019.4723] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/18/2019] [Indexed: 12/13/2022] Open
Abstract
Gain‑of‑function (GOF) mutations in the TP53 gene lead to acquisition of new functions by the mutated tumor suppressor p53 protein. A number of the over‑represented 'hot spot' mutations, including the ones in codons 175, 248 or 273, convey GOF phenotypes. Such phenotypes may include resistance to chemotherapeutics or changes in motility and invasiveness. Whereas the prevalent notion is that the acquisition of the p53 GOF phenotype translates into poorer prognosis for the patient, the analysis of a human somatic p53 mutations dataset demonstrated earlier tumor onset, but decreased frequency and altered location of metastases in patients with the p53‑R248Q allele. Therefore, the GOF activities of p53‑R248Q and p53‑D281G were analyzed in triple negative breast cancer MDA‑MB‑231 and lung adenocarcinoma H1299 cell lines with regard to invasive and metastatic traits. The expression of p53‑D281G increased the motility and invasiveness of the lung cancer cells, but not those of the breast cancer cells. In contrast, the expression of p53‑R248Q decreased the motility and invasiveness of the breast and lung cancer cells in a p53 transactivation‑dependent manner. The intravenous xenotransplantation of MDA‑MB‑231 cells expressing p53‑R248Q into zebrafish embryos resulted in an alteration of the distribution of cancer cells in the body of the fish. In p53‑R248Q‑expressing H1299 cells a decrease in the expression of TCF8/ZEB1 and N‑cadherin was observed, suggesting partial mesenchymal‑to‑epithelial transition. In the two cell lines expressing p53‑R248Q a decrease was noted in the expression of myosin light chain 2, a protein involved in actomyosin‑based motility. To the best of our knowledge, the present study is one of only few reports demonstrating the mutated p53 GOF activity resulting in a decrease of a malignant trait in human cancer.
Collapse
Affiliation(s)
- Maciej Boleslaw Olszewski
- Department of Molecular Biology, International Institute of Molecular and Cell Biology, 02‑109 Warsaw, Poland
| | - Magdalena Pruszko
- Department of Molecular Biology, International Institute of Molecular and Cell Biology, 02‑109 Warsaw, Poland
| | - Ewa Snaar-Jagalska
- Institute of Biology, Leiden University, 2333 CC Leiden, The Netherlands
| | - Alicja Zylicz
- Department of Molecular Biology, International Institute of Molecular and Cell Biology, 02‑109 Warsaw, Poland
| | - Maciej Zylicz
- Department of Molecular Biology, International Institute of Molecular and Cell Biology, 02‑109 Warsaw, Poland
| |
Collapse
|
47
|
Song C, Xiong Y, Liao W, Meng L, Yang S. Long noncoding RNA ATB participates in the development of renal cell carcinoma by downregulating p53 via binding to DNMT1. J Cell Physiol 2018; 234:12910-12917. [PMID: 30536843 DOI: 10.1002/jcp.27957] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/19/2018] [Indexed: 12/17/2022]
Abstract
Long noncoding RNA (lncRNA) exerts an essential role in the pathological processes of many diseases. Our previous study found that lncRNA ATB was highly expressed in renal cell carcinoma (RCC). Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), and migration-related assays were conducted to access the regulatory effects of lncRNA ATB on proliferative and migratory capacities of RCC cells. Flow cytometry was carried out to determine cell cycle and apoptosis influenced by lncRNA ATB. The interaction among lncRNA ATB, DNMT1, and p53 was evaluated through RNA immunoprecipitation (RIP), chromatin immunoprecipitation (ChIP), and western blot analyses. The results showed that lncRNA ATB knockdown in RCC cell line ACHN inhibited proliferative and migratory capacities and promoted apoptosis. Meanwhile, overexpression of lncRNA ATB in RCC cell line A-498 promoted proliferative and migratory capacities but inhibited apoptosis. RIP and ChIP assays confirmed that lncRNA ATB can bind to DNMT1 and stabilize its expression; meanwhile, it can promote the binding of DNMT1 to p53. Overexpression of p53 partially reversed the proliferative and migratory changes caused by lncRNA ATB. To sum up, our study revealed that high expression of lncRNA ATB could accelerate the proliferative and migratory rates of RCC cells and inhibit cell apoptosis through downregulating p53 via binding to DNMT1.
Collapse
Affiliation(s)
- Chao Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Yunhe Xiong
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Wenbiao Liao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Lingchao Meng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Sixing Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
48
|
Cordani M, Butera G, Dando I, Torrens-Mas M, Butturini E, Pacchiana R, Oppici E, Cavallini C, Gasperini S, Tamassia N, Nadal-Serrano M, Coan M, Rossi D, Gaidano G, Caraglia M, Mariotto S, Spizzo R, Roca P, Oliver J, Scupoli MT, Donadelli M. Mutant p53 blocks SESN1/AMPK/PGC-1α/UCP2 axis increasing mitochondrial O 2-· production in cancer cells. Br J Cancer 2018; 119:994-1008. [PMID: 30318520 PMCID: PMC6203762 DOI: 10.1038/s41416-018-0288-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 09/11/2018] [Accepted: 09/14/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The TP53 tumor suppressor gene is the most frequently altered gene in tumors and mutant p53 gain-of-function isoforms actively promote cancer malignancy. METHODS A panel of wild-type and mutant p53 cancer cell lines of different tissues, including pancreas, breast, skin, and lung were used, as well as chronic lymphocytic leukemia (CLL) patients with different TP53 gene status. The effects of mutant p53 were evaluated by confocal microscopy, reactive oxygen species production assay, immunoblotting, and quantitative reverse transcription polymerase chain reaction after cellular transfection. RESULTS We demonstrate that oncogenic mutant p53 isoforms are able to inhibit SESN1 expression and consequently the amount of SESN1/AMPK complex, resulting in the downregulation of the AMPK/PGC-1α/UCP2 axis and mitochondrial O2-· production. We also show a correlation between the decrease of reduced thiols with a poorer clinical outcome of CLL patients bearing mutant TP53 gene. The restoration of the mitochondrial uncoupling protein 2 (UCP2) expression, as well as the addition of the radical scavenger N-acetyl-L-cysteine, reversed the oncogenic effects of mutant p53 as cellular hyper-proliferation, antiapoptotic effect, and resistance to drugs. CONCLUSIONS The inhibition of the SESN1/AMPK/PGC-1α/UCP2 axis contributes to the pro-oxidant and oncogenic effects of mutant p53, suggesting pro-oxidant drugs as a therapeutic approach for cancer patients bearing mutant TP53 gene.
Collapse
Affiliation(s)
- Marco Cordani
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy.,Biochemistry Department, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), IdiPAZ, Madrid, Spain
| | - Giovanna Butera
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Ilaria Dando
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Margalida Torrens-Mas
- Grupo Multidisciplinar de Oncología Traslacional, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Palma de Mallorca, Illes Balears, Spain.,Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria de Palma (IdISPa), Hospital Universitario Son Espases, edificio S. E-07120, Palma de Mallorca, Illes Balears, Spain
| | - Elena Butturini
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Raffaella Pacchiana
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Elisa Oppici
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Chiara Cavallini
- Research Center LURM (Interdepartmental Laboratory of Medical Research), University of Verona, Verona, Italy
| | - Sara Gasperini
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Nicola Tamassia
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | | | - Michela Coan
- Division of Molecular Oncology, Department of Translational Research, CRO National Cancer Institute Aviano, Aviano, Italy
| | - Davide Rossi
- Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland.,Institute of Oncology Research, Bellinzona, Switzerland
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Sofia Mariotto
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Riccardo Spizzo
- Division of Molecular Oncology, Department of Translational Research, CRO National Cancer Institute Aviano, Aviano, Italy
| | - Pilar Roca
- Grupo Multidisciplinar de Oncología Traslacional, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Palma de Mallorca, Illes Balears, Spain.,Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria de Palma (IdISPa), Hospital Universitario Son Espases, edificio S. E-07120, Palma de Mallorca, Illes Balears, Spain
| | - Jordi Oliver
- Grupo Multidisciplinar de Oncología Traslacional, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Palma de Mallorca, Illes Balears, Spain.,Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria de Palma (IdISPa), Hospital Universitario Son Espases, edificio S. E-07120, Palma de Mallorca, Illes Balears, Spain
| | - Maria Teresa Scupoli
- Research Center LURM (Interdepartmental Laboratory of Medical Research), University of Verona, Verona, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy.
| |
Collapse
|
49
|
Butera G, Pacchiana R, Mullappilly N, Margiotta M, Bruno S, Conti P, Riganti C, Donadelli M. Mutant p53 prevents GAPDH nuclear translocation in pancreatic cancer cells favoring glycolysis and 2-deoxyglucose sensitivity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1914-1923. [PMID: 30296496 DOI: 10.1016/j.bbamcr.2018.10.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/14/2018] [Accepted: 10/02/2018] [Indexed: 01/02/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and devastating human malignancies. In about 70% of PDACs the tumor suppressor gene TP53 is mutated generally resulting in conformational changes of mutant p53 (mutp53) proteins, which acquire oncogenic functions triggering aggressiveness of cancers and alteration of energetic metabolism. Here, we demonstrate that mutant p53 prevents the nuclear translocation of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) stabilizing its cytoplasmic localization, thus supporting glycolysis of cancer cells and inhibiting cell death mechanisms mediated by nuclear GAPDH. We further show that the prevention of nuclear localization of GAPDH is mediated by both stimulation of AKT and repression of AMPK signaling, and is associated with the formation of the SIRT1:GAPDH complex. By using siRNA-GAPDH or an inhibitor of the enzyme, we functionally demonstrate that the maintenance of GAPDH in the cytosol has a critical impact on the anti-apoptotic and anti-autophagic effects driven by mutp53. Furthermore, the blockage of its mutp53-dependent cytoplasmic stabilization is able to restore the sensitivity of PDAC cells to the treatment with gemcitabine. Finally, our data suggest that mutp53-dependent enhanced glycolysis permits cancer cells to acquire sensitivity to anti-glycolytic drugs, such as 2-deoxyglucose, suggesting a potential personalized therapeutic approach in human cancers carrying mutant TP53 gene.
Collapse
Affiliation(s)
- Giovanna Butera
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Raffaella Pacchiana
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Nidula Mullappilly
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | | | - Stefano Bruno
- Food and Dug Department, University of Parma, Parma, Italy
| | - Paola Conti
- Department of Pharmaceutical Sciences, University of Milan, Milano, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, Torino, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy.
| |
Collapse
|
50
|
Uehara I, Tanaka N. Role of p53 in the Regulation of the Inflammatory Tumor Microenvironment and Tumor Suppression. Cancers (Basel) 2018; 10:cancers10070219. [PMID: 29954119 PMCID: PMC6071291 DOI: 10.3390/cancers10070219] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 12/20/2022] Open
Abstract
p53 has functional roles in tumor suppression as a guardian of the genome, surveillant of oncogenic cell transformation, and as recently demonstrated, a regulator of intracellular metabolism. Accumulating evidence has shown that the tumor microenvironment, accompanied by inflammation and tissue remodeling, is important for cancer proliferation, metastasis, and maintenance of cancer stem cells (CSCs) that self-renew and generate the diverse cells comprising the tumor. Furthermore, p53 has been demonstrated to inhibit inflammatory responses, and functional loss of p53 causes excessive inflammatory reactions. Moreover, the generation and maintenance of CSCs are supported by the inflammatory tumor microenvironment. Considering that the functions of p53 inhibit reprogramming of somatic cells to stem cells, p53 may have a major role in the inflammatory microenvironment as a tumor suppressor. Here, we review our current understanding of the mechanisms underlying the roles of p53 in regulation of the inflammatory microenvironment, tumor microenvironment, and tumor suppression.
Collapse
Affiliation(s)
- Ikuno Uehara
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-396 Kosugi-cho, Nakahara-ku, Kawasaki 211-8533, Japan.
| | - Nobuyuki Tanaka
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-396 Kosugi-cho, Nakahara-ku, Kawasaki 211-8533, Japan.
| |
Collapse
|