1
|
Tang Q, Ren T, Bai P, Wang X, Zhao L, Zhong R, Sun G. Novel strategies to overcome chemoresistance in human glioblastoma. Biochem Pharmacol 2024; 230:116588. [PMID: 39461382 DOI: 10.1016/j.bcp.2024.116588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Temozolomide (TMZ) is currently the first-line chemotherapeutic agent for the treatment of glioblastoma multiforme (GBM). However, the inherent heterogeneity of GBM often results in suboptimal outcomes, particularly due to varying degrees of resistance to TMZ. Over the past several decades, O6-methylguanine-DNA methyltransferase (MGMT)-mediated DNA repair pathway has been extensively investigated as a target to overcome TMZ resistance. Nonetheless, the combination of small molecule covalent MGMT inhibitors with TMZ and other chemotherapeutic agents has frequently led to adverse clinical effects. Recently, additional mechanisms contributing to TMZ resistance have been identified, including epidermal growth factor receptor (EGFR) mutations, overactivation of intracellular signalling pathways, energy metabolism reprogramming or survival autophagy, and changes in tumor microenvironment (TME). These findings suggest that novel therapeutic strategies targeting these mechanisms hold promise for overcoming TMZ resistance in GBM patients. In this review, we summarize the latest advancements in understanding the mechanisms underlying intrinsic and acquired TMZ resistance. Additionally, we compile various small-molecule compounds with potential to mitigate chemoresistance in GBM. These mechanism-based compounds may enhance the sensitivity of GBM to TMZ and related chemotherapeutic agents, thereby improving overall survival rates in clinical practice.
Collapse
Affiliation(s)
- Qing Tang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Peiying Bai
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Xin Wang
- Department of Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
2
|
Garay-Talero A, Goulart TAC, Gallo RDC, Pinheiro RDC, Hoyos-Orozco C, Jurberg ID, Gamba-Sánchez D. An aza-Robinson Annulation Strategy for the Synthesis of Fused Bicyclic Amides: Synthesis of (±)-Coniceine and Quinolizidine. Org Lett 2023; 25:7940-7945. [PMID: 37877616 PMCID: PMC10630962 DOI: 10.1021/acs.orglett.3c02798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Indexed: 10/26/2023]
Abstract
An aza-Robinson annulation strategy is described using a NaOEt-catalyzed conjugate addition of cyclic imides onto vinyl ketones, followed by a TfOH-mediated intramolecular aldol condensation to afford densely functionalized fused bicyclic amides. The potential use of these amides in the synthesis of alkaloids is demonstrated by the sequential conversion of appropriate precursors to (±)-coniceine and quinolizidine in two additional steps, thus allowing their preparation in overall 40 and 44% yields, respectively.
Collapse
Affiliation(s)
- Alexander Garay-Talero
- Laboratory
of Organic Synthesis, Bio and Organocatalysis, Chemistry Department, Universidad de los Andes, Cra 1 No. 18A-12 Q:305, 111711 Bogota, Colombia
| | - Tales A. C. Goulart
- Institute
of Chemistry, State University of Campinas, Rua Monteiro Lobato 270, 13083-862 Campinas, SP, Brazil
| | - Rafael D. C. Gallo
- Institute
of Chemistry, State University of Campinas, Rua Monteiro Lobato 270, 13083-862 Campinas, SP, Brazil
| | - Roberto do C. Pinheiro
- Institute
of Chemistry, State University of Campinas, Rua Monteiro Lobato 270, 13083-862 Campinas, SP, Brazil
| | - Catalina Hoyos-Orozco
- Laboratory
of Organic Synthesis, Bio and Organocatalysis, Chemistry Department, Universidad de los Andes, Cra 1 No. 18A-12 Q:305, 111711 Bogota, Colombia
| | - Igor D. Jurberg
- Institute
of Chemistry, State University of Campinas, Rua Monteiro Lobato 270, 13083-862 Campinas, SP, Brazil
| | - Diego Gamba-Sánchez
- Laboratory
of Organic Synthesis, Bio and Organocatalysis, Chemistry Department, Universidad de los Andes, Cra 1 No. 18A-12 Q:305, 111711 Bogota, Colombia
| |
Collapse
|
3
|
Hu L, Gao M, Jiang H, Zhuang L, Jiang Y, Xie S, Zhang H, Wang Q, Chen Q. Triptolide inhibits epithelial ovarian tumor growth by blocking the hedgehog/Gli pathway. Aging (Albany NY) 2023; 15:11131-11151. [PMID: 37851362 PMCID: PMC10637820 DOI: 10.18632/aging.205110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023]
Abstract
Epithelial ovarian cancer (EOC), the most predominant subtype of ovarian cancer (OC), involves poor prognosis and exhibits high aggression. Triptolide (TPL), like other Chinese herbs, has historically played a significant role in modern medicine. The screening system based on Gli-dependent luciferase reporter activity assessed the effects of over 800 natural medicinal materials on hedgehog (Hh) signaling pathway activity and discovered that TPL had an excellent inhibitory effect on Hh signaling pathway activity. However, the significance and mechanism of TPL involvement in regulating the Hh pathway have not been well explored. Thus, this work aimed to understand better how TPL affects the Hh pathway activity, which, in turn, influences the biological behavior of EOC. Our findings observed that Smo agonist SAG-induced EOC cell proliferation, migration, and invasion were drastically reversed by TPL in a concentration-dependent pattern. Further evidence suggested that TPL promotes the degradation of Gli1 and Gli2 to inhibit the activity of the Hh signaling pathway by relying on Gli1 and Gli2 ubiquitination. Our in vivo studies also confirmed that TPL could significantly inhibit the tumor growth of EOC. Taken together, our results revealed that one of the antitumor mechanisms of TPL was the targeted inhibition of the Hh/Gli pathway.
Collapse
Affiliation(s)
- Lanyan Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Mai Gao
- Huankui Academy of Nanchang University, Nanchang 330036, Jiangxi, P.R. China
| | - Huifu Jiang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Lingling Zhuang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Ying Jiang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Siqi Xie
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Hong Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Qian Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Qi Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| |
Collapse
|
4
|
Bai P, Fan T, Wang X, Zhao L, Zhong R, Sun G. Modulating MGMT expression through interfering with cell signaling pathways. Biochem Pharmacol 2023; 215:115726. [PMID: 37524206 DOI: 10.1016/j.bcp.2023.115726] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Guanine O6-alkylating agents are widely used as first-line chemotherapeutic drugs due to their ability to induce cytotoxic DNA damage. However, a major hurdle in their effectiveness is the emergence of chemoresistance, largely attributed to the DNA repair pathway mediated by O6-methylguanine-DNA methyltransferase (MGMT). MGMT plays an important role in removing the alkyl groups from lethal O6-alkylguanine (O6-AlkylG) adducts formed by chemotherapeutic alkylating agents. By doing so, MGMT enables tumor cells to evade apoptosis and develop drug resistance toward DNA alkylating agents. Although covalent inhibitors of MGMT, such as O6-benzylguanine (O6-BG) and O6-(4-bromothenyl)guanine (O6-4-BTG or lomeguatrib), have been explored in clinical settings, their utility is limited due to severe delayed hematological toxicity observed in most patients when combined with alkylating agents. Therefore, there is an urgent need to identify new targets and unravel the underlying molecular mechanisms and to develop alternative therapeutic strategies that can overcome MGMT-mediated tumor resistance. In this context, the regulation of MGMT expression via interfering the specific cell signaling pathways (e.g., Wnt/β-catenin, NF-κB, Hedgehog, PI3K/AKT/mTOR, JAK/STAT) emerges as a promising strategy for overcoming tumor resistance, and ultimately enhancing the efficacy of DNA alkylating agents in chemotherapy.
Collapse
Affiliation(s)
- Peiying Bai
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Tengjiao Fan
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; Department of Medical Technology, Beijing Pharmaceutical University of Staff and Workers, Beijing 100079, China
| | - Xin Wang
- Department of Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
5
|
Wang H, Lai Q, Wang D, Pei J, Tian B, Gao Y, Gao Z, Xu X. Hedgehog signaling regulates the development and treatment of glioblastoma. Oncol Lett 2022; 24:294. [PMID: 35949611 PMCID: PMC9353242 DOI: 10.3892/ol.2022.13414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/14/2022] [Indexed: 11/12/2022] Open
Abstract
Glioblastoma (GBM) is the most common and fatal malignant tumor type of the central nervous system. GBM affects public health and it is important to identify biomarkers to improve diagnosis, reduce drug resistance and improve prognosis (e.g., personalized targeted therapies). Hedgehog (HH) signaling has an important role in embryonic development, tissue regeneration and stem cell renewal. A large amount of evidence indicates that both normative and non-normative HH signals have an important role in GBM. The present study reviewed the role of the HH signaling pathway in the occurrence and progression of GBM. Furthermore, the effectiveness of drugs that target different components of the HH pathway was also examined. The HH pathway has an important role in reversing drug resistance after GBM conventional treatment. The present review highlighted the relevance of HH signaling in GBM and outlined that this pathway has a key role in the occurrence, development and treatment of GBM.
Collapse
Affiliation(s)
- Hongping Wang
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Qun Lai
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Dayong Wang
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Jian Pei
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Baogang Tian
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Yunhe Gao
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Zhaoguo Gao
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Xiang Xu
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| |
Collapse
|
6
|
Anticancer effects of veratramine via the phosphatidylinositol-3-kinase/serine-threonine kinase/mechanistic target of rapamycin and its downstream signaling pathways in human glioblastoma cell lines. Life Sci 2022; 288:120170. [PMID: 34826438 DOI: 10.1016/j.lfs.2021.120170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 02/06/2023]
Abstract
AIMS Antitumor effects of veratramine in prostate and liver cancers has been investigated, but it is still unclear whether veratramine can be used as an effective therapeutic agent for glioma. The aim of this study was to evaluate the potential pharmacological mechanism of veratramine in glioma. MAIN METHODS Using four types of human glioblastoma cell lines, including A172, HS-683, T98G, and U-373-MG the dose-dependent antitumor effect of veratramine was evaluated. The cytotoxicity and cell proliferation were examined by CCK-8, and cell proliferation was further confirmed by anchorage-independent colony formation assay. The cell cycle distribution and apoptotic rate was assessed by flow cytometry, and apoptosis was further evaluated by apoptosis assay. The migration and invasiveness capacity were analyzed by using transwell. Protein and mRNA levels of related factors were determined by western blotting and RT-qPCR, respectively. KEY FINDINGS Veratramine markedly induced apoptosis, suppressed the cell proliferation via the cell cycle G0/G1 phase arrest, and reduced the capacity for the migration and invasion in human glioblastoma multiforme cell lines. Moreover, veratramine was sufficient to affect the phosphatidylinositol-3-kinase/serine-threonine kinase/mechanistic target of rapamycin signaling pathway and its downstream Mdm2/p53/p21 pathway in human glioblastoma cell lines. SIGNIFICANCE Antitumor effects of veratramine in suppression of glioma progression was mediated by the regulation of PI3K/Akt/mTOR and Mdm2/p53/p21 signaling pathway.
Collapse
|
7
|
Maurya A, Patel UK, Yadav JK, Singh VP, Agarwal A. Challenges and Recent Advances of Novel Chemical Inhibitors in Medulloblastoma Therapy. Methods Mol Biol 2022; 2423:123-140. [PMID: 34978695 DOI: 10.1007/978-1-0716-1952-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Medulloblastoma is a common term used for the juvenile malignant brain tumor, and its treatment is exciting due to different genetic origins, improper transportation of drug across the blood-brain barrier, and chemo-resistance with various side effects. Currently, medulloblastoma divided into four significant subsections (Wnt, Shh, Group 3, and Group 4) is based on their hereditary modulation and histopathological advancement. In this chapter, we tried to combine several novel chemical therapeutic agents active toward medulloblastoma therapy. All these compounds have potent activity to inhibit the medulloblastoma.
Collapse
Affiliation(s)
- Anand Maurya
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Upendra Kumar Patel
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Jitendra Kumar Yadav
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Virender Pratap Singh
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Alka Agarwal
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
8
|
Fan J, Li H, Kuang L, Zhao Z, He W, Liu C, Wang Y, Cheng SY, Chen W. Identification of a potent antagonist of smoothened in hedgehog signaling. Cell Biosci 2021; 11:46. [PMID: 33653381 PMCID: PMC7923671 DOI: 10.1186/s13578-021-00558-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/16/2021] [Indexed: 12/31/2022] Open
Abstract
Background Hedgehog signaling is essential to the regulation of embryonic development, tissue homeostasis, and stem cell self-renewal, making it a prime target for developing cancer therapeutics. Given the close link between aberrant Hedgehog signaling and cancers, many small molecular compounds have been developed to inhibit Smoothened, a key signal transducer of this pathway, for treating cancer and several such compounds have been approved by the United States Food and Drug Administration (GDC-0449 and LDE-225). However, acquired drug resistance has emerged as an important obstacle to the effective use of these first generation Hedgehog pathway blockers. Thus, new Smoothened inhibitors that can overcome such resistance is an urgent need going forward. Results We established the Smoothened/βarrestin2-GFP high-throughput screening platform based on the mechanistic discovery of Hedgehog signaling pathway, and discovered several active small molecules targeting Smoothened including 0025A. Here we show that 0025A can block the translocation of βarrestin2-GFP to Smoothened, displace Bodipy-cyclopamine binding to wild-type Smoothened or mutant Smoothened-D473H, reduce the accumulation of Smo on primary cilia and the expression of Gli upon Hedgehog stimulation. In addition, we show that 0025A can effectively suppress hair follicle morphogenesis and hair growth in mice. Conclusions Our results demonstrate that 0025A is a potent antagonist targeting Smoothened wild-type and mutant receptors in the Hedgehog signaling pathway and may provide a new therapy for refractory cancers.
Collapse
Affiliation(s)
- Junwan Fan
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100070, China
| | - Haowen Li
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100070, China
| | - Lun Kuang
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Zichen Zhao
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100070, China
| | - Wenyan He
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100070, China
| | - Chen Liu
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Yongjun Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China. .,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100070, China.
| | - Steven Y Cheng
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210000, Jiangsu, China.
| | - Wei Chen
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China. .,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100070, China.
| |
Collapse
|
9
|
Medulloblastoma drugs in development: Current leads, trials and drawbacks. Eur J Med Chem 2021; 215:113268. [PMID: 33636537 DOI: 10.1016/j.ejmech.2021.113268] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/14/2022]
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children. Current treatment for MB includes surgical resection, radiotherapy and chemotherapy. Despite significant progress in its management, a portion of children relapse and tumor recurrence carries a poor prognosis. Based on their molecular and clinical characteristics, MB patients are clinically classified into four groups: Wnt, Hh, Group 3, and Group 4. With our increased understanding of relevant molecular pathways disrupted in MB, the development of targeted therapies for MB has also increased. Targeted drugs have shown unique privileges over traditional cytotoxic therapies in balancing efficacy and toxicity, with many of them approved and widely used clinically. The aim of this review is to present the recent progress on targeted chemotherapies for the treatment of all classes of MB.
Collapse
|
10
|
Iturrioz-Rodríguez N, Bertorelli R, Ciofani G. Lipid-Based Nanocarriers for The Treatment of Glioblastoma. ADVANCED NANOBIOMED RESEARCH 2021; 1:2000054. [PMID: 33623931 PMCID: PMC7116796 DOI: 10.1002/anbr.202000054] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and malignant neoplasia having origin in the brain. The current treatments involve surgery, radiotherapy, and chemotherapy, being complete surgical resection the best option for the patient survival chances. However, in those cases where a complete removal is not possible, radiation and chemotherapy are applied. Herein, the main challenges of chemotherapy, and how they can be overcome with the help of nanomedicine, are approached. Natural pathways to cross the blood-brain barrier (BBB) are detailed, and different in vivo studies where these pathways are mimicked functionalizing the nanomaterial surface are shown. Later, lipid-based nanocarriers, such as liposomes, solid lipid nanoparticles, and nanostructured lipid carriers, are presented. To finish, recent studies that have used lipid-based nanosystems carrying not only therapeutic agents, yet also magnetic nanoparticles, are described. Although the advantages of using these types of nanosystems are explained, including their biocompatibility, the possibility of modifying their surface to enhance the cell targeting, and their intrinsic ability of BBB crossing, it is important to mention that research in this field is still at its early stage, and extensive preclinical and clinical investigations are mandatory in the close future.
Collapse
Affiliation(s)
- Nerea Iturrioz-Rodríguez
- Smart Bio-Interfaces Istituto Italiano di Tecnologia Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| | - Rosalia Bertorelli
- Translational Pharmacology Istituto Italiano di Tecnologia Via Morego 30, Genova 16163, Italy
| | - Gianni Ciofani
- Smart Bio-Interfaces Istituto Italiano di Tecnologia Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| |
Collapse
|
11
|
Lospinoso Severini L, Ghirga F, Bufalieri F, Quaglio D, Infante P, Di Marcotullio L. The SHH/GLI signaling pathway: a therapeutic target for medulloblastoma. Expert Opin Ther Targets 2020; 24:1159-1181. [PMID: 32990091 DOI: 10.1080/14728222.2020.1823967] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Medulloblastoma (MB) is a heterogeneous tumor of the cerebellum that is divided into four main subgroups with distinct molecular and clinical features. Sonic Hedgehog MB (SHH-MB) is the most genetically understood and occurs predominantly in childhood. Current therapies consist of aggressive and non-targeted multimodal approaches that are often ineffective and cause long-term complications. These problems intensify the need to develop molecularly targeted therapies to improve outcome and reduce treatment-related morbidities. In this scenario, Hedgehog (HH) signaling, a developmental pathway whose deregulation is involved in the pathogenesis of several malignancies, has emerged as an attractive druggable pathway for SHH-MB therapy. AREAS COVERED This review provides an overview of the advancements in the HH antagonist research field. We place an emphasis on Smoothened (SMO) and glioma-associated oncogene homolog (GLI) inhibitors and immunotherapy approaches that are validated in preclinical SHH-MB models and that have therapeutic potential for MB patients. Literature from Pubmed and data reported on ClinicalTrial.gov up to August 2020 were considered. EXPERT OPINION Extensive-omics analysis has enhanced our knowledge and has transformed the way that MB is studied and managed. The clinical use of SMO antagonists has yet to be determined, however, future GLI inhibitors and multitargeting approaches are promising.
Collapse
Affiliation(s)
| | - Francesca Ghirga
- Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia , 00161, Rome, Italy
| | - Francesca Bufalieri
- Department of Molecular Medicine, University of Rome La Sapienza , 00161, Rome, Italy
| | - Deborah Quaglio
- Department of Chemistry and Technology of Drugs, University of Rome La Sapienza, 00185 , Rome, Italy
| | - Paola Infante
- Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia , 00161, Rome, Italy
| | - Lucia Di Marcotullio
- Department of Molecular Medicine, University of Rome La Sapienza , 00161, Rome, Italy.,Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome La Sapienza , 00161, Rome, Italy
| |
Collapse
|
12
|
Xie Z, Wang F, Lin L, Duan S, Liu X, Li X, Li T, Xue M, Cheng Y, Ren H, Zhu Y. An SGLT2 inhibitor modulates SHH expression by activating AMPK to inhibit the migration and induce the apoptosis of cervical carcinoma cells. Cancer Lett 2020; 495:200-210. [PMID: 32931885 DOI: 10.1016/j.canlet.2020.09.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/21/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023]
Abstract
In addition to their hypoglycemic effect, sodium-glucose cotransporter 2 (SGLT2) inhibitors have many other benefits. In the present study, we examine the anticancer effect of the SGLT2 inhibitor empagliflozin using cervical carcinoma models. In vivo antitumor activities of empagliflozin were observed in a nude mouse model. Empagliflozin intervention and downregulation of Sonic Hedgehog Signaling Molecule (Shh) inhibited the migration and promoted the apoptosis of cervical cancer cells in nude mice. Compared with the control group, the empagliflozin treatment group had an increased level of AMP-activated protein kinase (AMPK) and decreased levels of Forkhead Box A1 (FOXA1) and SHH in tumor tissue. In vitro experiments also showed that empagliflozin (50 μM) inhibited the migration of cervical cancer cells and induced their apoptosis by activating the AMPK/FOXA1 pathway and inhibiting the expression of SHH. Kaplan-Meier survival analysis was used to determine the relationship between SHH expression and total survival time. The results showed that in cervical cancer patients, high SHH expression resulted in unfavorable overall survival. The downregulation of SHH with small interfering RNA (siRNA) inhibited the migration and invasion and promoted the apoptosis of HeLa cells. These findings show that empagliflozin has a potential therapeutic effect on cervical cancer. This effect was related to the activation of the AMPK pathway and the inhibition of SHH expression.
Collapse
Affiliation(s)
- Zipeng Xie
- Basic Medical College of Tianjin Medical University, 300070, Tianjin, China.
| | - Fang Wang
- The Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Lingqiang Lin
- Basic Medical College of Tianjin Medical University, 300070, Tianjin, China
| | - Shaoxian Duan
- Basic Medical College of Tianjin Medical University, 300070, Tianjin, China
| | - Xiangyang Liu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, 300070, Tianjin, China
| | - Xiaoyu Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, 300070, Tianjin, China
| | - Ting Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, 300070, Tianjin, China
| | - Mei Xue
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, 300070, Tianjin, China
| | - Ying Cheng
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, 300070, Tianjin, China
| | - He Ren
- Department of Gastroenterology, Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, 266003, Qingdao, China.
| | - Yi Zhu
- Basic Medical College of Tianjin Medical University, 300070, Tianjin, China.
| |
Collapse
|
13
|
Abstract
INTRODUCTION Indolizines are structural isomers with indoles. Although several indole-based commercial drugs are available in the market, none of the indolizine-based drugs are available up-to-date. Natural and synthetic indolizines have a wide-range of pharmaceutical importance such as antitumor, antimycobacterial, antagonist, and antiproliferative activities. This prompted us to search and collect all possible data about the pharmacological importance of indolizine to open an avenue to the researchers in exploring more medicinal applications of such biologically important compounds. AREAS COVERED The current review article covers the advancements in the biological and pharmacological activities of indolizine-based compounds during the last decade. The covered areas of this work involved anticancer, anti-HIV-1, anti-inflammatory, antimicrobial, anti-tubercular, larvicidal, anti-schizophrenia, CRTh2 antagonist's activities in addition to enzymatic inhibitory activity. EXPERT OPINION The discovery of indolizine drugs will be a major breakthrough as compared with their widely available drug-containing indole isosteres. Major work collected here was focused on anticancer, anti-tubercular, anti-inflammatory, and enzymatic inhibitory activities. The SAR study of the reported biologically active indolizines is summarized throughout the review whenever highlighted to the rationale the behavior of inhibitory action. Several indolizines with certain functions provided great enhancement in the therapeutic activities comparing with reference drugs.
Collapse
Affiliation(s)
- Kamal M Dawood
- Department of Chemistry, Faculty of Science, Cairo University , Giza, Egypt
| | - Ashraf A Abbas
- Department of Chemistry, Faculty of Science, Cairo University , Giza, Egypt
| |
Collapse
|
14
|
Manetti F, Stecca B, Santini R, Maresca L, Giannini G, Taddei M, Petricci E. Pharmacophore-Based Virtual Screening for Identification of Negative Modulators of GLI1 as Potential Anticancer Agents. ACS Med Chem Lett 2020; 11:832-838. [PMID: 32435392 DOI: 10.1021/acsmedchemlett.9b00639] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 03/25/2020] [Indexed: 12/14/2022] Open
Abstract
Starting from known GLI1 inhibitors, a pharmacophore-based virtual screening approach was applied to databases of commercially available compounds with the aim of identifying new GLI1 modulators. As a result, three different chemical scaffolds emerged that were characterized by a significant ability to reduce the transcriptional activity of the endogenous Hedgehog-GLI pathway and GLI1 protein level in murine NIH3T3 cells. They also showed a micromolar antiproliferative activity in human melanoma (A375) and medulloblastoma (DAOY) cell lines, without cytotoxicity in non-neoplastic mammary epithelial cells.
Collapse
Affiliation(s)
- Fabrizio Manetti
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, via Aldo Moro 2, I-53100 Siena, Italy
- Lead Discovery Siena, via Fiorentina 1, I-53100 Siena, Italy
| | - Barbara Stecca
- Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Viale Pieraccini 6, I-50139 Firenze, Italy
| | - Roberta Santini
- Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Viale Pieraccini 6, I-50139 Firenze, Italy
| | - Luisa Maresca
- Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Viale Pieraccini 6, I-50139 Firenze, Italy
| | | | - Maurizio Taddei
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, via Aldo Moro 2, I-53100 Siena, Italy
- Lead Discovery Siena, via Fiorentina 1, I-53100 Siena, Italy
| | - Elena Petricci
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, via Aldo Moro 2, I-53100 Siena, Italy
| |
Collapse
|
15
|
|
16
|
Zhao S, Wang RB, Bai J, Fan X, Hu M, Wang B, Hu J, Li Y. Simultaneous determination of a promising anti-brain tumor agent CAT3 and its two major metabolites in mouse plasma and brain by a LC-MS/MS method. J Pharm Biomed Anal 2020; 181:113106. [PMID: 31962248 DOI: 10.1016/j.jpba.2020.113106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 10/25/2022]
Abstract
A rapid and reproducible method with high selectivity was developed for simultaneous determination of a promising anti-brain tumor agent CAT3 and its two metabolites PF403 and GLU-PF403 in mouse plasma and brain. An economic deproteinization with septuple acetonitrile (v/v) was applied to pretreat the samples in this study. All analytes were well retained and separated on a CAPCELL CORE PC (2.7 μm, 2.1 mm I.D. × 150 mm, SHISEIDO Technologies) column with an eluting solvent of acetonitrile /water containing 0.1 % formic acid (v/v) at the flow rate of 0.2 mL per minute. The detection was carried out on a Q Exactive high resolution mass spectrometer equipped with a HESI ion source in parallel reaction monitoring (PRM) mode. The corresponding transitions for quantitation were 434.23→ 70.07 for CAT3, 350.17→70.07 for PF403, 526.21→70.07 for GLU-PF403, 364.19→70.07 for IS-1 and 625.18→317.07 for IS-2, respectively. A well-linear fit curve was achieved among the range of 0.1∼50 ng/mL for CAT3, 0.2∼100 ng/mL for PF403 and 2.5∼600 ng/mL for GLU-PF403 both in mouse plasma and brain homogenate. The intra-/inter-day accuracies of three analytes were within ±14.5 % and precisions were below to 13.44 %. The mean values of recovery of three compounds in mouse plasma and brain homogenate were among 98.06 ∼ 118.63 % and 81.04∼108.69 %. The analytes in NaF-treated ice cold blood of mouse was stable within tested 30 min. Plasma and brain homogenate samples had no obvious changes during all storage, sample treatment and analytic process of mouse plasma sample. The reproducible and reliable method was well employed to the research of CAT3 pharmacokinetic characteristics in mouse plasma and brain after a single intragastric administration at dose of 10 mg/kg.
Collapse
Affiliation(s)
- Shengyu Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Ru-Bing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jie Bai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xiaoqing Fan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Minwan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Baolian Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jinping Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Yan Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
17
|
Wang H, Li L, Ye J, Wang R, Wang R, Hu J, Wang Y, Dong W, Xia X, Yang Y, Gao Y, Gao L, Liu Y. Improving the Oral Bioavailability of an Anti-Glioma Prodrug CAT3 Using Novel Solid Lipid Nanoparticles Containing Oleic Acid-CAT3 Conjugates. Pharmaceutics 2020; 12:E126. [PMID: 32028734 PMCID: PMC7076672 DOI: 10.3390/pharmaceutics12020126] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 11/23/2022] Open
Abstract
13a-(S)-3-pivaloyloxyl-6,7-dimethoxyphenanthro(9,10-b)-indolizidine (CAT3) is a novel oral anti-glioma pro-drug with a potent anti-tumor effect against temozolomide-resistant glioma in vivo. However, poor lipid solubility has limited the encapsulation efficacy during formulation development. Moreover, although the active metabolite of CAT3, 13a(S)-3-hydroxyl-6,7-dimethoxyphenanthro(9,10-b)-indolizidine (PF403), can penetrate the blood-brain barrier and approach the brain tissue with a 1000-fold higher anti-glioma activity than CAT3 in vitro, its bioavailability and Cmax were considerably low in plasma, limiting the anti-tumor efficacy. In this study, a novel oleic acid-CAT3 conjugate (OA-CAT3) was synthesized at the first time to increase the lipid solubility of CAT3. The OA-CAT3 loaded solid lipid nanoparticles (OA-CAT3-SLN) were constructed using an ultrasonic technique to enhance the bioavailability and Cmax of PF403 in plasma. Our results demonstrated that CAT3 was amorphous in the lipid core of OA-CAT3-SLN and the in vitro release was well controlled. Furthermore, the encapsulation efficacy and the zeta potential increased to 80.65 ± 6.79% and -26.7 ± 0.46 mV, respectively, compared to the normal CAT3 loaded SLN. As indicated by the high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS) quantitation, the monolayer cellular transepithelial transport rate of OA-CAT3-SLN improved by 2.42-fold relied on cholesterol compared to the CAT3 suspension. Hence, the in vitro cell viability of OA-CAT3-SLN in C6 glioma cells decreased to 29.77% ± 2.13% and 10.75% ± 3.12% at 48 and 72 h, respectively. Finally, compared to the CAT3 suspension, the in vivo pharmacokinetics in rats indicated that the plasma bioavailability and Cmax of PF403 as afforded by OA-CAT3-SLN increased by 1.7- and 5.5-fold, respectively. Overall, the results indicate that OA-CAT3-SLN could be an efficacious delivery system in the treatment of glioma.
Collapse
Affiliation(s)
- Hongliang Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.W.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lin Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.W.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.W.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Rubing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.W.)
| | - Renyun Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.W.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jinping Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.W.)
| | - Yanan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.W.)
| | - Wujun Dong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.W.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xuejun Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.W.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yanfang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.W.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yue Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.W.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lili Gao
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.W.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
18
|
Quevedo-Acosta Y, Jurberg ID, Gamba-Sánchez D. Activating Imides with Triflic Acid: A General Intramolecular Aldol Condensation Strategy Toward Indolizidine, Quinolizidine, and Valmerin Alkaloids. Org Lett 2020; 22:239-243. [PMID: 31845813 DOI: 10.1021/acs.orglett.9b04199] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A simple, inexpensive, step economic, and highly modular synthetic strategy to access izidine alkaloids is described. The key step is a TfOH-promoted intramolecular aldol condensation between enol and cyclic imide moieties. This cyclization strategy can be employed within an aza-Robinson annulation framework and represents a general tool to build fused bicyclic amines. To illustrate the power of this method, we describe the preparation of (±)-coniceine, (±)-quinolizidine, (±)-tashiromine, (±)-epilupinine, and the core of (±)-valmerins.
Collapse
Affiliation(s)
- Yovanny Quevedo-Acosta
- Institute of Chemistry , State University of Campinas , Rua Monteiro Lobato 270 , 13083-862 Campinas , São Paulo , Brazil
- Laboratory of Organic Synthesis, Bio and Organocatalysis, Chemistry Department , Universidad de los Andes , Cra 1 No. 18A-12 Q:305 , 111711 Bogotá , Colombia
| | - Igor D Jurberg
- Institute of Chemistry , State University of Campinas , Rua Monteiro Lobato 270 , 13083-862 Campinas , São Paulo , Brazil
| | - Diego Gamba-Sánchez
- Laboratory of Organic Synthesis, Bio and Organocatalysis, Chemistry Department , Universidad de los Andes , Cra 1 No. 18A-12 Q:305 , 111711 Bogotá , Colombia
| |
Collapse
|
19
|
Genomic testing, tumor microenvironment and targeted therapy of Hedgehog-related human cancers. Clin Sci (Lond) 2019; 133:953-970. [PMID: 31036756 DOI: 10.1042/cs20180845] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/24/2019] [Accepted: 04/11/2019] [Indexed: 12/12/2022]
Abstract
Hedgehog signals are transduced through Patched receptors to the Smoothened (SMO)-SUFU-GLI and SMO-Gi-RhoA signaling cascades. MTOR-S6K1 and MEK-ERK signals are also transduced to GLI activators through post-translational modifications. The GLI transcription network up-regulates target genes, such as BCL2, FOXA2, FOXE1, FOXF1, FOXL1, FOXM1, GLI1, HHIP, PTCH1 and WNT2B, in a cellular context-dependent manner. Aberrant Hedgehog signaling in tumor cells leads to self-renewal, survival, proliferation and invasion. Paracrine Hedgehog signaling in the tumor microenvironment (TME), which harbors cancer-associated fibroblasts, leads to angiogenesis, fibrosis, immune evasion and neuropathic pain. Hedgehog-related genetic alterations occur frequently in basal cell carcinoma (BCC) (85%) and Sonic Hedgehog (SHH)-subgroup medulloblastoma (87%) and less frequently in breast cancer, colorectal cancer, gastric cancer, pancreatic cancer, non-small-cell lung cancer (NSCLC) and ovarian cancer. Among investigational SMO inhibitors, vismodegib and sonidegib are approved for the treatment of patients with BCC, and glasdegib is approved for the treatment of patients with acute myeloid leukemia (AML). Resistance to SMO inhibitors is caused by acquired SMO mutations, SUFU deletions, GLI2 amplification, other by-passing mechanisms of GLI activation and WNT/β-catenin signaling activation. GLI-DNA-interaction inhibitors (glabrescione B and GANT61), GLI2 destabilizers (arsenic trioxide and pirfenidone) and a GLI-deacetylation inhibitor (4SC-202) were shown to block GLI-dependent transcription and tumorigenesis in preclinical studies. By contrast, SMO inhibitors can remodel the immunosuppressive TME that is dominated by M2-like tumor-associated macrophages (M2-TAMs), myeloid-derived suppressor cells and regulatory T cells, and thus, a Phase I/II clinical trial of the immune checkpoint inhibitor pembrolizumab with or without vismodegib in BCC patients is ongoing.
Collapse
|
20
|
Chen X, Yang F, Zhang T, Wang W, Xi W, Li Y, Zhang D, Huo Y, Zhang J, Yang A, Wang T. MiR-9 promotes tumorigenesis and angiogenesis and is activated by MYC and OCT4 in human glioma. J Exp Clin Cancer Res 2019; 38:99. [PMID: 30795814 PMCID: PMC6385476 DOI: 10.1186/s13046-019-1078-2] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 02/06/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Glioma, characterized by its undesirable prognosis and poor survival rate, is a serious threat to human health and lives. MicroRNA-9 (miR-9) is implicated in the regulation of multiple tumors, while the mechanisms underlying its aberrant expression and functional alterations in human glioma are still controversial. METHODS Expressions of miR-9 were measured in GEO database, patient specimens and glioma cell lines. Gain- and loss-of-function assays were applied to identify the effects of miR-9 on glioma cells and HUVECs in vitro and in vivo. Potential targets of miR-9 were predicted by bioinformatics and further verified via in vitro experiments. Transcriptional regulation of miR-9 by MYC and OCT4 was determined in glioma cells. RESULTS MiR-9 was frequently up-regulated in glioma specimens and cells, and could significantly enhance proliferation, migration and invasion of glioma cells. In addition, miR-9 could be secreted from glioma cells via exosomes and was then absorbed by vascular endothelial cells, leading to an increase in angiogenesis. COL18A1, THBS2, PTCH1 and PHD3 were verified as the direct targets of miR-9, which could elucidate the miR-9-induced malignant phenotypes in glioma cells. MYC and OCT4 were able to bind to the promoter region of miR-9 to trigger its transcription. CONCLUSIONS Our results highlight that miR-9 is pivotal for glioma pathogenesis and can be treated as a potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Xu Chen
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, #169 Changle West Road, Xi’an, Shaanxi 710032 People’s Republic of China
| | - Fan Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, #169 Changle West Road, Xi’an, Shaanxi 710032 People’s Republic of China
- Department of Neurosurgery, General Navy Hospital of PLA, Beijing, 100048 People’s Republic of China
| | - Tianze Zhang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, #169 Changle West Road, Xi’an, Shaanxi 710032 People’s Republic of China
| | - Wei Wang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, #169 Changle West Road, Xi’an, Shaanxi 710032 People’s Republic of China
| | - Wenjin Xi
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, #169 Changle West Road, Xi’an, Shaanxi 710032 People’s Republic of China
| | - Yufang Li
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, #169 Changle West Road, Xi’an, Shaanxi 710032 People’s Republic of China
- Nuclear Medicine Diagnostic Center, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi 710032 People’s Republic of China
| | - Dan Zhang
- First Student Brigade, Fourth Military Medical University, Xi’an, Shaanxi 710032 People’s Republic of China
| | - Yi Huo
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, #169 Changle West Road, Xi’an, Shaanxi 710032 People’s Republic of China
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, #169 Changle West Road, Xi’an, Shaanxi 710032 People’s Republic of China
| | - Jianning Zhang
- Department of Neurosurgery, General Navy Hospital of PLA, Beijing, 100048 People’s Republic of China
| | - Angang Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, #169 Changle West Road, Xi’an, Shaanxi 710032 People’s Republic of China
| | - Tao Wang
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, #169 Changle West Road, Xi’an, Shaanxi 710032 People’s Republic of China
| |
Collapse
|
21
|
Wang RB, Lv HN, Zhu SS, Ren XD, Xu S, Ma SG, Liu YB, Qu J, Yu SS. A novel and practical synthesis of CAT3: a phenanthroindolizidine alkaloid with potential in treating glioblastoma. RSC Adv 2018; 8:29301-29308. [PMID: 35547992 PMCID: PMC9084470 DOI: 10.1039/c8ra04511a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/13/2018] [Indexed: 01/24/2023] Open
Abstract
CAT3, one of the (+)-deoxytylophorinine-based phenanthroindolizidine alkaloids, is a promising therapeutic agent for the treatment of hedgehog (Hh)-driven glioblastoma and is currently being evaluated in preclinical studies. In this paper, a novel and practical synthetic route for CAT3 was firstly demonstrated with 10% overall yield in 11 steps and has been successfully validated for pilot-plant scale preparation. Investigation of the substitution at the 3-position of phenanthrene revealed that the electron-donating functionality can well preserve the S configuration. In particular, the excellent enantiomeric excess of CAT3 (≥99% ee) was achieved by introducing the strongly electron-donating tert-butyldimethylsilyl (TBS) group.
Collapse
Affiliation(s)
- Ru-Bing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China +86-10-63017757
| | - Hai-Ning Lv
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China +86-10-63017757
| | - Shan-Shan Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China +86-10-63017757
| | - Xiao-Dong Ren
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China +86-10-63017757
| | - Song Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China +86-10-63017757
| | - Shuang-Gang Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China +86-10-63017757
| | - Yun-Bao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China +86-10-63017757
| | - Jing Qu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China +86-10-63017757
| | - Shi-Shan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China +86-10-63017757
| |
Collapse
|
22
|
Ji M, Wang L, Chen J, Xue N, Wang C, Lai F, Wang R, Yu S, Jin J, Chen X. CAT 3, a prodrug of 13a(S)-3-hydroxyl-6,7-dimethoxyphenanthro[9,10-b]-indolizidine, circumvents temozolomide-resistant glioblastoma via the Hedgehog signaling pathway, independently of O 6-methylguanine DNA methyltransferase expression. Onco Targets Ther 2018; 11:3671-3684. [PMID: 29983575 PMCID: PMC6026589 DOI: 10.2147/ott.s163535] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Glioblastoma multiforme (GBM) is a malignant high-grade glioma with a poor clinical outcome. Temozolomide (TMZ) is the first-line GBM chemotherapy; however, patients commonly develop resistance to its effects. MATERIALS AND METHODS We investigated the antitumor activity of CAT3 in TMZ-resistant glioblastoma cell lines U251/TMZ and T98G. Orthotopic and subcutaneous mice tumor models were used to investigate the effects of various treatment regimes. RESULTS We found that PF403, the active metabolite of CAT3, inhibited proliferation of both cell lines. PF403 repressed the Hedgehog signaling pathway in the U251/TMZ cell line, reduced O6-methylguanine DNA methyltransferase (MGMT) expression, and abolished the effects of the Shh pathway. Moreover, PF403 blocked the Hedgehog signaling pathway in T98G MGMT-expressing cells and downregulated the expression of MGMT. CAT3 suppressed growth in the U251/TMZ orthotopic and T98G subcutaneous xenograft tumor models in vivo. We also demonstrated that inhibition of the Hedgehog pathway by PF403 counteracted TMZ resistance and enhanced the antitumor activity of TMZ in vitro and in vivo. CONCLUSION These results indicate that CAT3 is a potential therapeutic agent for TMZ-resistant GBM.
Collapse
Affiliation(s)
- Ming Ji
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China, ;
| | - Liyuan Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China, ;
| | - Ju Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China, ;
| | - Nina Xue
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China, ;
| | - Chunyang Wang
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China, ;
| | - Fangfang Lai
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China, ;
| | - Rubing Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China, ;
| | - Shishan Yu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China, ;
| | - Jing Jin
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China, ;
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China, ;
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China, ;
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China, ;
| |
Collapse
|
23
|
Lin S, Wang C, Ji M, Wu D, Lv Y, Zhang K, Dong Y, Jin J, Chen J, Zhang J, Sheng L, Li Y, Chen X, Xu H. Discovery and Optimization of 2-Amino-4-methylquinazoline Derivatives as Highly Potent Phosphatidylinositol 3-Kinase Inhibitors for Cancer Treatment. J Med Chem 2018; 61:6087-6109. [DOI: 10.1021/acs.jmedchem.8b00416] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Songwen Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chunyang Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ming Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Deyu Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yuanhao Lv
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Kehui Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yi Dong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jing Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiajing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jingbo Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Li Sheng
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yan Li
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Heng Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
24
|
Computational modeling in glioblastoma: from the prediction of blood-brain barrier permeability to the simulation of tumor behavior. Future Med Chem 2017; 10:121-131. [PMID: 29235374 DOI: 10.4155/fmc-2017-0128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The integrated in silico-in vitro-in vivo approaches have fostered the development of new treatment strategies for glioblastoma patients and improved diagnosis, establishing the bridge between biochemical research and clinical practice. These approaches have provided new insights on the identification of bioactive compounds and on the complex mechanisms underlying the interactions among glioblastoma cells, and the tumor microenvironment. This review focuses on the key advances pertaining to computational modeling in glioblastoma, including predictive data on drug permeability across the blood-brain barrier, tumor growth and treatment responses. Structure- and ligand-based methods have been widely adopted, enabling the study of dynamic and evolutionary aspects of glioblastoma. Their potential applications as predictive tools and the advantages over other well-known methodologies are outlined. Challenges regarding in silico approaches for predicting tumor properties are also discussed.
Collapse
|