1
|
Li Y, Peng S, Xu J, Liu W, Luo Q. Integrin signaling in tumor biology: mechanisms of intercellular crosstalk and emerging targeted therapies. PeerJ 2025; 13:e19328. [PMID: 40352270 PMCID: PMC12065456 DOI: 10.7717/peerj.19328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/25/2025] [Indexed: 05/14/2025] Open
Abstract
Integrins, a family of transmembrane cell adhesion receptors, mediate intercellular and cell-extracellular matrix crosstalk via outside-in and inside-out signaling pathways. Integrins, categorized into 24 distinct combinations of α and β subunits, exhibit tissue-specific expression and perform unique or overlapping roles in physiological and pathophysiological processes. These roles encompass embryonic angiogenesis, tissue repair, and the modulation of tumor cell angiogenesis, progression, invasion, and metastasis. Notably, integrins are significant contributors to tumor development, offering valuable insights into the potential of integrin-targeted diagnostics and therapeutics. Currently, there are various preclinical and clinical trials aiming to harness integrin antagonists that are safe, efficacious, and exhibit low toxicity. Owing to the functional redundancy across integrin types and the complexity of the mechanisms of integrin-mediated multiple key processes associated with tumor biology, challenges exist that impede advancements in integrin-targeted therapy. Nevertheless, innovative strategies focused on integrin modulation represent significant breakthroughs for improving patient care and promoting comprehensive insights into the underlying mechanisms of tumor biology. This review elucidates the impact of integrins on three distinct cell types in multiple key processes associated with tumor biology and explores the emerging integrin-targeted therapeutic approaches for the treatment of tumors, which will provide ideas for optimal therapeutic approaches in the future.
Collapse
Affiliation(s)
- Yifan Li
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Shantong Peng
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jiatong Xu
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Wenjie Liu
- The First Clinical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qi Luo
- College of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Varvarousis DN, Marini AA, Ntritsos G, Barbouti A, Kitsoulis PV, Kanavaros PE. Relationship of lymphatic vessel invasion and density with clinicopathological parameters and survival in patients with gastric carcinoma: A systematic review and meta-analysis. Pathol Res Pract 2025; 269:155877. [PMID: 40024076 DOI: 10.1016/j.prp.2025.155877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/16/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
The purpose of this study was to conduct a comprehensive review and meta-analysis to investigate the possible relationship of lymphatic vessel invasion (LVI) and lymphatic vessel density (LVD), evaluated using immunohistochemistry, with survival and clinicopathological parameters in patients with gastric carcinoma. The principal result of this meta-analysis was the statistically significant correlation between LVI and presence of lymph node metastasis. This finding, in view of previous data showing that lymph node metastasis is associated with decreased survival, suggests that LVI may be a negative prognostic factor in gastric carcinoma. In contrast, LVD, whether assessed overall, intratumorally, or peritumorally, showed no statistically significant correlation with survival. The major conclusion of this meta-analysis is that LVI is an important indicator of aggressiveness of gastric carcinomas and may be a negative prognostic factor because of the strong association between LVI and presence of lymph node metastasis.
Collapse
Affiliation(s)
| | - Aikaterini A Marini
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Ioannina, Greece
| | - Georgios Ntritsos
- Department of Economics, University of Ioannina, University Campus, Ioannina, Greece; Department of Informatics and Telecommunications, School of Informatics & Telecommunications, University of Ioannina, Arta, Greece
| | - Alexandra Barbouti
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Ioannina, Greece
| | - Panagiotis V Kitsoulis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Ioannina, Greece
| | - Panagiotis E Kanavaros
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Ioannina, Greece
| |
Collapse
|
3
|
Liu S, Liu C, He Y, Li J. Benign non-immune cells in tumor microenvironment. Front Immunol 2025; 16:1561577. [PMID: 40248695 PMCID: PMC12003390 DOI: 10.3389/fimmu.2025.1561577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/24/2025] [Indexed: 04/19/2025] Open
Abstract
The tumor microenvironment (TME) is a highly complex and continuous evolving ecosystem, consisting of a diverse array of cellular and non-cellular components. Among these, benign non-immune cells, including cancer-associated fibroblasts (CAFs), adipocytes, endothelial cells (ECs), pericytes (PCs), Schwann cells (SCs) and others, are crucial factors for tumor development. Benign non-immune cells within the TME interact with both tumor cells and immune cells. These interactions contribute to tumor progression through both direct contact and indirect communication. Numerous studies have highlighted the role that benign non-immune cells exert on tumor progression and potential tumor-promoting mechanisms via multiple signaling pathways and factors. However, these benign non-immune cells may play different roles across cancer types. Therefore, it is important to understand the potential roles of benign non-immune cells within the TME based on tumor heterogeneity. A deep understanding allows us to develop novel cancer therapies by targeting these cells. In this review, we will introduce several types of benign non-immune cells that exert on different cancer types according to tumor heterogeneity and their roles in the TME.
Collapse
Affiliation(s)
- Shaowen Liu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chunhui Liu
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, China
| | - Yuan He
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jun Li
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, China
- Department of Molecular Pathology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
4
|
Wu S, Nasser B Singab A, Lin G, Wang Y, Zhu H, Yang G, Chen J, Li J, Li P, Zhao D, Tian J, Ye L. The regulatory role of integrin in gastric cancer tumor microenvironment and drug resistance. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:130-136. [PMID: 39798809 DOI: 10.1016/j.pbiomolbio.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/18/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
Gastric cancer (GC) remains a significant global health burden due to its high aggressiveness, early metastasis, and poor prognosis. Despite advances in chemotherapy and targeted therapies, drug resistance remains a major obstacle to improving patient outcomes. Integrins, a family of transmembrane receptors, play a pivotal role in mediating tumor growth, invasion, and drug resistance by interacting with the tumor microenvironment (TME) and regulating signaling pathways such as Wnt/β-catenin, FAK, and MAPK. This review highlights the critical functions of various integrin subunits (e.g., α5, αv, β1, β3, β6) in promoting GC progression and their involvement in chemoresistance mechanisms. Additionally, integrins modulate immune cell infiltration and stromal cell interactions within the TME, further complicating GC treatment. Emerging evidence suggests that targeting integrins, either through inhibitors or integrin-specific therapeutic strategies, holds potential in overcoming drug resistance and improving clinical outcomes. This review underscores the need for further exploration of integrins as therapeutic targets in GC and suggests promising avenues for integrin-based therapies in personalized medicine.
Collapse
Affiliation(s)
- Songlin Wu
- Second Hospital of Shandong University, Jinan, Shandong, China
| | - Abdel Nasser B Singab
- Department of Pharmacognosy, Ain-Shams University, Cairo, Egypt; Centre of Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt
| | - Guimei Lin
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; National Medical Products Administration Key Laboratory for Technology Research and Evaluation of Drug Products, Shandong University, Jinan, Shandong, China
| | - Yulu Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Huaibo Zhu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Guang Yang
- Second Hospital of Shandong University, Jinan, Shandong, China
| | - Jiaqi Chen
- Second Hospital of Shandong University, Jinan, Shandong, China
| | - Jiaxuan Li
- Second Hospital of Shandong University, Jinan, Shandong, China
| | - Peiyao Li
- Second Hospital of Shandong University, Jinan, Shandong, China
| | - Di Zhao
- Second Hospital of Shandong University, Jinan, Shandong, China
| | - Jing Tian
- Second Hospital of Shandong University, Jinan, Shandong, China
| | - Lan Ye
- Center for Cancer Prevention and Treatment, Second Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
5
|
Zhang L, Gu S, Wang L, Zhao L, Li T, Zhao X, Zhang L. M2 macrophages promote PD-L1 expression in triple-negative breast cancer via secreting CXCL1. Pathol Res Pract 2024; 260:155458. [PMID: 39003998 DOI: 10.1016/j.prp.2024.155458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/26/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND M2 macrophages are known to play a significant role in the progression of triple-negative breast cancer (TNBC) by creating an immunosuppressive microenvironment. The aim of this study is to investigate the impact of M2 macrophages on TNBC and their correlation with programmed death-ligand 1 (PD-L1) expression. METHODS We employed a co-culture system to analyze the role of the mutual regulation of M2 macrophages and TNBC cells. Employing a multifaceted approach, including bioinformatics analysis, Western blotting, flow cytometry analysis, ELISA, qRT-PCR, lentivirus infection, mouse models, and IHC, we aimed to elucidate the influence and mechanism of M2 macrophages on PD-L1 expression. RESULTS The results showed a substantial infiltration of M2 macrophages in TNBC tissue, which demonstrated a positive correlation with PD-L1 expression. CXCL1 exhibited abnormally high expression in M2 macrophages and enhanced the expression of PD-L1 in TNBC cells. Notably, silencing CXCL1 or its receptor CXCR2 inhibited M2 macrophages-induced expression of PD-L1. Mechanistically, CXCL1 derived from M2 macrophages binding to CXCR2 activated the PI3K/AKT/NF-κB signaling pathway, resulting in increased PD-L1 expression in TNBC. CONCLUSION Broadly speaking, these results provide evidence for the immunosuppressive role of M2 macrophages and CXCL1 in TNBC cells, indicating their potential as therapeutic biomarkers.
Collapse
Affiliation(s)
- Lifen Zhang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Shanzhi Gu
- Department of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Lu Wang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Lin Zhao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Xinhan Zhao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Lingxiao Zhang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
6
|
Liu AB, Liu J, Wang S, Ma L, Zhang JF. Biological role and expression of translationally controlled tumor protein (TCTP) in tumorigenesis and development and its potential for targeted tumor therapy. Cancer Cell Int 2024; 24:198. [PMID: 38835077 DOI: 10.1186/s12935-024-03355-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
Translationally controlled tumor protein (TCTP), also known as histamine-releasing factor (HRF) or fortilin, is a highly conserved protein found in various species. To date, multiple studies have demonstrated the crucial role of TCTP in a wide range of cellular pathophysiological processes, including cell proliferation and survival, cell cycle regulation, cell death, as well as cell migration and movement, all of which are major pathogenic mechanisms of tumorigenesis and development. This review aims to provide an in-depth analysis of the functional role of TCTP in tumor initiation and progression, with a particular focus on cell proliferation, cell death, and cell migration. It will highlight the expression and pathological implications of TCTP in various tumor types, summarizing the current prevailing therapeutic strategies that target TCTP.
Collapse
Affiliation(s)
- An-Bu Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
| | - Jia Liu
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
| | - Sheng Wang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750000, Ningxia, China
| | - Lei Ma
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China.
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China.
| |
Collapse
|
7
|
Fan C, Xiong F, Zhang S, Gong Z, Liao Q, Li G, Guo C, Xiong W, Huang H, Zeng Z. Role of adhesion molecules in cancer and targeted therapy. SCIENCE CHINA. LIFE SCIENCES 2024; 67:940-957. [PMID: 38212458 DOI: 10.1007/s11427-023-2417-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/17/2023] [Indexed: 01/13/2024]
Abstract
Adhesion molecules mediate cell-to-cell and cell-to-extracellular matrix interactions and transmit mechanical and chemical signals among them. Various mechanisms deregulate adhesion molecules in cancer, enabling tumor cells to proliferate without restraint, invade through tissue boundaries, escape from immune surveillance, and survive in the tumor microenvironment. Recent studies have revealed that adhesion molecules also drive angiogenesis, reshape metabolism, and are involved in stem cell self-renewal. In this review, we summarize the functions and mechanisms of adhesion molecules in cancer and the tumor microenvironment, as well as the therapeutic strategies targeting adhesion molecules. These studies have implications for furthering our understanding of adhesion molecules in cancer and providing a paradigm for exploring novel therapeutic approaches.
Collapse
Affiliation(s)
- Chunmei Fan
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Fang Xiong
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - He Huang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, 410013, China.
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China.
| |
Collapse
|
8
|
Xie J, Xing S, Jiang H, Zhang J, Li D, Niu S, Huang Z, Yin H. Extracellular vesicles-derived CXCL4 is a candidate serum tumor biomarker for colorectal cancer. iScience 2024; 27:109612. [PMID: 38632995 PMCID: PMC11022053 DOI: 10.1016/j.isci.2024.109612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/16/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
Extracellular vesicles (EVs) were promising circulating biomarkers for multiple diseases, but whether serum EVs-derived proteins could be used as a reliable tumor biomarker for colorectal cancer (CRC) remained inconclusive. In this study, we identified CXCL4 by a 4D data-independent acquisition-based quantitative proteomics assay of serum EVs-derived proteins in 40 individuals and subsequently analyzed serum EVs-derived CXCL4 levels by ELISA in 2 cohorts of 749 individuals. The results revealed that EVs-derived CXCL4 levels were dramatically elevated in CRC patients than in benign colorectal polyp patients or healthy controls (HC). Furthermore, receiver operating characteristic curves revealed that EVs-derived CXCL4 exhibited superior diagnostic performance with area under the curve of 0.948 in the training cohort. Additionally, CXCL4 could effectively distinguish CRC in stage I/II from HC. Notably, CRC patients with high levels of EVs-derived CXCL4 have shorter 2-year progression-free survival than those with low levels. Overall, our findings demonstrated that serum EVs-derived CXCL4 was a candidate diagnostic and prognostic biomarker for CRC.
Collapse
Affiliation(s)
- Jinye Xie
- Department of Laboratory Medicine, Zhongshan City People’s Hospital, Zhongshan, Guangdong, China
| | - Shan Xing
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hongbo Jiang
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jiaju Zhang
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Daxiao Li
- Department of Ophtalmology and ENT, Shenzhen Longgang District Second People’s Hospital, Shenzhen, Guangdong, China
| | - Shiqiong Niu
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhijian Huang
- Department of Pathology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Haofan Yin
- Department of Laboratory Medicine, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
9
|
Ullah A, Zhao J, Li J, Singla RK, Shen B. Involvement of CXC chemokines (CXCL1-CXCL17) in gastric cancer: Prognosis and therapeutic molecules. Life Sci 2024; 336:122277. [PMID: 37995936 DOI: 10.1016/j.lfs.2023.122277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Gastric cancer (GC) is the fifth-most prevalent and second-most deadly cancer worldwide. Due to the late onset of symptoms, GC is frequently treated at a mature stage. In order to improve the diagnostic and clinical decision-making processes, it is necessary to establish more specific and sensitive indicators valuable in the early detection of the disease whenever a cancer is asymptomatic. In this work, we gathered information about CXC chemokines and GC by using scientific search engines including Google Scholar, PubMed, SciFinder, and Web of Science. Researchers believe that GC chemokines, small proteins, class CXC chemokines, and chemokine receptors promote GC inflammation, initiation, and progression by facilitating angiogenesis, tumor transformation, invasion, survival, metastatic spread, host response safeguards, and inter-cell interaction. With our absolute best professionalism, the role of CXC chemokines and their respective receptors in GC diagnosis and prognosis has not been fully explained. This review article updates the general characteristics of CXC chemokines, their unique receptors, their function in the pathological process of GC, and their potential application as possible indicators for GC. Although there have only recently been a few studies focusing on the therapeutic efficacy of CXC chemokine inhibitors in GC, growing experimental evidence points to the inhibition of CXC chemokines as a promising targeted therapy. Therefore, further translational studies are warranted to determine whether specific antagonists or antibodies designed to target CXC chemokines alone or in combination with chemotherapy are useful for diagnosing advanced GC.
Collapse
Affiliation(s)
- Amin Ullah
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Zhao
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiakun Li
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rajeev K Singla
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bairong Shen
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
10
|
Wei C, Ma Y, Wang F, Chen Y, Liao Y, Zhao B, Zhao Q, Tang D. Machine learning and single-cell sequencing reveal the potential regulatory factors of mitochondrial autophagy in the progression of gastric cancer. J Cancer Res Clin Oncol 2023; 149:15561-15572. [PMID: 37648811 DOI: 10.1007/s00432-023-05287-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/12/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND As an important regulatory mechanism to remove damaged mitochondria and maintain the balance between internal and external cells, mitochondrial autophagy plays a key role in the progression and treatment of cancer Onishi (EMBO J 40(3): e104705, 2021). The purpose of this study is to comprehensively analyze the role of mitochondrial autophagy-related genes in the progression of gastric cancer (GC) by RNA sequencing (RNA-seq) and single-cell RNA sequencing (scRNA-seq). METHODS GSE26942, GSE54129,GSE66229,GSE183904 and other data sets were obtained by GEO databases. Using support vector machine recursive feature elimination (SVM-RVF) algorithm and random forest algorithm, the mitochondrial autophagy-related genes related to gastric cancer were obtained, respectively. After that, the model was constructed and the inflammatory factors, immune score and immune cell infiltration were analyzed. Furthermore, according to the scRNA-seq data of 28,836 cells from 13 GC samples, 18 cell clusters and 7 cell types were identified by scRNA-seq analysis. The expression level and signal pathway of related genes were verified by cell communication analysis. Finally, the regulatory network of cells was analyzed by SCENIC. RESULTS MAP1LC3B, PGAW5, PINK1, TOMM40 and UBC are identified as key genes through machine learning algorithms. CXCL12-CXCR4, LGALS9-CD44, LGALS9-CD45 and MIF (CD74 + CD44) pathways may play an important role in endothelial cells with high score scores of T cells and monocytes in tumor environment. CEBPB, ETS1, GATA2, MATB, SPl1 and XBP1 were identified as candidate TF with specific regulatory expression in the GC cell cluster. CONCLUSION The results of this study will provide implications for the study of the mechanism, diagnosis and treatment of mitochondrial autophagy in GC.
Collapse
Affiliation(s)
- Chen Wei
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Yichao Ma
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Fei Wang
- Clinical Medical College, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yuji Chen
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Yiqun Liao
- Clinical Medical College, Dalian Medical University, Dalian, Liaoning Province, China
| | - Bin Zhao
- Clinical Medical College, Dalian Medical University, Dalian, Liaoning Province, China
| | - Qi Zhao
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, 225001, China.
| |
Collapse
|
11
|
He X, Wang L, Li H, Liu Y, Tong C, Xie C, Yan X, Luo D, Xiong X. CSF2 upregulates CXCL3 expression in adipocytes to promote metastasis of breast cancer via the FAK signaling pathway. J Mol Cell Biol 2023; 15:mjad025. [PMID: 37073091 PMCID: PMC10686244 DOI: 10.1093/jmcb/mjad025] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/20/2023] Open
Abstract
Recent studies have demonstrated that cancer-associated adipocytes (CAAs) in the tumor microenvironment are involved in the malignant progression of breast cancer. However, the underlying mechanism of CAA formation and its effects on the development of breast cancer are still unknown. Here, we show that CSF2 is highly expressed in both CAAs and breast cancer cells. CSF2 promotes inflammatory phenotypic changes of adipocytes through the Stat3 signaling pathway, leading to the secretion of multiple cytokines and proteases, particularly C-X-C motif chemokine ligand 3 (CXCL3). Adipocyte-derived CXCL3 binds to its specific receptor CXCR2 on breast cancer cells and activates the FAK pathway, enhancing the mesenchymal phenotype, migration, and invasion of breast cancer cells. In addition, a combination treatment targeting CSF2 and CXCR2 shows a synergistic inhibitory effect on adipocyte-induced lung metastasis of mouse 4T1 cells in vivo. These findings elucidate a novel mechanism of breast cancer metastasis and provide a potential therapeutic strategy for breast cancer metastasis.
Collapse
Affiliation(s)
- Xi He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Lieliang Wang
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang 330029, China
| | - Honghui Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Yaru Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Chang Tong
- Pediatric Medical School, Nanchang University, Nanchang 330031, China
| | - Caifeng Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Xiaohua Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Daya Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
- Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang 330006, China
| |
Collapse
|
12
|
Korbecki J, Bosiacki M, Barczak K, Łagocka R, Chlubek D, Baranowska-Bosiacka I. The Clinical Significance and Role of CXCL1 Chemokine in Gastrointestinal Cancers. Cells 2023; 12:1406. [PMID: 37408240 DOI: 10.3390/cells12101406] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 07/07/2023] Open
Abstract
One area of cancer research is the interaction between cancer cells and immune cells, in which chemokines play a vital role. Despite this, a comprehensive summary of the involvement of C-X-C motif ligand 1 (CXCL1) chemokine (also known as growth-regulated gene-α (GRO-α), melanoma growth-stimulatory activity (MGSA)) in cancer processes is lacking. To address this gap, this review provides a detailed analysis of CXCL1's role in gastrointestinal cancers, including head and neck cancer, esophageal cancer, gastric cancer, liver cancer (hepatocellular carcinoma (HCC)), cholangiocarcinoma, pancreatic cancer (pancreatic ductal adenocarcinoma), and colorectal cancer (colon cancer and rectal cancer). This paper presents the impact of CXCL1 on various molecular cancer processes, such as cancer cell proliferation, migration, and invasion, lymph node metastasis, angiogenesis, recruitment to the tumor microenvironment, and its effect on immune system cells, such as tumor-associated neutrophils (TAN), regulatory T (Treg) cells, myeloid-derived suppressor cells (MDSCs), and macrophages. Furthermore, this review discusses the association of CXCL1 with clinical aspects of gastrointestinal cancers, including its correlation with tumor size, cancer grade, tumor-node-metastasis (TNM) stage, and patient prognosis. This paper concludes by exploring CXCL1's potential as a therapeutic target in anticancer therapy.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Functional Diagnostics and Physical Medicine, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska 54 Str., 71-210 Szczecin, Poland
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Ryta Łagocka
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
13
|
Li S, Zou D, Liu Z. Comprehensive bioinformatic analysis constructs a CXCL model for predicting survival and immunotherapy effectiveness in ovarian cancer. Front Pharmacol 2023; 14:1127557. [PMID: 36969851 PMCID: PMC10034089 DOI: 10.3389/fphar.2023.1127557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Background: Immunotherapy has limited effectiveness in ovarian cancer (OC) patients, highlighting the need for reliable biomarkers to predict the effectiveness of these treatments. The C-X-C motif chemokine ligands (CXCLs) have been shown to be associated with survival outcomes and immunotherapy efficacy in cancer patients. In this study, we aimed to evaluate the predictive value of 16 CXCLs in OC patients.Methods: We analyzed RNA-seq data from The Cancer Genome Atlas, Gene Expression Omnibus, and UCSC Xena database and conducted survival analysis. Consensus cluster analysis was used to group patients into distinct clusters based on their expression patterns. Biological pathway alterations and immune infiltration patterns were examined across these clusters using gene set variation analysis and single-sample gene set enrichment analysis. We also developed a CXCL scoring model using principal component analysis and evaluated its effectiveness in predicting immunotherapy response by assessing tumor microenvironment cell infiltration, tumor mutational burden estimation, PD-L1/CTLA4 expression, and immunophenoscore analysis (IPS).Results: Most CXCL family genes were overexpressed in OC tissues compared to normal ovarian tissues. Patients were grouped into three distinct CXCL clusters based on their CXCL expression pattern. Additionally, using differentially expressed genes among the CXCL clusters, patients could also be grouped into three gene clusters. The CXCL and gene subtypes effectively predicted survival and immune cell infiltration levels for OC patients. Furthermore, patients with high CXCL scores had significantly better survival outcomes, higher levels of immune cell infiltration, higher IPS, and higher expression of PD-L1/CTLA4 than those with low CXCL scores.Conclusion: The CXCL score has the potential to be a promising biomarker to guide immunotherapy in individual OC patients and predict their clinical outcomes and immunotherapy responses.
Collapse
Affiliation(s)
- Shuang Li
- Hunan Key Laboratory of Pharmacogenetics, Department of Clinical Pharmacology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Dawei Zou
- Department of Surgery, Immunobiology and Transplant Science Center, Houston Methodist Research Institute and Institute for Academic Medicine, Houston Methodist Hospital, Houston, TX, United States
- *Correspondence: Zhaoqian Liu, ; Dawei Zou,
| | - Zhaoqian Liu
- Hunan Key Laboratory of Pharmacogenetics, Department of Clinical Pharmacology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacology, Central South University, Changsha, China
- *Correspondence: Zhaoqian Liu, ; Dawei Zou,
| |
Collapse
|
14
|
Luo L, Tang X, Liu L, Tang G, Chen L, Chang G, Xiao Z. ZCCHC4 Promotes Osteosarcoma Progression by Upregulating ITGB1. Crit Rev Eukaryot Gene Expr 2023; 33:31-39. [PMID: 37606162 DOI: 10.1615/critreveukaryotgeneexpr.2023047798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Zinc finger CCHC-type containing 4 (ZCCHC4), RNA binding protein, has been reported to mediate rRNA methylation and affect tumor cell proliferation. However, the role of ZCCHC4 in the regulation of osteosarcoma (OS) remains unknown. ZCCHC4 was highly expressed in OS tissues and cell lines. Overexpression or silencing of ZCCHC4 promoted or inhibited cell proliferation, epithelial-mesenchymal transition (EMT), and motility. Additionally, we proved that ZCCHC4 facilitates OS progression through upregulating integrin β1 (ITGB1). In the animal model, ZCCHC4 knockdown reduced OS tumor growth and metastases in vivo. Our findings showed that ZCCHC4 promoted the progression of OS through upregulating ITGB1 and suggested that inhibition of ZCCHC4 could be a novel therapeutic strategy for OS.
Collapse
Affiliation(s)
- Lingli Luo
- Medical College, Hunan Polytechnic of Environment and Biology, Hengyang 421005, Hunan Province, China
| | - Xiaojun Tang
- Department of Spine Surgery, the Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Linghua Liu
- Department of Nursing, Hubei College of Chinese Medicine, Jingzhou, Hubei 434020, P.R. China
| | - Guojun Tang
- Department of Spine Surgery, the Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Liangyuan Chen
- Department of Spine Surgery, the Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Guiping Chang
- Department of Pediatric, Jingzhou Women and Children's Hospital, Jingzhou, Hubei 434020, P.R. China
| | - Zhihong Xiao
- Department of Spine Surgery, the Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
15
|
Wu T, Yang W, Sun A, Wei Z, Lin Q. The Role of CXC Chemokines in Cancer Progression. Cancers (Basel) 2022; 15:cancers15010167. [PMID: 36612163 PMCID: PMC9818145 DOI: 10.3390/cancers15010167] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
CXC chemokines are small chemotactic and secreted cytokines. Studies have shown that CXC chemokines are dysregulated in multiple types of cancer and are closely correlated with tumor progression. The CXC chemokine family has a dual function in tumor development, either tumor-promoting or tumor-suppressive depending on the context of cellular signaling. Recent evidence highlights the pro-tumorigenic properties of CXC chemokines in most human cancers. CXC chemokines were found to play pivotal roles in promoting angiogenesis, stimulating inflammatory responses, and facilitating tumor metastases. Enhanced expression of CXC chemokines is always signatured with inferior survival and prognosis. The levels of CXC chemokines in cancer patients are in dynamic change according to the tumor contexts (e.g., chemotherapy resistance and tumor recurrence after surgery). Thus, CXC chemokines have great potential to be used as diagnostic and prognostic biomarkers and therapeutic targets. Currently, the molecular mechanisms underlying the effect of CXC chemokines on tumor inflammation and metastasis remain unclear and application of antagonists and neutralizing antibodies of CXC chemokines signaling for cancer therapy is still not fully established. This article will review the roles of CXC chemokines in promoting tumorigenesis and progression and address the future research directions of CXC chemokines for cancer treatment.
Collapse
|
16
|
Huang Y, Zou Y, Tian Y, Yang Z, Hou Z, Li P, Liu F, Ling J, Wen Y. N6-methylandenosine-related immune genes correlate with prognosis and immune landscapes in gastric cancer. Front Oncol 2022; 12:1009881. [PMID: 36523987 PMCID: PMC9745091 DOI: 10.3389/fonc.2022.1009881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/16/2022] [Indexed: 11/10/2023] Open
Abstract
OBJECTIVES This study aimed to probe into the significance of N6-methyladenosine (m6A)-related immune genes (m6AIGs) in predicting prognoses and immune landscapes of patients with gastric cancer (GC). METHODS The clinical data and transcriptomic matrix of GC patients were acquired from The Cancer Genome Atlas database. The clinically meaningful m6AIGs were acquired by univariate Cox regression analysis. GC patients were stratified into different clusters via consensus clustering analysis and different risk subgroups via m6AIGs prognostic signature. The clinicopathological features and tumor microenvironment (TME) in the different clusters and different risk subgroups were explored. The predictive performance was evaluated using the KM method, ROC curves, and univariate and multivariate regression analyses. Moreover, we fabricated a nomogram based on risk scores and clinical risk characteristics. Biological functional analysis was performed based on Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways. The connectivity map was used to screen out potential small molecule drugs for GC patients. RESULTS A total of 14 prognostic m6AIGs and two clusters based on 14 prognostic m6AIGs were identified. A prognostic signature based on 4 m6AIGs and a nomogram based on independent prognostic factors was constructed and validated. Different clusters and different risk subgroups were significantly correlated with TME scores, the distribution of immune cells, and the expression of immune checkpoint genes. Some malignant and immune biological processes and pathways were correlated with the patients with poor prognosis. Ten small molecular drugs with potential therapeutic effect were screened out. CONCLUSIONS This study revealed the prognostic role and significant values of m6AIGs in GC, which enhanced the understanding of m6AIGs and paved the way for developing predictive biomarkers and therapeutic targets for GC.
Collapse
Affiliation(s)
- Yuancheng Huang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yushan Zou
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yanhua Tian
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zehong Yang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhengkun Hou
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Peiwu Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Fengbin Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Gastroenterology, Baiyun Branch of the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiasheng Ling
- Department of Gastroenterology, Huizhou Hospital of Traditional Chinese Medicine, Huizhou, Guangdong, China
| | - Yi Wen
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
Motyka J, Gacuta E, Kicman A, Kulesza M, Ławicki P, Ławicki S. Plasma Levels of CXC Motif Chemokine 1 (CXCL1) and Chemokine 8 (CXCL8) as Diagnostic Biomarkers in Luminal A and B Breast Cancer. J Clin Med 2022; 11:jcm11226694. [PMID: 36431173 PMCID: PMC9693547 DOI: 10.3390/jcm11226694] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/07/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Chemokines are involved in the regulation of immune balance and in triggering an immune response. CXCL1 and CXCL8 belong to the ELR-motif-containing group of CXC chemokines, which, in breast cancer (BC), stimulate angiogenesis and increase migration and invasiveness of tumor cells. The aim of this study was to evaluate CXCL1, CXCL8 and comparative marker CA 15-3 plasma concentrations in BC patients with luminal subtypes A and B. The study group consisted of 100 patients with BC, and the control group of 50 subjects with benign breast lesions and 50 healthy women. Chemokines concentrations were determined by ELISA method; CA15-3-by CMIA. Concentrations of CXCL8 and CA15-3 were significantly higher in BC total group and luminal B (for CA15-3 also in luminal A) subtype of BC than in healthy controls and subjects with benign lesions. In the total BC group, the highest SE, PPV and NPV were observed for CXCL8 (70%, 77.78%, 50%, resp.). A combined analysis of tested chemokines with CA 15-3 increased SE and NPV values (96%, 69.23%, resp.). The diagnostic power of the test (measured by area under ROC curve (AUC)) showed the highest value for CXCL8 in the total BC group (0.6410), luminal A (0.6120) and B subgroup of BC (0.6700). For the combined parameter, the AUC was increasing and reached the highest value for CXCL1 + CXCL8 + CA15-3 combination (0.7024). In light of these results, we suggest that CXCL8 could be used as an additional diagnostic marker that would positively influence the diagnostic utility of CA 15-3, especially in luminal B subtype of BC.
Collapse
Affiliation(s)
- Joanna Motyka
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland
- Correspondence:
| | - Ewa Gacuta
- Department of Gynecology and Gynecological Oncology, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Aleksandra Kicman
- Department of Aesthetic Medicine, Medical University of Bialystok, 15-267 Bialystok, Poland
| | - Monika Kulesza
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Paweł Ławicki
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Sławomir Ławicki
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
18
|
Gao J, Ma Y, Yang G, Li G. Translationally controlled tumor protein: the mediator promoting cancer invasion and migration and its potential clinical prospects. J Zhejiang Univ Sci B 2022; 23:642-654. [PMID: 35953758 DOI: 10.1631/jzus.b2100910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Translationally controlled tumor protein (TCTP) is a highly conserved multifunctional protein localized in the cytoplasm and nucleus of eukaryotic cells. It is secreted through exosomes and its degradation is associated with the ubiquitin-proteasome system (UPS), heat shock protein 27 (Hsp27), and chaperone-mediated autophagy (CMA). Its structure contains three α-helices and eleven β-strands, and features a helical hairpin as its hallmark. TCTP shows a remarkable similarity to the methionine-R-sulfoxide reductase B (MsrB) and mammalian suppressor of Sec4 (Mss4/Dss4) protein families, which exerts guanine nucleotide exchange factor (GEF) activity on small guanosine triphosphatase (GTPase) proteins, suggesting that some functions of TCTP may at least depend on its GEF action. Indeed, TCTP exerts GEF activity on Ras homolog enriched in brain (Rheb) to boost the growth and proliferation of Drosophila cells. TCTP also enhances the expression of cell division control protein 42 homolog (Cdc42) to promote cancer cell invasion and migration. Moreover, TCTP regulates cytoskeleton organization by interacting with actin microfilament (MF) and microtubule (MT) proteins and inducing the epithelial-mesenchymal transition (EMT) process. In essence, TCTP promotes cancer cell movement. It is usually highly expressed in cancerous tissues and thus reduces patient survival; meanwhile, drugs can target TCTP to reduce this effect. In this review, we summarize the mechanisms of TCTP in promoting cancer invasion and migration, and describe the current inhibitory strategy to target TCTP in cancerous diseases.
Collapse
Affiliation(s)
- Junying Gao
- Shandong Provincial Key Laboratory of Animal Resistant, School of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yan Ma
- Shandong Provincial Key Laboratory of Animal Resistant, School of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistant, School of Life Sciences, Shandong Normal University, Jinan 250014, China.
| | - Guorong Li
- Shandong Provincial Key Laboratory of Animal Resistant, School of Life Sciences, Shandong Normal University, Jinan 250014, China. ,
| |
Collapse
|
19
|
Peng K, Li S, Li Q, Zhang C, Yuan Y, Liu M, Zhang L, Wang Y, Yu S, Zhang H, Liu T. Positive Phospho-Focal Adhesion Kinase in Gastric Cancer Associates With Poor Prognosis After Curative Resection. Front Oncol 2022; 12:953938. [PMID: 35982966 PMCID: PMC9379279 DOI: 10.3389/fonc.2022.953938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Gastric cancer (GC) is the fifth most commonly diagnosed cancer and usually has a dismal prognosis. Our previous study highlights the contribution of focal adhesion kinase (FAK) in the tumorigenesis of diffuse gastric cancer (DGC), a subtype of GC according to Lauren classification. The prognostic value of phosphorylated FAK (pFAK) in GC remains to be explored. To explore the prognostic value of pFAK, we retrospectively collected 176 formalin-fixed paraffin-embedded (FFPE) tumor tissues from GC patients who underwent D2 gastrectomy without neoadjuvant treatment. The immunohistochemistry (IHC) staining of pFAK was performed. Survival analysis was performed by Kaplan–Meier and risk factors were evaluated by Cox regression analysis. A pFAK-based nomogram was also constructed for the prediction of overall survival (OS). We demonstrated that the prognosis of pFAK-positive patients was worse than that of the pFAK-negative patients in GC (p = 0.010; hazard ratio [HR] = 1.777, 95% CI 1.131 to 2.791; median OS, 46.6 vs. 86.3 months, respectively), and positive pFAK was also an independent risk factor for the worse prognosis of GC (p = 0.0054; HR = 1.89, 95% CI 1.21–2.96). Moreover, the nomogram based on pFAK and other independent risk factors could improve predictive accuracy for prognosis of GC. In conclusion, through analysis of a large collection of clinically annotated GC samples, we demonstrate that pFAK is a negative prognostic factor in GC, and a nomogram integrating pFAK could help predict OS for GC patients.
Collapse
Affiliation(s)
- Ke Peng
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Center of Evidence-Based Medicine, Fudan University, Shanghai, China
| | - Suyao Li
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Center of Evidence-Based Medicine, Fudan University, Shanghai, China
| | - Qian Li
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Center of Evidence-Based Medicine, Fudan University, Shanghai, China
| | - Chenlu Zhang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yitao Yuan
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Center of Evidence-Based Medicine, Fudan University, Shanghai, China
| | - Menglin Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Center of Evidence-Based Medicine, Fudan University, Shanghai, China
| | - Lei Zhang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yichen Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Shan Yu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Center of Evidence-Based Medicine, Fudan University, Shanghai, China
| | - Haisheng Zhang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Tianshu Liu, ; Haisheng Zhang,
| | - Tianshu Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Center of Evidence-Based Medicine, Fudan University, Shanghai, China
- *Correspondence: Tianshu Liu, ; Haisheng Zhang,
| |
Collapse
|
20
|
Li H, Chai L, Ding Z, He H. CircCOL1A2 Sponges MiR-1286 to Promote Cell Invasion and Migration of Gastric Cancer by Elevating Expression of USP10 to Downregulate RFC2 Ubiquitination Level. J Microbiol Biotechnol 2022; 32:938-948. [PMID: 35791074 PMCID: PMC9628928 DOI: 10.4014/jmb.2112.12044] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/29/2022] [Accepted: 05/07/2022] [Indexed: 12/15/2022]
Abstract
Gastric cancers (GC) are generally malignant tumors, occurring with high incidence and threatening public health around the world. Circular RNAs (circRNAs) play crucial roles in modulating various cancers, including GC. However, the functions of circRNAs and their regulatory mechanism in colorectal cancer (CRC) remain largely unknown. This study focuses on both the role of circCOL1A2 in CRC progression as well as its downstream molecular mechanism. Quantitative polymerase chain reaction (qPCR) and western blot were adopted for gene expression analysis. Functional experiments were performed to study the biological functions. Fluorescence in situ hybridization (FISH) and subcellular fraction assays were employed to detect the subcellular distribution. Luciferase reporter, RNA-binding protein immunoprecipitation (RIP), co-immunoprecipitation (Co-IP), RNA pull-down, and immunofluorescence (IF) and immunoprecipitation (IP) assays were used to explore the underlying mechanisms. Our results found circCOL1A2 to be not only upregulated in GC cells, but that it also propels the migration and invasion of GC cells. CircCOL1A2 functions as a competing endogenous RNA (ceRNA) by sequestering microRNA-1286 (miR-1286) to modulate ubiquitin-specific peptidase 10 (USP10), which in turn spurs the migration and invasion of GC cells by regulating RFC2. In sum, CircCOL1A2 sponges miR-1286 to promote cell invasion and migration of GC by elevating the expression of USP10 to downregulate the level of RFC2 ubiquitination. Our study offers a potential novel target for the early diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Hang Li
- Gastroenterology and Hepatobiliary Surgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, Zhejiang, P.R.China,Corresponding author Phone: +13456888058 Fax: +0571-88303631 E-mail:
| | - Lixin Chai
- Gastroenterology and Hepatobiliary Surgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, Zhejiang, P.R.China
| | - Zujun Ding
- Gastroenterology and Hepatobiliary Surgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, Zhejiang, P.R.China
| | - Huabo He
- Gastroenterology and Hepatobiliary Surgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, Zhejiang, P.R.China
| |
Collapse
|
21
|
CXCR2 Receptor: Regulation of Expression, Signal Transduction, and Involvement in Cancer. Int J Mol Sci 2022; 23:ijms23042168. [PMID: 35216283 PMCID: PMC8878198 DOI: 10.3390/ijms23042168] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 01/25/2023] Open
Abstract
Chemokines are a group of about 50 chemotactic cytokines crucial for the migration of immune system cells and tumor cells, as well as for metastasis. One of the 20 chemokine receptors identified to date is CXCR2, a G-protein-coupled receptor (GPCR) whose most known ligands are CXCL8 (IL-8) and CXCL1 (GRO-α). In this article we present a comprehensive review of literature concerning the role of CXCR2 in cancer. We start with regulation of its expression at the transcriptional level and how this regulation involves microRNAs. We show the mechanism of CXCR2 signal transduction, in particular the action of heterotrimeric G proteins, phosphorylation, internalization, intracellular trafficking, sequestration, recycling, and degradation of CXCR2. We discuss in detail the mechanism of the effects of activated CXCR2 on the actin cytoskeleton. Finally, we describe the involvement of CXCR2 in cancer. We focused on the importance of CXCR2 in tumor processes such as proliferation, migration, and invasion of tumor cells as well as the effects of CXCR2 activation on angiogenesis, lymphangiogenesis, and cellular senescence. We also discuss the importance of CXCR2 in cell recruitment to the tumor niche including tumor-associated neutrophils (TAN), tumor-associated macrophages (TAM), myeloid-derived suppressor cells (MDSC), and regulatory T (Treg) cells.
Collapse
|
22
|
Zhou X, Fang D, Liu H, Ou X, Zhang C, Zhao Z, Zhao S, Peng J, Cai S, He Y, Xu J. PMN-MDSCs accumulation induced by CXCL1 promotes CD8 + T cells exhaustion in gastric cancer. Cancer Lett 2022; 532:215598. [PMID: 35176418 DOI: 10.1016/j.canlet.2022.215598] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 01/13/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) accumulation in multiple tumor is associated with immune checkpoint inhibitors (ICIs) resistance. However, mechanisms of MDSCs in ICIs resistance of gastric cancer (GC) have not been thoroughly explored. In this study, we found that the PMN-MDSCs frequency rather than the M-MDSCs frequency was correlated with the survival of GC patients and CXCL1 induced PMN-MDSCs accumulation in GC. S100A8/A9 heterodimer, a hallmark of MDSCs, upregulated the CXCL1 expression in GC cells through the TLR4/p38 MAPK/NF-κB pathway. Notably, PMN-MDSCs exerted immunosuppressive effect through S100A8/A9. Mechanically, S100A8/A9 led to CD8+ T cells exhaustion including inhibiting CD8+ T cells glycolysis, proliferation and TNF-α and IFN-γ production, which was dependent on TLR4/AKT/mTOR pathway. In tumor-bearing mice, the CXCR2 antagonist SB225002 decreased PMN-MDSCs accumulation, increased CD8+ T cells infiltration in GC and further enhanced anti-tumor efficacy of anti-PD-1. Taken together, our study identified that CXCL1 induced PMN-MDSCs accumulation in GC, and unveiled how PMN-MDSCs promoted CD8+ T cells exhaustion, which may provide a potential therapeutic strategy for GC.
Collapse
Affiliation(s)
- Xingyu Zhou
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun-Yat-sen University, Guangzhou, Guangdong, China; Laboratory of General Surgery, The First Affiliated Hospital of Sun-Yat-sen University, Guangzhou, Guangdong, China
| | - Deliang Fang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun-Yat-sen University, Guangzhou, Guangdong, China; Laboratory of General Surgery, The First Affiliated Hospital of Sun-Yat-sen University, Guangzhou, Guangdong, China
| | - Haohan Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun-Yat-sen University, Guangzhou, Guangdong, China; Laboratory of General Surgery, The First Affiliated Hospital of Sun-Yat-sen University, Guangzhou, Guangdong, China
| | - Xinde Ou
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun-Yat-sen University, Guangzhou, Guangdong, China; Laboratory of General Surgery, The First Affiliated Hospital of Sun-Yat-sen University, Guangzhou, Guangdong, China
| | - Chaoyue Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun-Yat-sen University, Guangzhou, Guangdong, China
| | - Zirui Zhao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun-Yat-sen University, Guangzhou, Guangdong, China
| | - Shaoji Zhao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun-Yat-sen University, Guangzhou, Guangdong, China
| | - Jianjun Peng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun-Yat-sen University, Guangzhou, Guangdong, China; Gastric Cancer Center of Sun-Yat-Sen University, Guangzhou, Guangdong, China
| | - Shirong Cai
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun-Yat-sen University, Guangzhou, Guangdong, China; Gastric Cancer Center of Sun-Yat-Sen University, Guangzhou, Guangdong, China
| | - Yulong He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun-Yat-sen University, Guangzhou, Guangdong, China; Gastric Cancer Center of Sun-Yat-Sen University, Guangzhou, Guangdong, China; Center for Digestive Disease, The Seventh Affiliated Hospital of Sun-Yat-sen University, Shenzhen, Guangdong, China
| | - Jianbo Xu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun-Yat-sen University, Guangzhou, Guangdong, China; Gastric Cancer Center of Sun-Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
23
|
Mao D, Xu R, Chen H, Chen X, Li D, Song S, He Y, Wei Z, Zhang C. Cross-Talk of Focal Adhesion-Related Gene Defines Prognosis and the Immune Microenvironment in Gastric Cancer. Front Cell Dev Biol 2021; 9:716461. [PMID: 34660578 PMCID: PMC8517448 DOI: 10.3389/fcell.2021.716461] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/14/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Focal adhesion, as the intermediary between tumor cells and extracellular matrix communication, plays a variety of roles in tumor invasion, migration, and drug resistance. However, the potential role of focal adhesion-related genes in the microenvironment, immune cell infiltration, and drug sensitivity of gastric cancer (GC) has not yet been revealed. Methods: The genetic and transcriptional perspectives of focal adhesion-related genes were systematically analyzed. From a genetic perspective, the focal adhesion index (FAI) was constructed based on 18 prognosis-related focus adhesion-related genes to evaluate the immune microenvironment and drug sensitivity. Then three prognosis-related genes were used for consistent clustering to identify GC subtypes. Finally, use FLT1, EGF, COL5A2, and M2 macrophages to develop risk signatures, and establish a nomogram together with clinicopathological characteristics. Results: Mutations in the focal adhesion-related gene affect the survival time and clinical characteristics of GC patients. FAI has been associated with a shorter survival time, immune signaling pathways, M2 macrophage infiltration, epithelial-mesenchymal transition (EMT) signaling, and diffuse type of GC. FAI recognizes ALK, cell cycle, and BMX signaling pathways inhibitors as sensitive agents for the treatment of GC. FLT1, EGF, and COL5A2 may distinguish GC subtypes. The established risk signature is of great significance to the prognostic evaluation of GC based on FLT1, EGF, and COL5A2 and M2 macrophage expression. Conclusion: The focal adhesion-related gene is a potential biomarker for the evaluation of the immune microenvironment and prognosis. This work emphasizes the potential impact of the focal adhesion pathway in GC therapy and highlights its guiding role in prognostic evaluation.
Collapse
Affiliation(s)
- Deli Mao
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Rui Xu
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hengxing Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xiancong Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Dongsheng Li
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Shenglei Song
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yulong He
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Zhewei Wei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
24
|
Fujimoto N, Dieterich LC. Mechanisms and Clinical Significance of Tumor Lymphatic Invasion. Cells 2021; 10:cells10102585. [PMID: 34685565 PMCID: PMC8533989 DOI: 10.3390/cells10102585] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/20/2021] [Accepted: 09/25/2021] [Indexed: 12/17/2022] Open
Abstract
Tumor-associated lymphatic vessels play an important role in tumor progression, mediating lymphatic dissemination of malignant cells to tumor-draining lymph nodes and regulating tumor immunity. An early, necessary step in the lymphatic metastasis cascade is the invasion of lymphatic vessels by tumor cell clusters or single tumor cells. In this review, we discuss our current understanding of the underlying cellular and molecular mechanisms, which include tumor-specific as well as normal, developmental and immunological processes “hijacked” by tumor cells to gain access to the lymphatic system. Furthermore, we summarize the prognostic value of lymphatic invasion, discuss its relationship with local recurrence, lymph node and distant metastasis, and highlight potential therapeutic options and challenges.
Collapse
Affiliation(s)
- Noriki Fujimoto
- Department of Dermatology, Shiga University of Medical Science, Otsu 520-2192, Japan;
| | - Lothar C. Dieterich
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
- Correspondence:
| |
Collapse
|
25
|
Wang R, Wang X, Yang S, Xiao Y, Jia Y, Zhong J, Gao Q, Zhang X. Umbilical cord-derived mesenchymal stem cells promote myeloid-derived suppressor cell enrichment by secreting CXCL1 to prevent graft-versus-host disease after hematopoietic stem cell transplantation. Cytotherapy 2021; 23:996-1006. [PMID: 34465514 DOI: 10.1016/j.jcyt.2021.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND AIMS Human mesenchymal stem cells (MSCs) from various tissues have emerged as attractive candidates for the prevention and treatment of graft-versus-host disease (GVHD). However, the molecular machinery that defines and channels the behavior of these cells remains poorly understood. METHODS In this study, the authors compared the efficacy of four tissue-derived MSC types in controlling GVHD in a murine model and investigated their immunomodulatory effects. RESULTS Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) effectively decreased the incidence and severity of GVHD, which was mediated by the enrichment of myeloid-derived suppressor cells in GVHD target tissues. RNA sequencing results showed that hUCMSCs highly expressed CXCL1. CONCLUSIONS These results suggest a novel prophylactic application of hUCMSCs for controlling GVHD after allogeneic hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Rui Wang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shijie Yang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yunshuo Xiao
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yanhui Jia
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiangfan Zhong
- Department of Cell Biology, College of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiangguo Gao
- Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA.
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
26
|
Yan L, He Z, Li W, Liu N, Gao S. P76RBE silencing inhibits ovarian cancer cell proliferation, migration, and invasion via suppressing the integrin β1/NF-κB pathway. Cell Cycle 2021; 20:1875-1889. [PMID: 34382920 DOI: 10.1080/15384101.2021.1963910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Rhophilin Rho GTPase binding protein 2 (P76RBE) belongs to rhophilin family of Rho-GTPase-binding proteins and is found to contribute to the development of diverse cancers. Data in Oncomine and Kaplan-Meier Plotter databases showed that P76RBE was upregulated in ovarian cancer tissues compared with normal tissues, and patients with high P76RBE expression had worse overall survival, which indicated P76RBE may be associated with the pathogenesis of ovarian cancer. This study aimed to investigate the role of P76RBE in ovarian cancer and to reveal the possible underlying mechanisms. The results demonstrated that P76RBE was highly expressed in ovarian cancer tissues and ovarian cancer cell lines. Functionally, silencing of P76RBE suppressed the proliferation, induced cell cycle arrest, and inhibited migration and invasion in OVCAR-3 and OV-90 cells, while overexpression of P76RBE showed opposite effects on A2780 cells. Mechanically, P76RBE silencing resulted in downregulation of integrin β1, accompanying the reduced NF-κB p65 phosphorylation and nuclear translocation. Importantly, integrin β1 knockdown effectively rescued the effects of P76RBE overexpression on ovarian cancer cells with suppressed proliferation, migration, and invasion. Additionally, in the xenograft tumors derived from OVCAR-3 and OV-90 cell lines, P76RBE knockdown inhibited tumor growth. Meanwhile, the expression of integrin β1 and NF-κB p65 phosphorylation was decreased. In summary, our findings indicate that P76RBE contributes to the progression of ovarian cancer through regulating the integrin β1/NF-κB signaling, and it may be a promising target for ovarian cancer therapy.
Collapse
Affiliation(s)
- Limei Yan
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zeping He
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wei Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ning Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Song Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
27
|
Ciummo SL, D’Antonio L, Sorrentino C, Fieni C, Lanuti P, Stassi G, Todaro M, Di Carlo E. The C-X-C Motif Chemokine Ligand 1 Sustains Breast Cancer Stem Cell Self-Renewal and Promotes Tumor Progression and Immune Escape Programs. Front Cell Dev Biol 2021; 9:689286. [PMID: 34195201 PMCID: PMC8237942 DOI: 10.3389/fcell.2021.689286] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/17/2021] [Indexed: 01/01/2023] Open
Abstract
Breast cancer (BC) mortality is mainly due to metastatic disease, which is primarily driven by cancer stem cells (CSC). The chemokine C-X-C motif ligand-1 (CXCL1) is involved in BC metastasis, but the question of whether it regulates breast cancer stem cell (BCSC) behavior is yet to be explored. Here, we demonstrate that BCSCs express CXCR2 and produce CXCL1, which stimulates their proliferation and self-renewal, and that CXCL1 blockade inhibits both BCSC proliferation and mammosphere formation efficiency. CXCL1 amplifies its own production and remarkably induces both tumor-promoting and immunosuppressive factors, including SPP1/OPN, ACKR3/CXCR7, TLR4, TNFSF10/TRAIL and CCL18 and, to a lesser extent, immunostimulatory cytokines, including IL15, while it downregulates CCL2, CCL28, and CXCR4. CXCL1 downregulates TWIST2 and SNAI2, while it boosts TWIST1 expression in association with the loss of E-Cadherin, ultimately promoting BCSC epithelial-mesenchymal transition. Bioinformatic analyses of transcriptional data obtained from BC samples of 1,084 patients, reveals that CXCL1 expressing BCs mostly belong to the Triple-Negative (TN) subtype, and that BC expression of CXCL1 strongly correlates with that of pro-angiogenic and cancer promoting genes, such as CXCL2-3-5-6, FGFBP1, BCL11A, PI3, B3GNT5, BBOX1, and PTX3, suggesting that the CXCL1 signaling cascade is part of a broader tumor-promoting signaling network. Our findings reveal that CXCL1 functions as an autocrine growth factor for BCSCs and elicits primarily tumor progression and immune escape programs. Targeting the CXCL1/CXCR2 axis could restrain the BCSC compartment and improve the treatment of aggressive BC.
Collapse
Affiliation(s)
- Stefania Livia Ciummo
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University, Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University, Chieti, Italy
| | - Luigi D’Antonio
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University, Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University, Chieti, Italy
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University, Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University, Chieti, Italy
| | - Cristiano Fieni
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University, Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University, Chieti, Italy
| | - Paola Lanuti
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University, Chieti, Italy
| | - Giorgio Stassi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Matilde Todaro
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University, Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University, Chieti, Italy
| |
Collapse
|
28
|
Wu R, Guo S, Lai S, Pan G, Zhang L, Liu H. A stable gene set for prediction of prognosis and efficacy of chemotherapy in gastric cancer. BMC Cancer 2021; 21:684. [PMID: 34112138 PMCID: PMC8194165 DOI: 10.1186/s12885-021-08444-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Background Gastric cancer (GC) is a primary reason for cancer death in the world. At present, GC has become a public health issue urgently to be solved to. Prediction of prognosis is critical to the development of clinical treatment regimens. This work aimed to construct the stable gene set for guiding GC diagnosis and treatment in clinic. Methods A public microarray dataset of TCGA providing clinical information was obtained. Dimensionality reduction was carried out by selection operator regression on the stable prognostic genes discovered through the bootstrap approach as well as survival analysis. Findings A total of 2 prognostic models were built, respectively designated as stable gene risk scores of OS (SGRS-OS) and stable gene risk scores of PFI (SGRS-PFI) consisting of 18 and 21 genes. The SGRS set potently predicted the overall survival (OS) along with progression-free interval (PFI) by means of univariate as well as multivariate analysis, using the specific risk scores formula. Relative to the TNM classification system, the SGRS set exhibited apparently higher predicting ability. Moreover, it was suggested that, patients who had increased SGRS were associated with poor chemotherapeutic outcomes. Interpretation The SGRS set constructed in this study potentially serves as the efficient approach for predicting GC patient survival and guiding their treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08444-w.
Collapse
Affiliation(s)
- Rui Wu
- The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Sixuan Guo
- The Second Clinical College, Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Shuhui Lai
- The First Clinical College, Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Guixing Pan
- Shangrao Maternity and Child Care Hospital, Shangrao, Jiangxi, China
| | - Linyi Zhang
- School of Ophthalmology & Optometry, Nanchang University, Nanchang, Jiangxi, China
| | - Huanbing Liu
- The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
29
|
Malignant Ascites Promote Adhesion of Ovarian Cancer Cells to Peritoneal Mesothelium and Fibroblasts. Int J Mol Sci 2021; 22:ijms22084222. [PMID: 33921783 PMCID: PMC8073321 DOI: 10.3390/ijms22084222] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/19/2022] Open
Abstract
Although malignant ascites (MAs) are known to contribute to various aspects of ovarian cancer progression, knowledge regarding their role in the adhesion of cancer cells to normal peritoneal cells is incomplete. Here, we compared the effect of MAs and benign ascites (BAs) on the adhesion of A2780 and OVCAR-3 cancer cells to omentum-derived peritoneal mesothelial cells (PMCs) and peritoneal fibroblasts (PFBs). The results showed that MAs stimulated the adhesion of A2780 and OVCAR-3 cells to PMCs and PFBs more efficiently than did BAs, and the strongest binding occurred when both cancer and normal cells were exposed to the fluid. Intervention studies showed that MAs-driven adhesion of A2780 cells to PMCs/PFBs depends on the presence of TGF-β1 and HGF, whereas binding of OVCAR-3 cells was mediated by TGF-β1, GRO-1, and IGF-1. Moreover, MAs upregulated α5β1 integrin expression on PFBs but not on PMCs or cancer cells, vimentin expression in all cells tested, and ICAM-1 only in cancer cells. When integrin-linked kinase was neutralized in PMCs or PFBs, cancer cell adhesion to PMCs and PFBs decreased. Collectively, our report shows that MAs may contribute to the early stages of ovarian cancer metastasis by modulating the proadhesive interplay between normal and cancer cells.
Collapse
|
30
|
Isolation and characterisation of lymphatic endothelial cells from lung tissues affected by lymphangioleiomyomatosis. Sci Rep 2021; 11:8406. [PMID: 33863980 PMCID: PMC8052438 DOI: 10.1038/s41598-021-88064-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/06/2021] [Indexed: 01/25/2023] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a rare pulmonary disease characterised by the proliferation of smooth muscle-like cells (LAM cells), and an abundance of lymphatic vessels in LAM lesions. Studies reported that vascular endothelial growth factor-D (VEGF-D) secreted by LAM cells contributes to LAM-associated lymphangiogenesis, however, the precise mechanisms of lymphangiogenesis and characteristics of lymphatic endothelial cells (LECs) in LAM lesions have not yet been elucidated. In this study, human primary-cultured LECs were obtained both from LAM-affected lung tissues (LAM-LECs) and normal lung tissues (control LECs) using fluorescence-activated cell sorting (FACS). We found that LAM-LECs had significantly higher ability of proliferation and migration compared to control LECs. VEGF-D significantly promoted migration of LECs but not proliferation of LECs in vitro. cDNA microarray and FACS analysis revealed the expression of vascular endothelial growth factor receptor (VEGFR)-3 and integrin α9 were elevated in LAM-LECs. Inhibition of VEGFR-3 suppressed proliferation and migration of LECs, and blockade of integrin α9 reduced VEGF-D-induced migration of LECs. Our data uncovered the distinct features of LAM-associated LECs, increased proliferation and migration, which may be due to higher expression of VEGFR-3 and integrin α9. Furthermore, we also found VEGF-D/VEGFR-3 and VEGF-D/ integrin α9 signaling play an important role in LAM-associated lymphangiogenesis.
Collapse
|
31
|
Abstract
Secretory proteins in tumor tissues are important components of the tumor microenvironment. Secretory proteins act on tumor cells or stromal cells or mediate interactions between tumor cells and stromal cells, thereby affecting tumor progression and clinical treatment efficacy. In this paper, recent research advances in secretory proteins in malignant tumors are reviewed.
Collapse
Affiliation(s)
- Na Zhang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jiajie Hao
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yan Cai
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Mingrong Wang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
32
|
Lee S, Kang H, Park D, Yu J, Koh SK, Cho D, Kim D, Kang K, Jeon NL. Modeling 3D Human Tumor Lymphatic Vessel Network Using High‐Throughput Platform. Adv Biol (Weinh) 2021. [DOI: 10.1002/adbi.202000195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Somin Lee
- Interdisciplinary Program for Bioengineering Seoul National University 1, Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
| | - Habin Kang
- Interdisciplinary Program for Bioengineering Seoul National University 1, Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
| | - Dohyun Park
- Department of Mechanical Engineering Seoul National University 1, Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
| | - James Yu
- Interdisciplinary Program for Bioengineering Seoul National University 1, Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
| | - Seung Kwon Koh
- Department of Health Sciences and Technology SAIHST Sungkyunkwan University 115, Irwon‐ro, Gangnam‐gu Seoul 06355 Republic of Korea
| | - Duck Cho
- Department of Health Sciences and Technology SAIHST Sungkyunkwan University 115, Irwon‐ro, Gangnam‐gu Seoul 06355 Republic of Korea
- Department of Laboratory Medicine and Genetics Samsung Medical Center Sungkyunkwan University School of Medicine 115, Irwon‐ro, Gangnam‐gu Seoul 06355 Republic of Korea
| | - Da‐Hyun Kim
- Adult Stem Cell Research Center and Research Institute for Veterinary Science College of Veterinary Medicine Seoul National University 1, Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
| | - Kyung‐Sun Kang
- Adult Stem Cell Research Center and Research Institute for Veterinary Science College of Veterinary Medicine Seoul National University 1, Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
| | - Noo Li Jeon
- Interdisciplinary Program for Bioengineering Seoul National University 1, Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
- Department of Mechanical Engineering Seoul National University 1, Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
- Institute of Advanced Machinery and Design Seoul National University 1, Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
- Institute of BioEngineering Seoul National University 1, Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
| |
Collapse
|
33
|
Association between Inflammation and Function of Cell Adhesion Molecules Influence on Gastrointestinal Cancer Development. Cells 2021; 10:cells10010067. [PMID: 33406733 PMCID: PMC7824562 DOI: 10.3390/cells10010067] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/09/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
Gastrointestinal cancer is highly associated with inflammatory processes inducing the release of cytokines from cancer or immune cells, including interferons, interleukins, chemokines, colony-stimulating factors, and growth factors, which promote or suppress tumor progression. Inflammatory cytokines within the tumor microenvironment promote immune cell infiltration. Infiltrating immune, and tumor-surrounding stromal cells support tumor growth, angiogenesis, metastasis, and immunosuppression through communication with inflammatory cytokines and cell adhesion molecules. Notably, infiltrating immune and tumor cells present immunosuppressive molecules, such as programmed death-ligand 1 (PD-L1) and CD80/CD86. Suppression of cytotoxic T cells promotes tumor avoidance of immune surveillance and greater malignancy. Moreover, glycosylation and sialylation of proteins hyperexpressed on the cancer cell surface have been shown to enhance immune escape and metastasis. Cytokine treatments and immune checkpoint inhibitors are widely used in clinical practice. However, the tumor microenvironment is a rapidly changing milieu involving several factors. In this review, we have provided a summary of the interactions of inflammation and cell adhesion molecules between cancer and other cell types, to improve understanding of the tumor microenvironment.
Collapse
|
34
|
Xu J, Ou X, Li J, Cai Q, Sun K, Ye J, Peng J. Overexpression of TC2N is associated with poor prognosis in gastric cancer. J Cancer 2021; 12:807-817. [PMID: 33403038 PMCID: PMC7778556 DOI: 10.7150/jca.50653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/30/2020] [Indexed: 12/27/2022] Open
Abstract
Background: Tac2-N (TC2N) is a tandem C2 domain-containing protein, acting as a novel oncogene or suppressor in different kinds of cancers. However, the status of TC2N expression and its significance in gastric cancer (GC) is still unclear. The present study is aimed to elucidate the clinicopathological significance and prognostic value of TC2N level in GC. Methods: We used sequencing data from the Cancer Genome Atlas (TCGA) database to analyze TC2N expression in GC by UALCAN database and Gene Expression Profiling Interactive Analysis tools (GEPIA). TC2N expression level in 12 pairs of fresh GC tissues and adjacent nontumorous tissues was detected by quantitative real-time reverse-transcription polymerase chain reaction (RT-PCR) and Western blot (WB) assays. Immunohistochemical (IHC) staining was used to detect TC2N protein expression in Paraffin-embedded tissues in our center. In vitro proliferation, migration and invasion assays were used to evaluate the effect of TC2N on functional capability of gastric cancer cells. LinkedOmics was used to identify gene expressions associated with TC2N. Results: The mRNA and protein expression of TC2N in gastric cancer were both significantly higher than normal gastric mucosa. It was also elevated in gastric cancer cells compared with normal gastric epithelium cell. In vitro assays suggested that TC2N facilitated proliferation, migration and invasion of gastric cancer cells. Bioinformatic analysis showed a widespread impact of TC2N on the transcriptome and a strong interaction with tumor associated genes. We also found that TC2N was an independent prognostic factor for long-term survival in GC patients and its high expression was evidently associated with poor overall survival and recurrence-free survival. Conclusions: Our results show that high level of TC2N correlates with poor prognosis in patients with gastric cancer and promotes the development of gastric cancer. Thus, TC2N expression can serve as a prognostic biomarker for patients with gastric cancer.
Collapse
Affiliation(s)
- Jianbo Xu
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Xinde Ou
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China.,Laboratory of General Surgery, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Jin Li
- Digestive Disease Center, the Seventh Affiliated Hospital, Sun Yat-sen University, 628 Zhenyuan Road, Shenzhen 518000, China.,Laboratory of General Surgery, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Qinbo Cai
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China.,Laboratory of General Surgery, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Kaiyu Sun
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Jingning Ye
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Jianjun Peng
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China
| |
Collapse
|
35
|
Wang N, Wang S, Wang X, Zheng Y, Yang B, Zhang J, Pan B, Gao J, Wang Z. Research trends in pharmacological modulation of tumor-associated macrophages. Clin Transl Med 2021; 11:e288. [PMID: 33463063 PMCID: PMC7805405 DOI: 10.1002/ctm2.288] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
As one of the most abundant immune cell populations in the tumor microenvironment (TME), tumor-associated macrophages (TAMs) play important roles in multiple solid malignancies, including breast cancer, prostate cancer, liver cancer, lung cancer, ovarian cancer, gastric cancer, pancreatic cancer, and colorectal cancer. TAMs could contribute to carcinogenesis, neoangiogenesis, immune-suppressive TME remodeling, cancer chemoresistance, recurrence, and metastasis. Therefore, reprogramming of the immune-suppressive TAMs by pharmacological approaches has attracted considerable research attention in recent years. In this review, the promising pharmaceutical targets, as well as the existing modulatory strategies of TAMs were summarized. The chemokine-chemokine receptor signaling, tyrosine kinase receptor signaling, metabolic signaling, and exosomal signaling have been highlighted in determining the biological functions of TAMs. Besides, both preclinical research and clinical trials have suggested the chemokine-chemokine receptor blockers, tyrosine kinase inhibitors, bisphosphonates, as well as the exosomal or nanoparticle-based targeting delivery systems as the promising pharmacological approaches for TAMs deletion or reprogramming. Lastly, the combined therapies of TAMs-targeting strategies with traditional treatments or immunotherapies as well as the exosome-like nanovesicles for cancer therapy are prospected.
Collapse
Affiliation(s)
- Neng Wang
- The Research Center for Integrative MedicineSchool of Basic Medical SciencesGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Shengqi Wang
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Xuan Wang
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Yifeng Zheng
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Bowen Yang
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Juping Zhang
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Bo Pan
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Jianli Gao
- Academy of Traditional Chinese MedicineZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Zhiyu Wang
- The Research Center for Integrative MedicineSchool of Basic Medical SciencesGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| |
Collapse
|
36
|
Hussain S, Peng B, Cherian M, Song JW, Ahirwar DK, Ganju RK. The Roles of Stroma-Derived Chemokine in Different Stages of Cancer Metastases. Front Immunol 2020; 11:598532. [PMID: 33414786 PMCID: PMC7783453 DOI: 10.3389/fimmu.2020.598532] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
The intricate interplay between malignant cells and host cellular and non-cellular components play crucial role in different stages of tumor development, progression, and metastases. Tumor and stromal cells communicate to each other through receptors such as integrins and secretion of signaling molecules like growth factors, cytokines, chemokines and inflammatory mediators. Chemokines mediated signaling pathways have emerged as major mechanisms underlying multifaceted roles played by host cells during tumor progression. In response to tumor stimuli, host cells-derived chemokines further activates signaling cascades that support the ability of tumor cells to invade surrounding basement membrane and extra-cellular matrix. The host-derived chemokines act on endothelial cells to increase their permeability and facilitate tumor cells intravasation and extravasation. The tumor cells-host neutrophils interaction within the vasculature initiates chemokines driven recruitment of inflammatory cells that protects circulatory tumor cells from immune attack. Chemokines secreted by tumor cells and stromal immune and non-immune cells within the tumor microenvironment enter the circulation and are responsible for formation of a "pre-metastatic niche" like a "soil" in distant organs whereby circulating tumor cells "seed' and colonize, leading to formation of metastatic foci. Given the importance of host derived chemokines in cancer progression and metastases several drugs like Mogamulizumab, Plerixafor, Repertaxin among others are part of ongoing clinical trial which target chemokines and their receptors against cancer pathogenesis. In this review, we focus on recent advances in understanding the complexity of chemokines network in tumor microenvironment, with an emphasis on chemokines secreted from host cells. We especially summarize the role of host-derived chemokines in different stages of metastases, including invasion, dissemination, migration into the vasculature, and seeding into the pre-metastatic niche. We finally provide a brief description of prospective drugs that target chemokines in different clinical trials against cancer.
Collapse
Affiliation(s)
- Shahid Hussain
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Bo Peng
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Mathew Cherian
- Division of Medical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jonathan W Song
- Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Department of Mechanical and Aerospace Engineering, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Dinesh K Ahirwar
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Ramesh K Ganju
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
37
|
Lee BS, Jang JY, Seo C, Kim CH. Crosstalk between head and neck cancer cells and lymphatic endothelial cells promotes tumor metastasis via CXCL5-CXCR2 signaling. FASEB J 2020; 35:e21181. [PMID: 33231340 DOI: 10.1096/fj.202001455r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/11/2020] [Accepted: 10/28/2020] [Indexed: 12/24/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) metastasizes to the locoregional lymph nodes at high rates and is related to poor clinical outcomes. However, the mechanism by which cancer cells migrate to the lymph nodes is unclear. To address this, we established a conditioned medium culture system for HNSCC cells and lymphatic endothelial cells (LECs) and investigated their crosstalk. Stimulation with tumor-conditioned medium (TCM) activated LECs, resulting in a robust increase in cell proliferation to induce lymphatic hyperplasia. Further, stimulation of HNSCC cells with activated LEC Conditioned media (TCM-LEC CM) induced cell invasion. Among various chemokines, CXCL5 promoted the invasion of TCM-LEC CM-treated HNSCC cells. The level of CXCL5 protein was higher in cancer tissues than those in normal tissues from HNSCC patients. Furthermore, treatment with SB225002, a CXCR2 (CXCL5 receptor) inhibitor, resulted in decreased lymph node metastasis in vivo. In conclusion, inhibition of CXCL5-CXCR2 signaling between cancer cells and LECs suppresses cancer cell invasion and metastasis in vitro and in vivo. This novel therapeutic strategy might be a practical approach to the clinical management of HNSCC.
Collapse
Affiliation(s)
- Bok-Soon Lee
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jeon Yeob Jang
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea.,Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Chorong Seo
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
38
|
Haider T, Sandha KK, Soni V, Gupta PN. Recent advances in tumor microenvironment associated therapeutic strategies and evaluation models. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111229. [DOI: 10.1016/j.msec.2020.111229] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/08/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023]
|
39
|
Oya Y, Hayakawa Y, Koike K. Tumor microenvironment in gastric cancers. Cancer Sci 2020; 111:2696-2707. [PMID: 32519436 PMCID: PMC7419059 DOI: 10.1111/cas.14521] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment favors the growth and expansion of cancer cells. Many cell types are involved in the tumor microenvironment such as inflammatory cells, fibroblasts, nerves, and vascular endothelial cells. These stromal cells contribute to tumor growth by releasing various molecules to either directly activate the growth signaling in cancer cells or remodel surrounding areas. This review introduces recent advances in findings on the interactions within the tumor microenvironment such as in cancer-associated fibroblasts (CAFs), immune cells, and endothelial cells, in particular those established in mouse gastric cancer models. In mice, myofibroblasts in the gastric stroma secrete R-spondin and support normal gastric stem cells. Most CAFs promote tumor growth in a paracrine manner, but CAF population appears to be heterogeneous in terms of their function and origin, and include both tumor-promoting and tumor-restraining populations. Among immune cell populations, tumor-associated macrophages, including M1 and M2 macrophages, and myeloid-derived suppressor cells (MDSCs), are reported to directly or indirectly promote gastric tumorigenesis by secreting soluble factors or modulating immune responses. Endothelial cells or blood vessels not only fuel tumors with nutrients, but also interact with cancer stem cells and immune cells by secreting chemokines or cytokines, and act as a cancer niche. Understanding these interactions within the tumor microenvironment would contribute to unraveling new therapeutic targets.
Collapse
Affiliation(s)
- Yukiko Oya
- Department of GastroenterologyGraduate school of Medicinethe University of TokyoTokyoJapan
| | - Yoku Hayakawa
- Department of GastroenterologyGraduate school of Medicinethe University of TokyoTokyoJapan
| | - Kazuhiko Koike
- Department of GastroenterologyGraduate school of Medicinethe University of TokyoTokyoJapan
| |
Collapse
|
40
|
Lv Z, Li W, Wei X. S100A9 promotes prostate cancer cell invasion by activating TLR4/NF-κB/integrin β1/FAK signaling. Onco Targets Ther 2020; 13:6443-6452. [PMID: 32884282 PMCID: PMC7435298 DOI: 10.2147/ott.s192250] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/16/2019] [Indexed: 12/11/2022] Open
Abstract
Background S100A9, which is expressed in prostate cancer, has been reported in association with prostate cancer progression. However, the role of S100A9 in prostate cancer metastasis is largely unknown. The aim of this study was to investigate the effect of S100A9 on prostate cancer cell invasion and the involved mechanisms. Materials and methods Integrin β1 expression in PC-3 and DU-145 cells was determined by quantitative real-time polymerase chain reaction (PCR) (qRT-PCR) and Western blot. Cellular invasion was measured by transwell invasion assay. Western blot was used to determine protein expression. Concentrations of S100A9 and fibronectin were analyzed by enzyme-linked immunosorbent assay. The protein interaction was detected by immunoprecipitation. The NF-κB activity was measured by luciferase reporter assay. The DU-145 cells metastasis in vivo was determined in mice xenograft models after S100A9 overexpression. Results S100A9 promoted prostate cancer cells invasion, integrin β1 expression and fibronectin secretion. Further investigation evidenced that S100A9 interacted with Toll-like receptor 4 (TLR4) and activated NF-κB, which was responsible for tumor cell invasion, integrin β1 up-regulation and focal adhesion kinase (FAK) phosphorylation. Furthermore, integrin β1 inhibition led to decreased FAK phosphorylation and reduced tumor cell invasion. Overexpression of S100A9 increased xenograft tumor micro-metastases, integrin β1 expression and induced NF-κB and FAK activation in vivo. Conclusion Our study demonstrated that S100A9 promotes prostate cancer cell invasion, and one of the underlying molecular mechanisms is that S100A9 activates integrin β1/FAK through TLR4/NF-κB signaling leading to metastasis of prostate cancer cell.
Collapse
Affiliation(s)
- Zhonghua Lv
- Department of Urology, Jining First People's Hospital, Jining, Shandong 272011, People's Republic of China
| | - Wenlin Li
- Department of Urology, Rizhao Traditional Chinese Medicine Hospital, Rizhao, Shandong 276800, People's Republic of China
| | - Xichao Wei
- Department of Urology, Jining Traditional Chinese Medicine Hospital, Jining, Shandong 272000, People's Republic of China
| |
Collapse
|
41
|
Yin H, Chu A, Liu S, Yuan Y, Gong Y. Identification of DEGs and transcription factors involved in H. pylori-associated inflammation and their relevance with gastric cancer. PeerJ 2020; 8:e9223. [PMID: 32547867 PMCID: PMC7275685 DOI: 10.7717/peerj.9223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
Background Previous studies have indicated that chronic inflammation linked to H. pylori infection is the leading causes for gastric cancer (GC). However, the exact mechanism is not entirely clear until now. Purpose To identify the key molecules and TFs involved in H. pylori infection and to provide new insights into H. pylori-associated carcinogenesis and lay the groundwork for the prevention of GC. Results GO and KEGG analysis revealed that the DEGs of Hp+-NAG were mainly associated with the immune response, chemokine activity, extracellular region and rheumatoid arthritis pathway. The DEGs of Hp+-AG-IM were related to the apical plasma membrane, intestinal cholesterol absorption, transporter activity and fat digestion and absorption pathway. In Hp+-NAG network, the expression of TNF, CXCL8, MMP9, CXCL9, CXCL1, CCL20, CTLA4, CXCL2, C3, SAA1 and FOXP3, JUN had statistical significance between normal and cancer in TCGA database. In Hp+-AG-IM network the expression of APOA4, GCG, CYP3A4, XPNPEP2 and FOXP3, JUN were statistically different in the comparison of normal and cancer in TCGA database. FOXP3 were negatively associated with overall survival, and the association for JUN was positive. Conclusion The current study identified key DEGs and their transcriptional regulatory networks involved in H. pylori-associated NAG, AG-IM and GC and found that patients with higher expressed FOXP3 or lower expressed JUN had shorter overall survival time. Our study provided new directions for inflammation-associated oncogenic transformation involved in H. pylori infection.
Collapse
Affiliation(s)
- Honghao Yin
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, LiaoNing, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, LiaoNing, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, LiaoNing, China
| | - Aining Chu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, LiaoNing, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, LiaoNing, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, LiaoNing, China
| | - Songyi Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, LiaoNing, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, LiaoNing, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, LiaoNing, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, LiaoNing, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, LiaoNing, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, LiaoNing, China
| | - Yuehua Gong
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, LiaoNing, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, LiaoNing, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, LiaoNing, China
| |
Collapse
|
42
|
Alafate W, Li X, Zuo J, Zhang H, Xiang J, Wu W, Xie W, Bai X, Wang M, Wang J. Elevation of CXCL1 indicates poor prognosis and radioresistance by inducing mesenchymal transition in glioblastoma. CNS Neurosci Ther 2020; 26:475-485. [PMID: 32187449 PMCID: PMC7080429 DOI: 10.1111/cns.13297] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/14/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Glioblastoma (GBM) is identified as a lethal malignant tumor derived from the nervous system. Despite the standard clinical strategy including maximum surgical resection, temozolomide (TMZ) chemotherapy, and radiotherapy, the median survival of GBM patients remains <15 months. Accumulating evidence indicates that rapid-acquired radioresistance is one of the most common reasons for GBM recurrence. Therefore, developing novel therapeutic targets for radioresistant GBM could yield long-term cures. AIMS To investigate the functional role of CXCL1 in the acquired radioresistance and identify the molecular pathway correlated to CXCL1. RESULTS In this study, we identified that CXCL1 is highly expressed in GBM and the elevation of CXCL1 is involved in radioresistance and poor prognosis in GBM patients. Additionally, silencing CXCL1 attenuated the proliferation and radioresistance of GBM cells. Furthermore, we demonstrated that CXCL1-overexpression induced radioresistance through mesenchymal transition of GBM via the activation of nuclear factor-kappa B (NF-κB) signaling. CONCLUSION CXCL1 was highly enriched in GBM and positively correlated with poor prognosis in GBM patients. Additionally, elevated CXCL1 induced radioresistance in GBM through regulation of NF-κB signaling by promoting mesenchymal transition in GBM.
Collapse
Affiliation(s)
- Wahafu Alafate
- Department of NeurosurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Center of Brain ScienceThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Xiaodong Li
- Department of NeurosurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Jie Zuo
- The Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Hua Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Center of Brain ScienceThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Jianyang Xiang
- Department of NeurosurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Wei Wu
- Department of NeurosurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Wanfu Xie
- Department of NeurosurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Xiaobin Bai
- Department of NeurosurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Maode Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Center of Brain ScienceThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Jia Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Center of Brain ScienceThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
43
|
Xu Y, Li Y, Pan J, Kang X, Zhang X, Feng X, Li S, Li C, Zhang J, Li C, Wang G. EM2D9, A monoclonal antibody against integrin α5β1, has potent antitumor activity on endometrial cancer in vitro and in vivo. Cancer Lett 2020; 483:66-74. [PMID: 32142917 DOI: 10.1016/j.canlet.2020.02.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 01/20/2020] [Accepted: 02/14/2020] [Indexed: 12/18/2022]
Abstract
Endometrial cancer, a type of primary epithelial malignant tumor in the endometrium, is one of the three most common malignant tumors of the female reproductive system. While the incidence of endometrial cancer has been recently rising, its etiology remains unclear. In this study we found that EM2D9, an independently developed monoclonal antibody, specifically recognized endometrial cancer cells; we further determined that EM2D9 target protein was α5β1. In vitro and in vivo experiments showed that EM2D9 inhibited the migration of endometrial cancer cells. Real-time quantitative PCR results showed that the expression of CD151 mRNA in endometrial carcinoma cells significantly decreased after EM2D9 treatment. We also found that EM2D9 affected the FAK signaling pathway. Collectively, these results shed light on a new mechanism for the development of endometrial carcinoma.
Collapse
Affiliation(s)
- Yinyan Xu
- The Key Laboratory for Bionics Engineering, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, 130021, China
| | - Yi Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100083, China
| | - Jiahui Pan
- The Key Laboratory for Bionics Engineering, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, 130021, China
| | - Xing Kang
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xu Zhang
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinyi Feng
- Beijing No.4 High School International Campus, Beijing, 100031, China
| | - Shucheng Li
- Beijing Jianlan Institute of Medicine, Beijing, 100190, China
| | - Chengxi Li
- Beijing Jianlan Institute of Medicine, Beijing, 100190, China
| | - Jinku Zhang
- Baoding First Central Hospital, Baoding, Hebei, 071000, China
| | - Chong Li
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Jianlan Institute of Medicine, Beijing, 100190, China.
| | - Guoqing Wang
- The Key Laboratory for Bionics Engineering, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, 130021, China.
| |
Collapse
|
44
|
The Gastrointestinal Tumor Microenvironment: An Updated Biological and Clinical Perspective. JOURNAL OF ONCOLOGY 2019; 2019:6240505. [PMID: 31885581 PMCID: PMC6893275 DOI: 10.1155/2019/6240505] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/30/2019] [Indexed: 12/24/2022]
Abstract
Gastrointestinal cancers are still responsible for high numbers of cancer-related deaths despite advances in therapy. Tumor-associated cells play a key role in tumor biology, by supporting or halting tumor development through the production of extracellular matrix, growth factors, cytokines, and extracellular vesicles. Here, we review the roles of these tumor-associated cells in the initiation, angiogenesis, immune modulation, and resistance to therapy of gastrointestinal cancers. We also discuss novel diagnostic and therapeutic strategies directed at tumor-associated cells and their potential benefits for the survival of these patients.
Collapse
|
45
|
Nie K, Shi L, Wen Y, Pan J, Li P, Zheng Z, Liu F. Identification of hub genes correlated with the pathogenesis and prognosis of gastric cancer via bioinformatics methods. Minerva Med 2019; 111:213-225. [PMID: 31638362 DOI: 10.23736/s0026-4806.19.06166-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Gastric cancer (GC) is the fourth most common cause of cancer-related deaths in the world and 5-year overall survival (OS) rate is less than 10%. So, it is urgent to identified novel diagnostic and prognostic biomarkers. METHODS Twelve GEO (gene expression omnibus) datasets were obtained from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) between GC and normal tissues were screened and integrated using limma and RobustRankAggreg (RRA) packages in R software. Protein-protein interaction (PPI) network, GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analyses for DEGs were conducted via STRING and DAVID, respectively. Moreover, Cox regression model was used to construct a gene prognosis signature. RESULTS Ten genes (COL1A1, CXCL8, COL3A1, SPP1, COL1A2, TIMP1, CXCL1, BGN, MMP3 and SERPINE1) were identified and might be highly related to GC. Further analysis showed high expression of CXCL8, COL3A1, CXCL1, MMP3 and SERPINE1, were significantly associated with late stage of GC. Lastly, we build a seven-gene prognosis signature (CYP19A1, SERPINE1, CGB5, CALCR, ASGR2, CYTL1 and ABCB5), which can give a good prediction of OS. CONCLUSIONS Our article screened out key genes highly associating with GC's developments and prognosis, and it is useful for researcher to further understand GC's molecular basis and direct the synthesis medicine of GC.
Collapse
Affiliation(s)
- Kechao Nie
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Laner Shi
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yi Wen
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jinglin Pan
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Peiwu Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhihua Zheng
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Fengbin Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China -
| |
Collapse
|
46
|
Dieterich LC, Kapaklikaya K, Cetintas T, Proulx ST, Commerford CD, Ikenberg K, Bachmann SB, Scholl J, Detmar M. Transcriptional profiling of breast cancer-associated lymphatic vessels reveals VCAM-1 as regulator of lymphatic invasion and permeability. Int J Cancer 2019; 145:2804-2815. [PMID: 31344266 PMCID: PMC6771758 DOI: 10.1002/ijc.32594] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 12/16/2022]
Abstract
Tumor‐associated lymphangiogenesis and lymphatic invasion of tumor cells correlate with poor outcome in many tumor types, including breast cancer. Various explanations for this correlation have been suggested in the past, including the promotion of lymphatic metastasis and an immune‐inhibitory function of lymphatic endothelial cells (LECs). However, the molecular features of tumor‐associated lymphatic vessels and their implications for tumor progression have been poorly characterized. Here, we report the first transcriptional analysis of tumor‐associated LECs directly isolated from the primary tumor in an orthotopic mouse model of triple negative breast cancer (4T1). Gene expression analysis showed a strong upregulation of inflammation‐associated genes, including endothelial adhesion molecules such as VCAM‐1, in comparison to LECs derived from control tissue. In vitro experiments demonstrated that VCAM‐1 is not involved in the adhesion of tumor cells to LECs but unexpectedly promoted lymphatic permeability by weakening of lymphatic junctions, most likely through a mechanism triggered by interactions with integrin α4 which was also induced in tumor‐associated LECs. In line with this, in vivo blockade of VCAM‐1 reduced lymphatic invasion of 4T1 cells. Taken together, our findings suggest that disruption of lymphatic junctions and increased permeability via tumor‐induced lymphatic VCAM‐1 expression may represent a new target to block lymphatic invasion and metastasis. What's new? Tumor‐associated lymphatic vessels serve important roles in tumor progression and metastasis. Nonetheless, little is known about the molecular changes in these vessels that give rise to a tumor‐promoting phenotype. In this study, transcriptional analysis was performed on lymphatic endothelial cells (LECs) isolated from a mouse model of triple‐negative breast cancer. Endothelial adhesion molecules, including tumor‐induced VCAM‐1, were strongly upregulated in tumor‐associated LECs. Additional experiments showed that VCAM‐1 upregulation influences lymphatic permeability and that its inhibition attenuates lymphatic breast cancer cell invasion. The findings identify VCAM‐1 as a potential target for the blockade of lymphatic invasion of tumor cells.
Collapse
Affiliation(s)
- Lothar C. Dieterich
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) ZurichZurichSwitzerland
| | - Kübra Kapaklikaya
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) ZurichZurichSwitzerland
| | - Timur Cetintas
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) ZurichZurichSwitzerland
| | - Steven T. Proulx
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) ZurichZurichSwitzerland
| | - Catharina D. Commerford
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) ZurichZurichSwitzerland
| | - Kristian Ikenberg
- Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Samia B. Bachmann
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) ZurichZurichSwitzerland
| | - Jeannette Scholl
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) ZurichZurichSwitzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) ZurichZurichSwitzerland
| |
Collapse
|
47
|
Zhang Z, Chen Y, Jiang Y, Luo Y, Zhang H, Zhan Y. Prognostic and clinicopathological significance of CXCL1 in cancers: a systematic review and meta-analysis. Cancer Biol Ther 2019; 20:1380-1388. [PMID: 31387444 DOI: 10.1080/15384047.2019.1647056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background The prognostic value of Chemokine (C-X-C motif) ligand 1 (CXCL1) in various types of cancer remains controversial. Here we aimed to evaluate the prognostic role of CXCL1 for cancer. Methods A comprehensively search of the PubMed, Embase, Web of Science, Wanfang and China National Knowledge Internet databases was conducted to retrieve eligible studies meeting the inclusion criteria. Overall survival (OS), progression-free survival (PFS) and various clinicopathological parameters were defined as endpoints. Stata SE12.0 software was used for quantitative meta-analysis. Results A total of 17 studies encompassing 2265 cancer patients were included. Our meta-analysis showed that patients with higher CXCL1 expression had significantly shorter OS, according to both multivariate (HR 1.51, 95% CI 1.19-1.83, P < .01) and univariate analysis (HR 2.08, 95% CI 1.62-2.54, P < .01). Furthermore, higher CXCL1 expression was significantly correlated with advanced TNM stage and lymph node metastasis (both P < .05). Conclusions High CXCL1 expression is a risk factor for cancer prognosis indicating a poor OS, and advanced TNM stage and lymph node metastasis, demonstrating that it may be a promising prognostic biomarker for different cancers.
Collapse
Affiliation(s)
- Zulei Zhang
- Department of Emergency and Critical Care Medicine, Second Affiliated Hospital of Nanchang University , Nanchang , Jiangxi , P.R. China.,Department of the Graduate School, Nanchang University , Nanchang , Jiangxi , People's Republic of China
| | - Yuting Chen
- Department of Emergency and Critical Care Medicine, Second Affiliated Hospital of Nanchang University , Nanchang , Jiangxi , P.R. China.,Department of the Graduate School, Nanchang University , Nanchang , Jiangxi , People's Republic of China
| | - Yaofei Jiang
- Department of the Graduate School, Nanchang University , Nanchang , Jiangxi , People's Republic of China.,Wuhan University , Wuhan , Hubei , People's Republic of China.,Department of Radiology, Second Affiliated Hospital of Nanchang University , Jiangxi , China
| | - Yan Luo
- Department of Radiology, Second Affiliated Hospital of Nanchang University , Jiangxi , China
| | - Hao Zhang
- Department of the Graduate School, Nanchang University , Nanchang , Jiangxi , People's Republic of China
| | - Yakun Zhan
- Department of Emergency and Critical Care Medicine, Second Affiliated Hospital of Nanchang University , Nanchang , Jiangxi , P.R. China
| |
Collapse
|
48
|
Yang C, Yu H, Chen R, Tao K, Jian L, Peng M, Li X, Liu M, Liu S. CXCL1 stimulates migration and invasion in ER‑negative breast cancer cells via activation of the ERK/MMP2/9 signaling axis. Int J Oncol 2019; 55:684-696. [PMID: 31322183 PMCID: PMC6685590 DOI: 10.3892/ijo.2019.4840] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 07/01/2019] [Indexed: 12/19/2022] Open
Abstract
Chemokine (C‑X‑C motif) ligand 1 (CXCL1), a member of the CXC chemokine family, has been reported to be a critical factor in inflammatory diseases and tumor progression; however, its functions and molecular mechanisms in estrogen receptor α (ER)‑negative breast cancer (BC) remain largely unknown. The present study demonstrated that CXCL1 was upregulated in ER‑negative BC tissues and cell lines compared with ER‑positive tissues and cell lines. Treatment with recombinant human CXCL1 protein promoted ER‑negative BC cell migration and invasion in a dose‑dependent manner, and stimulated the activation of phosphorylated (p)‑ extracellular signal‑regulated kinase (ERK)1/2, but not p‑STAT3 or p‑AKT. Conversely, knockdown of CXCL1 in BC cells attenuated these effects. Additionally, CXCL1 increased the expression of matrix metalloproteinase (MMP)2/9 via the ERK1/2 pathway. Inhibition of MEK1/2 by its antagonist U0126 reversed the effects of CXCL1 on MMP2/9 expression. Furthermore, immunohistochemical analysis revealed a strong positive association between CXCL1 and p‑ERK1/2 expression levels in BC tissues. In conclusion, the present study demonstrated that CXCL1 is highly expressed in ER‑negative BC, and stimulates BC cell migration and invasion via the ERK/MMP2/9 pathway. Therefore, CXCL1 may serve as a potential therapeutic target in ER‑negative BC.
Collapse
Affiliation(s)
- Chengcheng Yang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Haochen Yu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Rui Chen
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Kai Tao
- Department of the Second of Gynecology Oncology, Shanxi Provincial Tumor Hospital, The Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shanxi 710061, P.R. China
| | - Lei Jian
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Meixi Peng
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiaotian Li
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shengchun Liu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
49
|
Liu BX, Huang GJ, Cheng HB. Comprehensive Analysis of Core Genes and Potential Mechanisms in Rectal Cancer. J Comput Biol 2019; 26:1262-1277. [PMID: 31211595 DOI: 10.1089/cmb.2019.0073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Rectal cancer is a common type of colorectal cancer with high mortality and morbidity. The objective of this study was to identify gene signatures and uncover the potential mechanisms during rectal cancer samples. The gene expression profiles of GSE87211 data set were downloaded from GEO (Gene Expression Omnibus) database. The GSE87211 data set contained 2363 samples, including 203 rectal cancer samples and 160 matched mucosa control samples. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted, and protein-protein interaction network of differentially expressed genes (DEGs) was performed by Cytoscape. Then, Gene Expression Profiling Interactive Analysis (GEPIA) was applied to get the hub genes expression level and survival analysis between rectum adenocarcinoma (READ) tissues and normal tissues. In total, 846 DEGs were identified, including 402 upregulated genes and 444 downregulated genes. GO analysis showed that upregulated DEGs were enriched in inflammatory response, signal transduction, cell adhesion, immune response, and positive regulation of cell proliferation. KEGG pathway analysis showed that upregulated DEGs were enriched in cytokine-cytokine receptor interaction, Pi3K-Akt signaling pathway, and chemokine signaling pathway. The top 20 hub genes contained IL8, CXCR1, SSTR2, SST, CXCR2, GALR1, GAL, CXCL1, SSTR1, NPY1R, NPY, AGT, PPY, PPBP, CXCL2, CXCL6, CXCL11, CXCL3, GNG4, and GNGT1, and only four genes significantly increased expression levels with obvious changes of survival analysis in READ tissues based on GEPIA. Our study indicated that identified DEGs might promote our understanding of molecular mechanisms, which might be used as molecular targets or diagnostic biomarkers for the treatment of rectal cancer.
Collapse
Affiliation(s)
- Bao-Xinzi Liu
- Department of Medical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Guan-Jiang Huang
- Department of Otorhinolaryngology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Hai-Bo Cheng
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| |
Collapse
|
50
|
Farnsworth RH, Karnezis T, Maciburko SJ, Mueller SN, Stacker SA. The Interplay Between Lymphatic Vessels and Chemokines. Front Immunol 2019; 10:518. [PMID: 31105685 PMCID: PMC6499173 DOI: 10.3389/fimmu.2019.00518] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/26/2019] [Indexed: 12/21/2022] Open
Abstract
Chemokines are a family of small protein cytokines that act as chemoattractants to migrating cells, in particular those of the immune system. They are categorized functionally as either homeostatic, constitutively produced by tissues for basal levels of cell migration, or inflammatory, where they are generated in association with a pathological inflammatory response. While the extravasation of leukocytes via blood vessels is a key step in cells entering the tissues, the lymphatic vessels also serve as a conduit for cells that are recruited and localized through chemoattractant gradients. Furthermore, the growth and remodeling of lymphatic vessels in pathologies is influenced by chemokines and their receptors expressed by lymphatic endothelial cells (LECs) in and around the pathological tissue. In this review we summarize the diverse role played by specific chemokines and their receptors in shaping the interaction of lymphatic vessels, immune cells, and other pathological cell types in physiology and disease.
Collapse
Affiliation(s)
- Rae H Farnsworth
- Tumor Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Tara Karnezis
- Lymphatic and Regenerative Medicine Laboratory, O'Brien Institute Department, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Simon J Maciburko
- Lymphatic and Regenerative Medicine Laboratory, O'Brien Institute Department, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.,The Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Melbourne, VIC, Australia
| | - Steven A Stacker
- Tumor Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|