1
|
Kateh Shamshiri M, Vakili-Ghartavol R, Aiyelabegan HT, Asvar Z, Zare Marzouni H, Matbou Riahi M, Jaafari MR. M2 macrophage-targeting peptide-modified liposomes enhance the uptake and antitumor efficacy of liposomal IFN-γ in mice with C26 colon carcinoma. Cytokine 2025; 187:156860. [PMID: 39799744 DOI: 10.1016/j.cyto.2025.156860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/23/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
While liposomes enhance the safety and pharmacokinetic profile of free drugs, they have not significantly improved therapeutic efficacy. To overcome this challenge, targeted depletion of tumor-associated macrophages (TAMs) shows significant potential as an effective antitumor therapy, reducing off-target effects in comparison to non-targeted liposomes. In the context of peptide-mediated targeted cancer therapy, we evaluated the reprogramming activity of IFN-γ liposomes on TAMs, as well as that of IFN-γ liposomes modified with an M2 macrophage-targeting peptide, which binds preferentially to murine anti-inflammatory M2 macrophages/M2-like TAMs. Flow cytometry analysis showed significantly enhanced cellular uptake of m2-peptide-targeted liposomes in J774.1 macrophage cell lines compared to non-targeted liposomes. In BALB/c mice bearing C-26 murine carcinoma, the m2-peptide-targeted liposome groups exhibited significantly higher IFN-γ concentrations compared to non-targeted counterparts within the tumor environment. Furthermore, m2-peptide-targeted F2 liposomes at doses of 25 μg IFN-γ/kg resulted in superior tumor growth inhibition and greater tumor accumulation, indicating the potential of macrophage-targeted therapy in cancer growth inhibition. However, they failed to improve the overall therapeutic efficacy compared to Doxil. This study proposes a combination therapy of m2-peptide-targeted IFN-γ liposomes with successful chemotherapeutic liposomes such as Doxil.
Collapse
Affiliation(s)
- Maryam Kateh Shamshiri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Roghayyeh Vakili-Ghartavol
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Zahra Asvar
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadi Zare Marzouni
- Qaen Faculty of Medical Sciences, Birjand University of Medical Sciences, Birjand, Iran
| | - Maryam Matbou Riahi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Cazalla E, Cuadrado A, García-Yagüe ÁJ. Role of the transcription factor NRF2 in maintaining the integrity of the Blood-Brain Barrier. Fluids Barriers CNS 2024; 21:93. [PMID: 39574123 PMCID: PMC11580557 DOI: 10.1186/s12987-024-00599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND The Blood-Brain Barrier (BBB) is a complex and dynamic interface that regulates the exchange of molecules and cells between the blood and the central nervous system. It undergoes structural and functional throughout oxidative stress and inflammation, which may compromise its integrity and contribute to the pathogenesis of neurodegenerative diseases. MAIN BODY Maintaining BBB integrity is of utmost importance in preventing a wide range of neurological disorders. NRF2 is the main transcription factor that regulates cellular redox balance and inflammation-related gene expression. It has also demonstrated a potential role in regulating tight junction integrity and contributing to the inhibition of ECM remodeling, by reducing the expression of several metalloprotease family members involved in maintaining BBB function. Overall, we review current insights on the role of NRF2 in addressing protection against the effects of BBB dysfunction, discuss its involvement in BBB maintenance in different neuropathological diseases, as well as, some of its potential activators that have been used in vitro and in vivo animal models for preventing barrier dysfunction. CONCLUSIONS Thus, emerging evidence suggests that upregulation of NRF2 and its target genes could suppress oxidative stress, and neuroinflammation, restore BBB integrity, and increase its protection.
Collapse
Affiliation(s)
- Eduardo Cazalla
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Antonio Cuadrado
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ángel Juan García-Yagüe
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain.
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
3
|
Anconelli L, Farioli F, Lodeserto P, Andreadi A, Borsetti F, Voltattorni M, Galassi L, Rossi M, Farruggia G, Blasi P, Orienti I. Antiproliferative and Morphological Effects of Fenretinide Lipid Nanosystems in Colon Adenocarcinoma Cells. Pharmaceutics 2024; 16:1421. [PMID: 39598544 PMCID: PMC11597870 DOI: 10.3390/pharmaceutics16111421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Objective: Colon adenocarcinoma is characterized by the downregulation of the retinoic acid receptor, making natural retinoids such as all-trans retinoic acid, 9-cis retinoic acid and 13-cis retinoic acid effective in treatment and chemoprevention due to their ability to increase RARβ expression. However, major limitations to their use include tolerability and acquired resistance. In this study, we evaluated fenretinide, a semisynthetic derivative of all-trans retinoic acid, in an HT-29 cell line. Fenretinide was evaluated both as a free drug and encapsulated in self-assembling phosphatidylcholine nanosystems with the aim of increasing the aqueous solubility and cell availability of the drug. Methods: Fenretinide was encapsulated in lipid nanosystems obtained in water by the dispersion of an amphiphilic mixture of phospholipids, glyceryl tributyrate and polysorbate 80. The physico-chemical characterization of the nanosystems was carried out by dynamic light scattering and spectrophotometry. The biological activity was evaluated by quantitative phase imaging microscopy, MTT assay, flow cytometry and confocal laser-scanning fluorescence microscopy. Results: Fenretinide in phosphatidylcholine nanosystems was more active than free fenretinide in inhibiting HT-29 cells' proliferation, as indicated by quantitative phase imaging data. Indeed, encapsulated fenretinide increased duplication time, decreased dry mass and decreased the rate of cell growth more efficiently than fenretinide. Moreover, encapsulated fenretinide effectively decreased the motility of the cells that survived the treatment. Conclusions: The results indicate that the proposed nanosystems can be considered a valuable alternative to natural retinoids in the chemoprevention and treatment of colorectal cancer. This is due to the favorable pharmacologic characteristics of fenretinide in colorectal cancer and the improved drug activity provided by nanoencapsulation.
Collapse
Affiliation(s)
- Lorenzo Anconelli
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (L.A.); (F.F.); (F.B.); (M.V.); (L.G.); (M.R.); (G.F.)
| | - Francesca Farioli
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (L.A.); (F.F.); (F.B.); (M.V.); (L.G.); (M.R.); (G.F.)
| | - Pietro Lodeserto
- Section of Endocrinology and Metabolic Diseases, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (P.L.); (A.A.)
| | - Aikaterini Andreadi
- Section of Endocrinology and Metabolic Diseases, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (P.L.); (A.A.)
| | - Francesca Borsetti
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (L.A.); (F.F.); (F.B.); (M.V.); (L.G.); (M.R.); (G.F.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40126 Bologna, Italy
| | - Manuela Voltattorni
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (L.A.); (F.F.); (F.B.); (M.V.); (L.G.); (M.R.); (G.F.)
| | - Lucrezia Galassi
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (L.A.); (F.F.); (F.B.); (M.V.); (L.G.); (M.R.); (G.F.)
| | - Martina Rossi
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (L.A.); (F.F.); (F.B.); (M.V.); (L.G.); (M.R.); (G.F.)
| | - Giovanna Farruggia
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (L.A.); (F.F.); (F.B.); (M.V.); (L.G.); (M.R.); (G.F.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40126 Bologna, Italy
- National Institute of Biostructures and Biosystems, Via dei Carpegna 19, 00165 Rome, Italy
| | - Paolo Blasi
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (L.A.); (F.F.); (F.B.); (M.V.); (L.G.); (M.R.); (G.F.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40126 Bologna, Italy
| | - Isabella Orienti
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (L.A.); (F.F.); (F.B.); (M.V.); (L.G.); (M.R.); (G.F.)
| |
Collapse
|
4
|
Albini A, Noonan DM, Corradino P, Magnoni F, Corso G. The Past and Future of Angiogenesis as a Target for Cancer Therapy and Prevention. Cancer Prev Res (Phila) 2024; 17:289-303. [PMID: 38714356 DOI: 10.1158/1940-6207.capr-24-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/04/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
Cancer growth is dependent on angiogenesis, the formation of new blood vessels, which represents a hallmark of cancer. After this concept was established in the 1970s, inhibition of tumor development and metastases by blocking the neoangiogenic process has been an important approach to the treatment of tumors. However, antiangiogenic therapies are often administered when cancer has already progressed. The key to reducing the cancer burden is prevention. We noticed 20 years ago that a series of possible cancer chemopreventive agents showed antiangiogenic properties when tested in experimental models. This article reviews the relevant advances in the understanding of the rationale for targeting angiogenesis for cancer therapy, prevention, and interception and recently investigated substances with antiangiogenic activity that may be suitable for such strategies. Many compounds, either dietary derivatives or repurposed drugs, with antiangiogenic activity are possible tools for cancer angioprevention. Such molecules have a favorable safety profile and are likely to allow the prolonged duration necessary for an efficient preventive strategy. Recent evidence on mechanisms and possible use is described here for food derivatives, including flavonoids, retinoids, triterpenoids, omega fatty acids, and carotenoids from marine microorganisms. As examples, a number of compounds, including epigallocatechin, resveratrol, xanthohumol, hydroxytyrosol, curcumin, fenretinide, lycopene, fucoxanthin, and repurposed drugs, such as aspirin, β blockers, renin-angiotensin-aldosterone inhibitors, carnitines, and biguanides, are reviewed.
Collapse
Affiliation(s)
- Adriana Albini
- European Institute of Oncologi IEO, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Douglas M Noonan
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- IRCCS MultiMedica, Milan, Italy
| | - Paola Corradino
- European Institute of Oncologi IEO, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Francesca Magnoni
- European Institute of Oncologi IEO, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Giovanni Corso
- European Institute of Oncologi IEO, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
5
|
Shu H, Lv W, Ren ZJ, Li H, Dong T, Zhang Y, Nie F. Ultrasound-mediated PLGA-PEI Nanobubbles Carrying STAT6 SiRNA Enhances NSCLC Treatment via Repolarizing Tumor-associated Macrophages from M2 to M1 Phenotypes. Curr Drug Deliv 2024; 21:1114-1127. [PMID: 37491853 DOI: 10.2174/1567201820666230724151545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/28/2023] [Accepted: 06/13/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) are crucial for non-small cell lung cancer (NSCLC) development. OBJECTIVE In this study, polylactic acid-co-glycolic acid (PLGA)-polyethylenimine (PEI) nanobubbles (NBs) carrying STAT6 siRNA were prepared and combined with ultrasound-mediated nanobubbles destruction (UMND) to silence the STAT6 gene, ultimately repolarizing TAMs from the M2 to the M1 phenotype, treating NSCLC in vitro. METHODS PLGA-PEI NBs-siRNA were prepared and characterised, and their respective ultrasound imaging, biological stabilities and cytotoxicities were detected. Transfection efficiency was evaluated by fluorescence microscopy and flow cytometry. Repolarization of THP-1-derived M2-like macrophages was determined by qPCR and flow cytometry. NSCLC cells (A549) were co-cultured with transfected M2-like macrophages or their associated conditioned medium (CM). Western blotting was used to detect STAT6 gene silencing in M2-like macrophages and markers of epithelial and mesenchymal in A549 cells. The proliferation of A549 cells was detected using CCK-8 and cell colony formation assays. Transwell assays were used to detect the migration and invasion of A549 cells. RESULTS PLGA-PEI NBs-siRNA had an average size of 223.13 ± 0.92 nm and a zeta potential of about -5.59 ± 0.97 mV. PLGA-PEI NBs showed excellent ultrasonic imaging capability in addition to biological stability to protect siRNA from degradation. UMND enhanced PLGA-PEI NBs-STAT6 siRNA transfection in M2-like macrophages, which made M2-like macrophages repolarize to M1-like macrophages and prevented proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) in A549 cells. CONCLUSION UMND enhanced PLGA-PEI NBs-STAT6 siRNA to repolarize TAMs from the M2 to the M1 phenotype, thus treating NSCLC. These findings provide a promising therapeutic approach for enhancing NSCLC immunotherapy.
Collapse
Affiliation(s)
- Hong Shu
- Ultrasound Medical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Department of Nephrology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Wenhao Lv
- Ultrasound Medical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zhi-Jian Ren
- Digestive Surgery, Xi 'an International Medical Center Hospital, Xi'an, Shaanxi, China
| | - Hui Li
- Ultrasound Medical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Tiantian Dong
- Ultrasound Medical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yao Zhang
- Ultrasound Medical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Fang Nie
- Ultrasound Medical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
6
|
Leal AS, Hung PY, Chowdhury AS, Liby KT. Retinoid X Receptor agonists as selective modulators of the immune system for the treatment of cancer. Pharmacol Ther 2023; 252:108561. [PMID: 37952906 PMCID: PMC10704405 DOI: 10.1016/j.pharmthera.2023.108561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/28/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Upon heterodimerizing with other nuclear receptors, retinoid X receptors (RXR) act as ligand-dependent transcription factors, regulating transcription of critical signaling pathways that impact numerous hallmarks of cancer. By controlling both inflammation and immune responses, ligands that activate RXR can modulate the tumor microenvironment. Several small molecule agonists of these essential receptors have been synthesized. Historically, RXR agonists were tested for inhibition of growth in cancer cells, but more recent drug discovery programs screen new molecules for inhibition of inflammation or activation of immune cells. Bexarotene is the first successful example of an effective therapeutic that molecularly targets RXR; this drug was approved to treat cutaneous T cell lymphoma and is still used as a standard of care treatment for this disease. No additional RXR agonists have yet achieved FDA approval, but several promising novel compounds are being developed. In this review, we provide an overview of the multiple mechanisms by which RXR signaling regulates inflammation and tumor immunity. We also discuss the potential of RXR-dependent immune cell modulation for the treatment or prevention of cancer and concomitant challenges and opportunities.
Collapse
Affiliation(s)
- Ana S Leal
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States of America; Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Pei-Yu Hung
- Department of Physiology, Michigan State University, East Lansing, MI, United States of America
| | - Afrin Sultana Chowdhury
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Karen T Liby
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States of America; Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States of America.
| |
Collapse
|
7
|
Xu G, Mo Y, Li J, Wei Q, Zhou F, Chen J. Two tripartite classification systems of CD86 + and CD206 + macrophages are significantly associated with tumor recurrence in stage II-III colorectal cancer. Front Immunol 2023; 14:1136875. [PMID: 37342343 PMCID: PMC10277500 DOI: 10.3389/fimmu.2023.1136875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/22/2023] [Indexed: 06/22/2023] Open
Abstract
Introduction The prognostic value of tumor-associated macrophages remains unclear in colorectal cancer (CRC). Two tripartite classification systems, namely, ratio and quantity subgroups, were investigated as the prognostic stratification tools for stage II-III CRC. Methods We assessed the infiltration intensity of CD86+ and CD206+ macrophages in 449 cases with stage II-III disease by immunohistochemical staining. Ratio subgroups were defined by the lower- and upper-quartile points of CD206+/(CD86++CD206+) macrophage ratio, including the low-, moderate-, and high-ratio subgroups. Quantity subgroups were defined by the median points of CD86+ and CD206+ macrophages and included the low-, moderate-, and high-risk subgroups. The main analysis was recurrence-free survival (RFS) and overall survival (OS). Results Ratio subgroups (RFS/OS: HR=2.677/2.708, all p<0.001) and quantity subgroups (RFS/OS: HR=3.137/3.250, all p<0.001) could serve as independent prognostic indicators that effectively predicted survival outcomes. More importantly, log-rank test revealed that patients in the high-ratio (RFS/OS: HR=2.950/3.151, all p<0.001) or high-risk (RFS/OS: HR=3.453/3.711, all p<0.001) subgroup exhibited decreased survival outcomes after adjuvant chemotherapy. The predictive accuracy of the quantity subgroups within 48 months was higher than that of the ratio subgroups and tumor stage (all p<0.05). Conclusions Ratio and quantity subgroups could serve as independent prognostic indicators that could potentially be incorporated into the tumor staging algorithm to improve prognostic stratification and provide better predictions of survival outcomes in stage II-III CRC after adjuvant chemotherapy.
Collapse
Affiliation(s)
- Guozeng Xu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei, China
- Department of Oncology, Liuzhou People’s Hospital of Guangxi Medical University, Guangxi, China
| | - Yuzhen Mo
- Department of Radiation Oncology, Guangzhou Red Cross Hospital of Jinan University, Guangdong, China
| | - Jing Li
- Department of Oncology, Liuzhou People’s Hospital of Guangxi Medical University, Guangxi, China
| | - Qingqing Wei
- Department of Oncology, Liuzhou People’s Hospital of Guangxi Medical University, Guangxi, China
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei, China
| | - Jian Chen
- Department of Medical Oncology, Yantai Yuhuangding Hospital of Qingdao University, Shandong, China
| |
Collapse
|
8
|
Yao Y, Tao J, Lyu J, Chen C, Huang Y, Zhou Z. Enhance Mitochondrial Damage by Nuclear Export Inhibition to Suppress Tumor Growth and Metastasis with Increased Antitumor Properties of Macrophages. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20774-20787. [PMID: 37079389 DOI: 10.1021/acsami.3c02305] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Mitochondria-targeting damage has become a popular therapeutic option for tumor metastasis; however, its efficacy is limited by the adaptive rescue capacity of nuclei. There is an urgent need for a dual mitochondrial and nuclear targeting strategy that can also increase the antitumor capacity of macrophages. In this study, XPO1 inhibitor KPT-330 nanoparticles were combined with mitochondria-targeting lonidamine (TPP-LND) nanoparticles. The combination of nanoparticles with a 1:4 ratio of KPT and TL demonstrated the best synergistic effect in restraining the proliferation and metastasis of 4T1 breast cancer cells. Investigating the mechanisms both in vitro and in vivo, it was found that KPT nanoparticles not only directly impede tumor growth and metastasis by controlling the expression of associated proteins but also indirectly facilitate mitochondrial damage. The two nanoparticles synergistically decreased the expression of cytoprotective factors, such as Mcl-1 and Survivin, causing mitochondrial dysfunction and thus inducing apoptosis. Additionally, it downregulated metastasis-related proteins like HIF-1α, vascular endothelial growth factor (VEGF), and matrix metalloproteinase 2 (MMP-2) and reduced endothelial-to-mesenchymal transition. Significantly, their combination increased the ratio of M1 tumor-associated macrophages (TAMs)/M2 TAMs both in vitro and in vivo and increased the phagocytosis of tumor cells by macrophages, thus suppressing tumor growth and metastasis. In summary, this research revealed that nuclear export inhibition can synergistically enhance the prevention of mitochondrial damage to tumor cells, heightening the antitumor properties of TAMs, thereby providing a viable and safe therapeutic approach for the treatment of tumor metastasis.
Collapse
Affiliation(s)
- Yuan Yao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jing Tao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiayan Lyu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Cheng Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhou Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Cao H, Wang D, Gao R, Feng Y, Chen L. Qi Ling decreases paclitaxel resistance in the human prostate cancer by reversing tumor-associated macrophages function. Aging (Albany NY) 2022; 14:1812-1821. [PMID: 35193986 PMCID: PMC8908933 DOI: 10.18632/aging.203904] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Tumor-associated macrophages (TAMs) are critical immune cells infiltrated into tumor. In present study, we evaluated the effects of Qi Ling (QL), a traditional Chinese medicine on paclitaxel resistance in prostate cancer cells and explored the underlying mechanisms. We administrated QL to rats and collected the serum from QL-treated rats (QL-serum). We established the co-culture system of TAMs/paclitaxel resistant prostate cancer cells. We treated the TAMs with QL-serum and measured the viability of paclitaxel resistant prostate cancer cells after exposing to paclitaxel. We monitored the expression of M1 and M2 markers, the expression and activation of IL-6/STAT3 signaling pathways in TAMs after QL treatment. We treated TAMs with QL-serum together with interleukin (IL)-6, measured the expression of M1 and M2 markers, and the viability of paclitaxel resistant prostate cancer cells. In co-culture system, QL-serum-treated TAMs decreased the paclitaxel resistance in the human prostate cancer cells. QL-serum treatment significantly up-regulated the expression of M1 markers inducible nitric oxide synthase and tumor necrosis factor α while decreased the expression of M2 markers IL-10 and chemokine (C-C motif) ligand 22. QL-serum suppressed the activation of IL-6/ signal transducer and activator of transcription 3 signaling pathway. All these effects of QL-serum were abolished in the presence of IL-6. Qi Ling re-programmed TAMs and decreases paclitaxel resistance in prostate cancer cells.
Collapse
Affiliation(s)
- Hongwen Cao
- Surgical Department I (Urology Department), Longhua Hospital Shanghai University of Traditional Chinese Medicine, Xuhui, Shanghai 200032, China
| | - Dan Wang
- Surgical Department I (Urology Department), Longhua Hospital Shanghai University of Traditional Chinese Medicine, Xuhui, Shanghai 200032, China
| | - Renjie Gao
- Surgical Department I (Urology Department), Longhua Hospital Shanghai University of Traditional Chinese Medicine, Xuhui, Shanghai 200032, China
| | - Yigeng Feng
- Surgical Department I (Urology Department), Longhua Hospital Shanghai University of Traditional Chinese Medicine, Xuhui, Shanghai 200032, China
| | - Lei Chen
- Surgical Department I (Urology Department), Longhua Hospital Shanghai University of Traditional Chinese Medicine, Xuhui, Shanghai 200032, China
| |
Collapse
|
10
|
He N, Jiang J. Contribution of immune cells to bone metastasis pathogenesis. Front Endocrinol (Lausanne) 2022; 13:1019864. [PMID: 36246916 PMCID: PMC9556850 DOI: 10.3389/fendo.2022.1019864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Bone metastasis is closely related to the survival rate of cancer patients and reduces their quality of life. The bone marrow microenvironment contains a complex immune cell component with a local microenvironment that is conducive to tumor formation and growth. In this unique immune environment, a variety of immune cells, including T cells, natural killer cells, macrophages, dendritic cells, and myeloid-derived suppressor cells, participate in the process of bone metastasis. In this review, we will introduce the interactions between immune cells and cancer cells in the bone microenvironment, obtain the details of their contributions to the implications of bone metastasis, and discuss immunotherapeutic strategies targeting immune cells in cancer patients with bone metastasis.
Collapse
Affiliation(s)
- Ningning He
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Department of Oncology, Yangzhou University, Yangzhou, China
- Department of Oncology, First People’s Hospital of Changzhou, Changzhou, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Department of Oncology, First People’s Hospital of Changzhou, Changzhou, China
- *Correspondence: Jingting Jiang,
| |
Collapse
|
11
|
Ban J, Fock V, Aryee DNT, Kovar H. Mechanisms, Diagnosis and Treatment of Bone Metastases. Cells 2021; 10:2944. [PMID: 34831167 PMCID: PMC8616226 DOI: 10.3390/cells10112944] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 12/24/2022] Open
Abstract
Bone and bone marrow are among the most frequent metastatic sites of cancer. The occurrence of bone metastasis is frequently associated with a dismal disease outcome. The prevention and therapy of bone metastases is a priority in the treatment of cancer patients. However, current therapeutic options for patients with bone metastatic disease are limited in efficacy and associated with increased morbidity. Therefore, most current therapies are mainly palliative in nature. A better understanding of the underlying molecular pathways of the bone metastatic process is warranted to develop novel, well-tolerated and more successful treatments for a significant improvement of patients' quality of life and disease outcome. In this review, we provide comparative mechanistic insights into the bone metastatic process of various solid tumors, including pediatric cancers. We also highlight current and innovative approaches to biologically targeted therapy and immunotherapy. In particular, we discuss the role of the bone marrow microenvironment in the attraction, homing, dormancy and outgrowth of metastatic tumor cells and the ensuing therapeutic implications. Multiple signaling pathways have been described to contribute to metastatic spread to the bone of specific cancer entities, with most knowledge derived from the study of breast and prostate cancer. However, it is likely that similar mechanisms are involved in different types of cancer, including multiple myeloma, primary bone sarcomas and neuroblastoma. The metastatic rate-limiting interaction of tumor cells with the various cellular and noncellular components of the bone-marrow niche provides attractive therapeutic targets, which are already partially exploited by novel promising immunotherapies.
Collapse
Affiliation(s)
- Jozef Ban
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (J.B.); (V.F.); (D.N.T.A.)
| | - Valerie Fock
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (J.B.); (V.F.); (D.N.T.A.)
| | - Dave N. T. Aryee
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (J.B.); (V.F.); (D.N.T.A.)
- Department of Pediatrics, Medical University Vienna, 1090 Vienna, Austria
| | - Heinrich Kovar
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (J.B.); (V.F.); (D.N.T.A.)
- Department of Pediatrics, Medical University Vienna, 1090 Vienna, Austria
| |
Collapse
|
12
|
Suo RY, Wang ZY, Wang JS, Zhang GJ, Zhang J. Role of long non-coding RNA in regulating polarization of gastric cancer macrophages. Shijie Huaren Xiaohua Zazhi 2021; 29:1096-1101. [DOI: 10.11569/wcjd.v29.i19.1096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are an important part of the tumor microenvironment. They are distributed in tumor tissues and distant metastatic sites, and are related to tumor progression and prognosis. TAMs M2 can promote tumor biological processes such as tumor proliferation, invasion, and metastasis, and inhibit apoptosis, and are obviously related to the poor prognosis of tumor patients. In recent years, the role of long non-coding RNAs (lncRNAs) in regulating the polarization of macrophages has gradually been revealed, which can affect the occurrence and development of tumors by adjusting the polarization of macrophages. Studies have shown that lncRNAs play an important role in the polarization process of gastric cancer macrophages. This article summarizes the related research reports, hoping to provide ideas for studies that interfere with the polarization process of TAMs to inhibit tumor progression.
Collapse
Affiliation(s)
- Rui-Yang Suo
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China,Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Zhi-Yu Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China,Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Jian-Sheng Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Guang-Jian Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jia Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
13
|
Yang R, Xie Y, Li Q, Ye Y, Shi Y, Zhao X, Wu C, Xu Y, Wang R, Zhang Y, Yang X, Han X, Liu S. Ruyiping extract reduces lung metastasis in triple negative breast cancer by regulating macrophage polarization. Biomed Pharmacother 2021; 141:111883. [PMID: 34246955 DOI: 10.1016/j.biopha.2021.111883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/04/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022] Open
Abstract
Lung metastasis of Triple-negative breast cancer (TNBC) causes severe breath-related events and poor prognosis. Ruyiping (RYP), a traditional Chinese medicine prescription, is used to treat breast cancer lung metastasis in clinical practice. This study was to explore the anti-lung-metastatic activities and mechanism of RYP extract by regulating macrophage polarization. The results showed that RYP can inhibit the viability and induce the apoptosis of TNBC cells. In in vitro experiments, RYP significantly inhibited the invasion and migration ability of TNBC cells promoted by M2, the subtype of macrophage which increased TNBC metastasis related genes. In in vivo experiments, RYP reduced the TNBC progression and lung metastasis. M2/M1 ration in the lung and M2 in the tumor was reduced by RYP, as well as M2 master regulator Stat6. Therefore, RYP extract may exhibit anti-lung metastasis function by reducing M2 in both tumor and lung through reducing Stat6.
Collapse
Affiliation(s)
- Rui Yang
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Ying Xie
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Qiong Li
- Department of Breast Surgery, Yueyang Hospital of Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200000, China
| | - Yiyi Ye
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Youyang Shi
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xiangdong Zhao
- Department of Anus and Intestine Surgery, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518000, China
| | - Chunyu Wu
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yiyun Xu
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Rui Wang
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yang Zhang
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xiaojuan Yang
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xianghui Han
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Sheng Liu
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
14
|
Guo C, Islam R, Zhang S, Fang J. Metabolic reprogramming of macrophages and its involvement in inflammatory diseases. EXCLI JOURNAL 2021; 20:628-641. [PMID: 33883988 PMCID: PMC8056050 DOI: 10.17179/excli2020-3053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/03/2021] [Indexed: 12/28/2022]
Abstract
Macrophages are critical effector cells of the innate immune system. The presence of microbes or the stimulation by inflammatory factors triggers the metabolic reprogramming of macrophages or macrophage polarization into two phenotypes: the classically activated macrophages (M1) displaying a pro-inflammatory phenotype and the alternatively activated macrophages (M2) having anti-inflammatory functions. The imbalance between the two phenotypes has been linked with various pathological states, such as fibrosis, hepatitis, colitis, and tumor progression. An avenue of potential therapeutic strategies based on macrophage polarization has emerged. Therefore, it is essential to understand the mechanisms of macrophage polarization. In this review, we focus on the macrophage polarization process and discuss the stimuli-dependent conversion into M1 and M2 phenotypes. We also present the metabolic patterns supporting their specific functions. The factors and signaling cascades involved in intra-class switching are also detailed. Finally, the role of macrophage polarization in disease progression is discussed.
Collapse
Affiliation(s)
- Chunyu Guo
- Department of Toxicology, School of Public Health, Anhui Medical University, and Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, No 81 Meishan Road, Hefei 230032, China
| | - Rayhanul Islam
- Faculty of Pharmaceutical Science, Sojo University, Ikeda 4-22-1, Kumamoto 860-0082, Japan
| | - Shichen Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, China
| | - Jun Fang
- Department of Toxicology, School of Public Health, Anhui Medical University, and Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, No 81 Meishan Road, Hefei 230032, China.,Faculty of Pharmaceutical Science, Sojo University, Ikeda 4-22-1, Kumamoto 860-0082, Japan
| |
Collapse
|
15
|
Yang J, Wen Z, Li W, Sun X, Ma J, She X, Zhang H, Tu C, Wang G, Huang D, Shen X, Dong J, Zhang H. Immune Microenvironment: New Insight for Familial Adenomatous Polyposis. Front Oncol 2021; 11:570241. [PMID: 33628741 PMCID: PMC7897671 DOI: 10.3389/fonc.2021.570241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Currently, the main treatment for familial adenomatous polyposis (FAP) is surgery, however, surgery is far from ideal as there are many complications such as uncontrollable bowel movements, pouch inflammation, anastomotic stricture, and secondary fibroids. Therefore, it is necessary to further expand the understanding of FAP and develop new treatments for FAP. The immune microenvironment including immune cells and cytokines, plays an important role in FAP and the progression of FAP to adenocarcinoma, thus it may be a promising treatment for FAP. In the current review, we summarized the recent progress in the immune microenvironment of FAP.
Collapse
Affiliation(s)
- Jun Yang
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhengqi Wen
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenliang Li
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xianghua Sun
- Department of Cadre Recuperation, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Junrui Ma
- Department of Nursing, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xueke She
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Hongbin Zhang
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Changling Tu
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunan Cancer Hospital, Kunming, China
| | - Guoqiang Wang
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Depei Huang
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Xudong Shen
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Jian Dong
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunan Cancer Hospital, Kunming, China
| | - Hushan Zhang
- The Medical Department, 3D Medicines Inc., Shanghai, China
| |
Collapse
|
16
|
Dong R, Zhang B, Tan B, Lin N. Long non-coding RNAs as the regulators and targets of macrophage M2 polarization. Life Sci 2021; 266:118895. [PMID: 33310042 DOI: 10.1016/j.lfs.2020.118895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/16/2020] [Accepted: 12/04/2020] [Indexed: 12/30/2022]
Abstract
Macrophages are immune cells with high heterogeneity and plasticity. M2 polarization is one extreme of the well-established phenotypes of macrophage polarization, and involves in diverse biological processes. The polarization process is initiated at the command of numerous components. Long non-coding RNAs (lncRNAs) are RNAs longer than 200 nucleotides with limited protein-coding capacity. Recent studies have revealed a newly found subset of lncRNAs engaged in the M2 polarization and their potent and multifunctional roles in developing diseases. By interfering with specific signaling pathways and altering the active mode, acting as the sponges of microRNAs or decoys of transcription factors, lncRNAs prompted macrophages to an M2 phenotype. Further, lncRNAs can bind to the genome to regulate the chromatin dynamics or work as a platform for protein complexes tether. Exosomal lncRNAs can also orchestrate the polarization in a paracrine way. To make it easier to interpret the roles of lncRNAs in the M2 polarization, we review the reported lncRNAs according to the underlying mechanisms. Moreover, we discuss the possibilities of targeting macrophages' M2 polarization using the oligonucleotides drugs or clustered regularly interspaced palindromic repeats (CRISPR) technologies to provoke wisdom on the therapeutic strategies.
Collapse
Affiliation(s)
- Rong Dong
- Department of Clinical Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Bo Zhang
- Translational Medicine Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 31006, China
| | - Biqin Tan
- Department of Clinical Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Nengming Lin
- Department of Clinical Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Translational Medicine Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 31006, China.
| |
Collapse
|
17
|
Cao Y, Lin Y, Sun Y, Liu W, Shao Y, Zheng C. Fenretinide regulates macrophage polarization to protect against experimental colitis induced by dextran sulfate sodium. Bioengineered 2020; 12:151-161. [PMID: 33380244 PMCID: PMC8806340 DOI: 10.1080/21655979.2020.1859259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fenretinide (4-HPR), a synthetic retinoid, has attracted attention for its anti-inflammation activity. However, few studies have evaluated the effects of 4-HPR on ulcerative colitis (UC). The present study was performed to investigate the therapeutic effects of 4-HPR on UC, and to explore the mechanisms mainly focused on macrophage polarization involved in this progress. Intraperitoneally administered 4-HPR particularly at dose of 100 mg/kg obviously alleviated UC symptoms and restrained the mRNA expression of colonic IL-1β, IL-6, and TNF-α in dextran sulfate sodium (DSS)-induced mice. Further analysis showed that 4-HPR decreased the mRNA expression of M1 macrophage markers IL-12 and iNOS, while increased M2 macrophage markers Ym1, Arg1 and MRC1 in colonic tissue of mice received DSS. Consistently, an in vitro study revealed that 4-HPR decreased inflammatory response and M1 polarization, while enhanced M2 polarization in LPS-induced RAW264.7 cells. Interestingly, 4-HPR remarkably activated PPAR-γ which was an important regulator of macrophage polarization both in colonic tissue of UC mice and in LPS-induced RAW264.7 cells. Furthermore, these effects of 4-HPR in vivo and in vitro including anti-inflammation and modulation of macrophage polarization were partially abolished by treatment with PPAR-γ antagonist GW9662, indicating that 4-HPR activated PPAR-γ to exert its activities. Taken together, this study demonstrated that 4-HPR might be a potent anti-UC agent that works by regulating macrophage polarization via PPARγ.
Collapse
Affiliation(s)
- Yong Cao
- Department of Gastroenterology, Shengjing Hospital of China Medical University , Shenyang, People's Republic of China
| | - Yan Lin
- Department of Gastroenterology, Shengjing Hospital of China Medical University , Shenyang, People's Republic of China
| | - Yan Sun
- Department of Gastroenterology, Shengjing Hospital of China Medical University , Shenyang, People's Republic of China
| | - Weiyu Liu
- Department of Gastroenterology, The People's Hospital of Liaoning Province , Shenyang, People's Republic of China
| | - Yichuan Shao
- School of Information Engineering, Shenyang University , Shenyang, People's Republic of China
| | - Changqing Zheng
- Department of Gastroenterology, Shengjing Hospital of China Medical University , Shenyang, People's Republic of China
| |
Collapse
|
18
|
Gamez-Belmonte R, Erkert L, Wirtz S, Becker C. The Regulation of Intestinal Inflammation and Cancer Development by Type 2 Immune Responses. Int J Mol Sci 2020; 21:ijms21249772. [PMID: 33371444 PMCID: PMC7767427 DOI: 10.3390/ijms21249772] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
The gut is among the most complex organs of the human body. It has to exert several functions including food and water absorption while setting up an efficient barrier to the outside world. Dysfunction of the gut can be life-threatening. Diseases of the gastrointestinal tract such as inflammatory bowel disease, infections, or colorectal cancer, therefore, pose substantial challenges to clinical care. The intestinal epithelium plays an important role in intestinal disease development. It not only establishes an important barrier against the gut lumen but also constantly signals information about the gut lumen and its composition to immune cells in the bowel wall. Such signaling across the epithelial barrier also occurs in the other direction. Intestinal epithelial cells respond to cytokines and other mediators of immune cells in the lamina propria and shape the microbial community within the gut by producing various antimicrobial peptides. Thus, the epithelium can be considered as an interpreter between the microbiota and the mucosal immune system, safeguarding and moderating communication to the benefit of the host. Type 2 immune responses play important roles in immune-epithelial communication. They contribute to gut tissue homeostasis and protect the host against infections with helminths. However, they are also involved in pathogenic pathways in inflammatory bowel disease and colorectal cancer. The current review provides an overview of current concepts regarding type 2 immune responses in intestinal physiology and pathophysiology.
Collapse
|
19
|
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related morbidity and mortality worldwide. Although targeted therapy in combination with chemotherapy in CRC prolongs the overall survival of patients with metastatic disease, acquired resistance and relapse hinder their clinical benefits. Moreover, patients with some specific genetic profile are unlikely to benefit from targeted therapy, suggesting the need for safe and effective treatment strategies. Retinoids, comprising of natural and synthetic analogs, are a class of chemical compounds that regulate cellular proliferation, differentiation, and cell death. Retinoids have been used in the clinic for several leukemias and solid tumors, either as single agents or in combination therapy. Furthermore, retinoids have shown potent chemotherapeutic and chemopreventive properties in different cancer models, including CRC. In this review, we summarize the major preclinical findings in CRC in which natural and synthetic retinoids showed promising antitumor activities and stress on the proposed mechanisms of action. Understanding of the retinoids' antitumor mechanisms would provide insights to support and warrant their development in the management of CRC.
Collapse
|
20
|
Fiani ML, Barreca V, Sargiacomo M, Ferrantelli F, Manfredi F, Federico M. Exploiting Manipulated Small Extracellular Vesicles to Subvert Immunosuppression at the Tumor Microenvironment through Mannose Receptor/CD206 Targeting. Int J Mol Sci 2020; 21:ijms21176318. [PMID: 32878276 PMCID: PMC7503580 DOI: 10.3390/ijms21176318] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
Immunosuppression at tumor microenvironment (TME) is one of the major obstacles to be overcome for an effective therapeutic intervention against solid tumors. Tumor-associated macrophages (TAMs) comprise a sub-population that plays multiple pro-tumoral roles in tumor development including general immunosuppression, which can be identified in terms of high expression of mannose receptor (MR or CD206). Immunosuppressive TAMs, like other macrophage sub-populations, display functional plasticity that allows them to be re-programmed to inflammatory macrophages. In order to mitigate immunosuppression at the TME, several efforts are ongoing to effectively re-educate pro-tumoral TAMs. Extracellular vesicles (EVs), released by both normal and tumor cells types, are emerging as key mediators of the cell to cell communication and have been shown to have a role in the modulation of immune responses in the TME. Recent studies demonstrated the enrichment of high mannose glycans on the surface of small EVs (sEVs), a subtype of EVs of endosomal origin of 30–150 nm in diameter. This characteristic renders sEVs an ideal tool for the delivery of therapeutic molecules into MR/CD206-expressing TAMs. In this review, we report the most recent literature data highlighting the critical role of TAMs in tumor development, as well as the experimental evidences that has emerged from the biochemical characterization of sEV membranes. In addition, we propose an original way to target immunosuppressive TAMs at the TME by endogenously engineered sEVs for a new therapeutic approach against solid tumors.
Collapse
Affiliation(s)
- Maria Luisa Fiani
- Correspondence: (M.L.F.); (M.F.); Tel.: +39-06-4990-2518 (M.L.F.); +39-06-4990-6016 (M.F.)
| | | | | | | | | | - Maurizio Federico
- Correspondence: (M.L.F.); (M.F.); Tel.: +39-06-4990-2518 (M.L.F.); +39-06-4990-6016 (M.F.)
| |
Collapse
|
21
|
Ma YS, Li W, Liu Y, Shi Y, Lin QL, Fu D. Targeting Colorectal Cancer Stem Cells as an Effective Treatment for Colorectal Cancer. Technol Cancer Res Treat 2020; 19:1533033819892261. [PMID: 32748700 PMCID: PMC7785997 DOI: 10.1177/1533033819892261] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
As one of the common cancers that threaten human life, the recurrence and metastasis of colorectal cancer seriously affect the prognosis of patients. Although new drugs and comprehensive treatments have been adopted, the current treatment effect on this tumor, especially in advanced colorectal cancer, is still not satisfactory. More and more evidence shows that tumors are likely to be a stem cell disease. In recent years, the rise of cancer stem cell theory has provided a new way for cancer treatment. Studies have found that a small number of special cells in colorectal cancer tissues that induce tumorigenesis, proliferation, and promote tumor migration and metastasis, namely, colorectal cancer stem cells. Colorectal cancer stem cells are defined with a group of cell-surface markers, such as CD44, CD133, CD24, epithelial cell adhesion factor molecule, LGR5, and acetaldehyde dehydrogenase. They are highly tumorigenic, aggressive, and chemoresistant and thus are critical in the metastasis and recurrence of colorectal cancer. Therefore, targeting colorectal cancer stem cells may become an important research direction for the future cure of colorectal cancer.
Collapse
Affiliation(s)
- Yu-Shui Ma
- National Engineering Laboratory for Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China.,Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wen Li
- National Engineering Laboratory for Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Yu Liu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Shi
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qin-Lu Lin
- National Engineering Laboratory for Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Da Fu
- National Engineering Laboratory for Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China.,Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Crezee T, Rabold K, de Jong L, Jaeger M, Netea-Maier RT. Metabolic programming of tumor associated macrophages in the context of cancer treatment. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1028. [PMID: 32953828 PMCID: PMC7475452 DOI: 10.21037/atm-20-1114] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tumor associated macrophages (TAMs) are important components of the tumor microenvironment (TME). They are characterized by a remarkable functional plasticity, thereby mostly promoting cancer progression. Changes in immune cell metabolism are paramount for this functional adaptation. Here, we review the functional consequences of the metabolic programming of TAMs and the influence of local and systemic targeted therapies on the metabolic characteristics of the TME that shape the functional phenotype of the TAMs. Understanding these metabolic changes within the context of the cross-talk between the different components of the TME including the TAMs and the tumor cells is an essential step that can pave the way towards identifications of ways to improve responses to different treatments, to overcome resistance to treatments, tumor progression and reduce treatment-specific toxicity.
Collapse
Affiliation(s)
- Thomas Crezee
- Department of Pathology, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Katrin Rabold
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Nijmegen Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Lisanne de Jong
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martin Jaeger
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Nijmegen Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands.,Department of Internal Medicine, Division of Endocrinology, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA, Nijmegen, The Netherlands
| | - Romana T Netea-Maier
- Department of Internal Medicine, Division of Endocrinology, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
23
|
Sofias AM, Toner YC, Meerwaldt AE, van Leent MMT, Soultanidis G, Elschot M, Gonai H, Grendstad K, Flobak Å, Neckmann U, Wolowczyk C, Fisher EL, Reiner T, Davies CDL, Bjørkøy G, Teunissen AJP, Ochando J, Pérez-Medina C, Mulder WJM, Hak S. Tumor Targeting by α vβ 3-Integrin-Specific Lipid Nanoparticles Occurs via Phagocyte Hitchhiking. ACS NANO 2020; 14:7832-7846. [PMID: 32413260 PMCID: PMC7392528 DOI: 10.1021/acsnano.9b08693] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 05/15/2020] [Indexed: 05/05/2023]
Abstract
Although the first nanomedicine was clinically approved more than two decades ago, nanoparticles' (NP) in vivo behavior is complex and the immune system's role in their application remains elusive. At present, only passive-targeting nanoformulations have been clinically approved, while more complicated active-targeting strategies typically fail to advance from the early clinical phase stage. This absence of clinical translation is, among others, due to the very limited understanding for in vivo targeting mechanisms. Dynamic in vivo phenomena such as NPs' real-time targeting kinetics and phagocytes' contribution to active NP targeting remain largely unexplored. To better understand in vivo targeting, monitoring NP accumulation and distribution at complementary levels of spatial and temporal resolution is imperative. Here, we integrate in vivo positron emission tomography/computed tomography imaging with intravital microscopy and flow cytometric analyses to study αvβ3-integrin-targeted cyclic arginine-glycine-aspartate decorated liposomes and oil-in-water nanoemulsions in tumor mouse models. We observed that ligand-mediated accumulation in cancerous lesions is multifaceted and identified "NP hitchhiking" with phagocytes to contribute considerably to this intricate process. We anticipate that this understanding can facilitate rational improvement of nanomedicine applications and that immune cell-NP interactions can be harnessed to develop clinically viable nanomedicine-based immunotherapies.
Collapse
Affiliation(s)
- Alexandros Marios Sofias
- Department
of Circulation and Medical Imaging, Faculty of Medicine and Health
Sciences, Norwegian University of Science
and Technology (NTNU), 7030 Trondheim, Norway
- BioMedical
Engineering and Imaging Institute, Icahn
School of Medicine at Mount Sinai, New York, New York 10029, United States
- Department
of Nanomedicine and Theranostics, Institute for Experimental Molecular
Imaging, Faculty of Medicine, RWTH Aachen
University, 52074 Aachen, Germany
| | - Yohana C. Toner
- BioMedical
Engineering and Imaging Institute, Icahn
School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Anu E. Meerwaldt
- BioMedical
Engineering and Imaging Institute, Icahn
School of Medicine at Mount Sinai, New York, New York 10029, United States
- Biomedical
MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Mandy M. T. van Leent
- BioMedical
Engineering and Imaging Institute, Icahn
School of Medicine at Mount Sinai, New York, New York 10029, United States
- Department
of Medical Biochemistry, Amsterdam University
Medical Centers, 1105 AZ Amsterdam, The Netherlands
| | - Georgios Soultanidis
- BioMedical
Engineering and Imaging Institute, Icahn
School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Mattijs Elschot
- Department
of Circulation and Medical Imaging, Faculty of Medicine and Health
Sciences, Norwegian University of Science
and Technology (NTNU), 7030 Trondheim, Norway
- Department
of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
| | - Haruki Gonai
- BioMedical
Engineering and Imaging Institute, Icahn
School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Kristin Grendstad
- Department
of Physics, Faculty of Natural Sciences, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
| | - Åsmund Flobak
- The
Cancer Clinic, St. Olav’s University
Hospital, 7030 Trondheim, Norway
- Department
of Clinical and Molecular Medicine, Faculty of Medicine and Health
Sciences, Norwegian University of Science
and Technology (NTNU), 7030 Trondheim, Norway
| | - Ulrike Neckmann
- Department
of Biomedical Laboratory Science, Faculty of Natural Sciences, Norwegian University of Science and Technology (NTNU), 7030 Trondheim, Norway
- Centre
of Molecular Inflammation Research (CEMIR), Faculty of Medicine and
Health Sciences, Norwegian University of
Science and Technology (NTNU), 7030 Trondheim, Norway
| | - Camilla Wolowczyk
- Department
of Biomedical Laboratory Science, Faculty of Natural Sciences, Norwegian University of Science and Technology (NTNU), 7030 Trondheim, Norway
- Centre
of Molecular Inflammation Research (CEMIR), Faculty of Medicine and
Health Sciences, Norwegian University of
Science and Technology (NTNU), 7030 Trondheim, Norway
| | - Elizabeth L. Fisher
- BioMedical
Engineering and Imaging Institute, Icahn
School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Thomas Reiner
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10065, United States
- Department
of Radiology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Catharina de Lange Davies
- Department
of Physics, Faculty of Natural Sciences, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
| | - Geir Bjørkøy
- Department
of Clinical and Molecular Medicine, Faculty of Medicine and Health
Sciences, Norwegian University of Science
and Technology (NTNU), 7030 Trondheim, Norway
- Department
of Biomedical Laboratory Science, Faculty of Natural Sciences, Norwegian University of Science and Technology (NTNU), 7030 Trondheim, Norway
- Centre
of Molecular Inflammation Research (CEMIR), Faculty of Medicine and
Health Sciences, Norwegian University of
Science and Technology (NTNU), 7030 Trondheim, Norway
| | - Abraham J. P. Teunissen
- BioMedical
Engineering and Imaging Institute, Icahn
School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jordi Ochando
- Department
of Oncological Sciences, Icahn School of
Medicine at Mount Sinai, New York, New York 10029, United States
- Transplant
Immunology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Carlos Pérez-Medina
- BioMedical
Engineering and Imaging Institute, Icahn
School of Medicine at Mount Sinai, New York, New York 10029, United States
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Willem J. M. Mulder
- BioMedical
Engineering and Imaging Institute, Icahn
School of Medicine at Mount Sinai, New York, New York 10029, United States
- Department
of Medical Biochemistry, Amsterdam University
Medical Centers, 1105 AZ Amsterdam, The Netherlands
- Laboratory
of Chemical Biology, Department of Biochemical Engineering, Eindhoven University of Technology, 5612 AP Eindhoven, The Netherlands
| | - Sjoerd Hak
- Department
of Circulation and Medical Imaging, Faculty of Medicine and Health
Sciences, Norwegian University of Science
and Technology (NTNU), 7030 Trondheim, Norway
- Department
of Biotechnology and Nanomedicine, SINTEF
Industry, 7034 Trondheim, Norway
| |
Collapse
|
24
|
Li T, Zheng LN, Han XH. Fenretinide attenuates lipopolysaccharide (LPS)-induced blood-brain barrier (BBB) and depressive-like behavior in mice by targeting Nrf-2 signaling. Biomed Pharmacother 2020; 125:109680. [DOI: 10.1016/j.biopha.2019.109680] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/07/2019] [Accepted: 11/16/2019] [Indexed: 11/27/2022] Open
|
25
|
Yeh TH, Lin JY. Acorus gramineusand and Euodia ruticarpa Steam Distilled Essential Oils Exert Anti-Inflammatory Effects Through Decreasing Th1/Th2 and Pro-/Anti-Inflammatory Cytokine Secretion Ratios In Vitro. Biomolecules 2020; 10:biom10020338. [PMID: 32093087 PMCID: PMC7072347 DOI: 10.3390/biom10020338] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 02/04/2023] Open
Abstract
To clarify the effects of steam distilled essential oils (SDEO) from herbs used in traditional Chinese medicine on immune functions, two potential herbs, Acorus gramineusand (AG) and Euodia ruticarpa (ER) cultivated in Taiwan, were selected to assess their immunomodulatory effects using mouse primary splenocytes and peritoneal macrophages. T helper type 1 lymphocytes (Th1) (IL-2), Th2 (IL-5), pro-inflammatory (TNF-α) and anti-inflammatory (IL-10) cytokines secreted by correspondent immune cells treated with SDEO samples were determined using enzyme-linked immunosorbent assay. The total amounts of potential phytochemicals, including total flavonoids, polyphenols and saponins, in these two selected SDEOs were measured and correlated with cytokine levels secreted by immune cells. Our results evidenced that ER SDEO is rich in total flavonoids, polyphenols and saponins. Treatments with AG and ER SDEO significantly (p < 0.05) increased IL-5/IL-2 (Th2/Th1) cytokine secretion ratios by splenocytes, suggesting that both AG and ER SDEO have the Th2-polarization property and anti-inflammatory potential. In addition, AG and ER SDEO, particularly ER SDEO, markedly decreased TNF-α/IL-10 secretion ratios by macrophages in the absence or presence of lipopolysaccharide (LPS), exhibiting substantial effects on spontaneous and LPS-induced inflammation. Significant correlations were found between the total polyphenols, flavonoids or saponins content in the two selected SDEOs and Th1/Th2 immune balance or anti-inflammatory ability in linear, non-linear or biphasic manners, respectively. In conclusion, our results suggest that AG and ER, particularly ER, SDEO have immunomodulatory potential in shifting the Th1/Th2 balance toward Th2 polarization in splenocytes and inhibiting inflammation in macrophages in the absence or presence of LPS.
Collapse
|
26
|
Banik B, Surnar B, Askins BW, Banerjee M, Dhar S. Dual-Targeted Synthetic Nanoparticles for Cardiovascular Diseases. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6852-6862. [PMID: 31886643 DOI: 10.1021/acsami.9b19036] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Atherosclerosis is one of the world's most aggressive diseases, claiming over 17.5 million lives per year. This disease is usually caused by high amounts of lipoproteins circulating in the blood stream, which leads to plaque formation. Ultimately, these plaques can undergo thrombosis and lead to major heart damage. A major contributor to these vulnerable plaques is macrophage apoptosis. Development of nanovehicles that carry contrast and therapeutic agents to the mitochondria within these macrophages is attractive for the diagnosis and treatment of atherosclerosis. Here, we report the design and synthesis of a dual-targeted synthetic nanoparticle (NP) to perform the double duty of diagnosis and therapy in atherosclerosis treatment regime. A library of dual-targeted NPs with an encapsulated iron oxide NP, mito-magneto (MM), with a magnetic resonance imaging (MRI) contrast enhancement capability was elucidated. Relaxivity measurements revealed that there is a substantial enhancement in transverse relaxivities upon the encapsulation of MM inside the dual-targeted NPs, highlighting the MRI contrast-enhancing ability of these NPs. Successful in vivo imaging documenting the distribution of MM-encapsulated dual-targeted NPs in the heart and aorta in mice ensured the diagnostic potential. The presence of mannose receptor targeting ligands and the optimization of the NP composition facilitated its ability to perform therapeutic duty by targeting the macrophages at the plaque. These dual-targeted NPs with the encapsulated MM were able to show therapeutic potential and did not trigger any toxic immunogenic response.
Collapse
Affiliation(s)
- Bhabatosh Banik
- NanoTherapeutics Research Laboratory, Department of Biochemistry and Molecular Biology , University of Miami Miller School of Medicine , Miami , Florida 33136 , United States
| | - Bapurao Surnar
- NanoTherapeutics Research Laboratory, Department of Biochemistry and Molecular Biology , University of Miami Miller School of Medicine , Miami , Florida 33136 , United States
| | - Brett W Askins
- Department of Chemistry , University of Georgia , Athens Georgia 30602 , United States
| | - Mainak Banerjee
- NanoTherapeutics Research Laboratory, Department of Biochemistry and Molecular Biology , University of Miami Miller School of Medicine , Miami , Florida 33136 , United States
| | - Shanta Dhar
- NanoTherapeutics Research Laboratory, Department of Biochemistry and Molecular Biology , University of Miami Miller School of Medicine , Miami , Florida 33136 , United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine , University of Miami , Miami , Florida 33136 , United States
- Department of Chemistry , University of Georgia , Athens Georgia 30602 , United States
| |
Collapse
|
27
|
Sun D, Luo T, Dong P, Zhang N, Chen J, Zhang S, Liu L, Dong L, Zhang S. CD86 +/CD206 + tumor-associated macrophages predict prognosis of patients with intrahepatic cholangiocarcinoma. PeerJ 2020; 8:e8458. [PMID: 32002338 PMCID: PMC6982414 DOI: 10.7717/peerj.8458] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 12/24/2019] [Indexed: 12/13/2022] Open
Abstract
Background As the main cellular ingredients of tumor microenvironment, tumor-associated macrophages (TAMs) play a vital role in tumor development and progression. Recent studies have suggested that TAMs are sensitive and specific prognostic factors in numerous cancers. The primary purpose of this study is to determine the prognostic significance of TAMs in intrahepatic cholangiocarcinoma (ICC). Methods Immunohistochemical staining of CD68, CD86 and CD206 were performed in tissue microarrays containing 322 patients, who underwent surgical resection and were pathologically diagnosed with ICC. The prognostic value of CD68, CD86 and CD206 were evaluated by Kaplan–Meier analysis (log-rank test) and nomogram models. Results We demonstrated that the CD86+/CD206+ TAMs model was an independent prognostic index for ICC patients. Patients with low CD86+ TAMs and high CD206+ TAMs infiltration had a markedly worse prognosis and increased risk of post-operative recurrence when compared to high CD86+ TAMs and low CD206+ TAMs intratumoral infiltration. Furthermore, subgroup analysis indicated that the CD86+/CD206+ TAMs model predicted prognosis of ICC patients more powerfully than single macrophage immunomarker. Interestingly, the CD86+/CD206+ TAMs model could further distinguish prognosis of CA-199 negative ICC patients, who were generally presumed to have a more favorable outcome. In order to further perfect the prognostic value of the CD86+/CD206+ TAMs model, we constructed and validated a postoperative nomogram to predict overall survival and recurrence-free survival time in ICC patients. Conclusions These findings indicate that the CD86+/CD206+ TAMs model possess potential value as a novel prognostic indicator for ICC patients.
Collapse
Affiliation(s)
- Dalong Sun
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Gastroenterology and Hepatology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China.,Shanghai Institute of Liver Disease, Shanghai, China
| | - Tiancheng Luo
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Liver Disease, Shanghai, China
| | - Pingping Dong
- Department of Surgery, Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ningping Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Liver Disease, Shanghai, China
| | - Jing Chen
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuncai Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Liver Disease, Shanghai, China
| | - Longzi Liu
- Department of General Surgery, The First Affliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Liver Disease, Shanghai, China
| | - Si Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Mir MA, Mehraj U. Double-crosser of the Immune System: Macrophages in Tumor Progression and Metastasis. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/1573395515666190611122818] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Macrophages are the phagocytic sentinel cells of our body, with high plasticity required to maintain homeostasis. This incredibly diverse set of cells, in response to various environmental stimuli such as cytokines and other factors, constantly alters their functional state/phenotype. They undergo polarization not only into conventional M1/M2 axis but also undergo a diverse spectrum of macrophage subtypes which play critical roles in various immune functions and homeostasis. In the tumor microenvironment, monocytes polarize along with the alternatively activated macrophages AAM or M2 macrophages associated with pro-tumoral features whereas M1 macrophages exert antitumor functions. Tumor-Associated Macrophage (TAM) infiltration has long been associated with poor prognosis and therefore represents potential diagnostic and prognostic biomarkers in solid tumors. Inhibiting the recruitment of monocytes into the tumor microenvironment and targeted deletion of TAMs have shown promising results. Targeting the TAMs towards M1-like macrophages has also demonstrated to be an efficient way to prevent tumor progression and metastasis. Here in this article, we review how TAMs orchestrate different steps in tumor progression and metastasis and the opportunities to target them in the quest for cancer prevention and treatment. Further, we explore how chemotherapies and immunotherapies can target TAM reprogramming and depletion to serve as a strategy for the control of various types of cancers in the future.
Collapse
Affiliation(s)
- Manzoor Ahmed Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Umar Mehraj
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| |
Collapse
|
29
|
Meng Y, Qu Y, Wu W, Chen L, Sun L, Tai G, Zhou Y, Cheng H. Galactan isolated from Cantharellus cibarius modulates antitumor immune response by converting tumor-associated macrophages toward M1-like phenotype. Carbohydr Polym 2019; 226:115295. [PMID: 31582086 DOI: 10.1016/j.carbpol.2019.115295] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022]
Abstract
Tumor-associated macrophages (TAMs) with an M2-like phenotype have been linked to the proliferation, invasion and metastasis of tumor cells. Resetting tumor-associated macrophages represents an attractive target for an effective cancer immunotherapy. WCCP-N-b, a novel linear 3-O-methylated galactan, isolated from Cantharellus cibarius, can convert tumor-promoting M2-like macrophages to tumor-inhibiting M1-like phenotype. On a cellular mechanistic level, WCCP-N-b inhibited M2-like macrophages polarization through suppression of STAT6 activation. Furthermore, WCCP-N-b increased the phosphorylation of mitogen-activated protein kinases (MAPKs) and degradation of IκB-α through targeting Toll-like receptor 2 (TLR2). The activation of MAPKs and degradation of IκB-α were responsible for converting M2-like macrophages to M1-like macrophages. Importantly, cell culture supernatants of WCCP-N-b-treated M2-like macrophages could inhibit the cell viability of B16F1 and B16F10. Our findings provide a potential natural and harmless polysaccharide for macrophage-based tumor immunotherapy.
Collapse
Affiliation(s)
- Yue Meng
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China
| | - Yunhe Qu
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China
| | - Wenjing Wu
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China
| | - Lei Chen
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China
| | - Lin Sun
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China
| | - Guihua Tai
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China
| | - Yifa Zhou
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China
| | - Hairong Cheng
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China.
| |
Collapse
|
30
|
Terasaki M, Masaka S, Fukada C, Houzaki M, Endo T, Tanaka T, Maeda H, Miyashita K, Mutoh M. Salivary Glycine Is a Significant Predictor for the Attenuation of Polyp and Tumor Microenvironment Formation by Fucoxanthin in AOM/DSS Mice. In Vivo 2019; 33:365-374. [PMID: 30804114 DOI: 10.21873/invivo.11483] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/11/2018] [Accepted: 01/18/2019] [Indexed: 12/18/2022]
Abstract
Background/ Aim: A high polar xanthophyll of Fucoxanthin (Fx) is abundantly contained in edible brown algae, and it has chemopreventive effects in mouse cancer models, however, the underlying mechanisms of these effects are not well understood. Thus, we aimed to investigate the effects of Fx on the tumor microenvironment in cancer model mice. MATERIALS AND METHODS We investigated the effect of Fx (30 mg/kg body weight) in a variety of cell types within the tumor microenvironment of α mouse preclinical colorectal cancer model and analyzed the mouse saliva in search of predictors for cancer chemopreventive effects. RESULTS Fx administration significantly decreased the number of colorectal polyps and tended to decrease colonic lesions compared to untreated control mice. In addition, Fx administration showed significantly lower numbers of colorectal cancer stem cells-like CD44high/EpCAMhigh cells, cancer-associated fibroblasts-like αSMAhigh cells, tumor-associated macrophages-like and dendritic cells-like CD206high cells by 0.6-, 0.5- and 0.6-fold, respectively, compared to untreated control mice. Moreover, the treatment also showed significantly lower levels of salivary glycine by 0.5-fold. CONCLUSION Our results suggest that salivary glycine may be a predictor representing the chemopreventive effect of Fx in mice.
Collapse
Affiliation(s)
- Masaru Terasaki
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan .,Cancer Prevention Laboratories, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Saki Masaka
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Chinami Fukada
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Mayu Houzaki
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Tetsuya Endo
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Takuji Tanaka
- Department of Diagnostic Pathology and Research Center of Diagnostic Pathology, Gifu Municipal Hospital, Gifu, Japan
| | - Hayato Maeda
- Faculty of Agriculture and Life Science, Hirosaki University, Aomori, Japan
| | - Kazuo Miyashita
- Laboratory of Biofunctional Material Chemistry, Division of Marine Bioscience, Graduate School of Fisheries Sciences, Hokkaido University, Hokkaido, Japan
| | - Michihiro Mutoh
- Epidemiology and Preventions Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| |
Collapse
|
31
|
Xiang L, Gilkes DM. The Contribution of the Immune System in Bone Metastasis Pathogenesis. Int J Mol Sci 2019; 20:ijms20040999. [PMID: 30823602 PMCID: PMC6412551 DOI: 10.3390/ijms20040999] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/31/2022] Open
Abstract
Bone metastasis is associated with significant morbidity for cancer patients and results in a reduced quality of life. The bone marrow is a fertile soil containing a complex composition of immune cells that may actually provide an immune-privileged niche for disseminated tumor cells to colonize and proliferate. In this unique immune milieu, multiple immune cells including T cells, natural killer cells, macrophages, dendritic cells, myeloid-derived suppressor cells, and neutrophils are involved in the process of bone metastasis. In this review, we will discuss the crosstalk between immune cells in bone microenvironment and their involvement with cancer cell metastasis to the bone. Furthermore, we will highlight the anti-tumoral and pro-tumoral function of each immune cell type that contributes to bone metastasis. We will end with a discussion of current therapeutic strategies aimed at sensitizing immune cells.
Collapse
Affiliation(s)
- Lisha Xiang
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu 610041, China.
| | - Daniele M Gilkes
- Breast & Ovarian Cancer Program, Department of Oncology, The Johns Hopkins University School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA.
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
32
|
Cao J, Dong R, Jiang L, Gong Y, Yuan M, You J, Meng W, Chen Z, Zhang N, Weng Q, Zhu H, He Q, Ying M, Yang B. LncRNA-MM2P Identified as a Modulator of Macrophage M2 Polarization. Cancer Immunol Res 2019; 7:292-305. [PMID: 30459152 DOI: 10.1158/2326-6066.cir-18-0145] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 09/01/2018] [Accepted: 11/16/2018] [Indexed: 11/16/2022]
Abstract
M2 polarization of macrophages is essential for their function in immunologic tolerance, which might promote tumorigenesis. However, the molecular mechanism behind the polarization process is not fully understood. Given that several lines of evidence have suggested that long noncoding RNAs (lncRNAs) could be involved in regulating immune cell differentiation and function, the current study aimed to identify the lncRNAs that specifically modulate M2 macrophage polarization. By utilizing a series of cell-based M2 macrophage polarization models, a total of 25 lncRNAs with altered expression were documented based on lncRNA microarray-based profiling assays. Among them, lncRNA-MM2P was the only lncRNA upregulated during M2 polarization but downregulated in M1 macrophages. Knockdown of lncRNA-MM2P blocked cytokine-driven M2 polarization of macrophages and weakened the angiogenesis-promoting feature of M2 macrophages by reducing phosphorylation on STAT6. Moreover, manipulating lncRNA-MM2P in macrophages impaired macrophage-mediated promotion of tumorigenesis, tumor growth in vivo, and tumor angiogenesis. Collectively, our study identifies lncRNA-MM2P as a modulator required for macrophage M2 polarization and uncovers its role in macrophage-promoted tumorigenesis.
Collapse
Affiliation(s)
- Ji Cao
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Rong Dong
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Jiang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yanling Gong
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meng Yuan
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jieqiong You
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Wen Meng
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhanlei Chen
- Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Ning Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University, Zhejiang University, Hangzhou, China
| | - Qinjie Weng
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meidan Ying
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| | - Bo Yang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
33
|
Abstract
Purpose: Fungal keratitis is a major cause of corneal ulcers, resulting in significant visual impairment and blindness. Fenretinide, a derivative of vitamin A, has been shown to suppress inflammation in a multitude of diseases. In this study, we aimed to characterize the effect of fenretinide in Aspergillus fumigatus keratitis of the eye in a mouse model. Methods: In vivo and in vitro experiments were performed in mouse models and THP-1 macrophage cell cultures infected with A. fumigatus, respectively. Experimental subjects were first pretreated with fenretinide, and then the effect of the compound was assessed with clinical evaluation, neutrophil staining, myeloperoxidase assay, quantitative polymerase chain reaction (qRT-PCR), and western blot. Results: We confirmed that fenretinide contributed to protection of corneal transparency during early mouse A. fumigatus keratitis by reducing neutrophil recruitment, decreasing myeloperoxidase (MPO) levels and increasing apoptosis. Compared with controls, fenretinide impaired proinflammatory cytokine interleukin 1 beta (IL-1β) production in response to A. fumigatus exposure with contributions by lectin-type oxidized LDL receptor 1 (LOX-1) and c-Jun N-terminal kinase (JNK). Conclusions: Together, these findings demonstrate that fenretinide may suppress inflammation through reduced neutrophil recruitment and inflammatory cytokine production in A. fumigatus keratitis.
Collapse
|
34
|
Jiang L, Dong R, Ying M, He Q, Cao J, Yang B. Immune cells in the tumour: new routes of retinoids for chemoprevention and chemotherapeutics. Br J Pharmacol 2018; 175:4285-4294. [PMID: 30298911 DOI: 10.1111/bph.14511] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/18/2018] [Accepted: 09/24/2018] [Indexed: 01/27/2023] Open
Abstract
Retinoids, vitamin A and its natural and synthetic analogues have various functions, including being involved in cell proliferation and differentiation and participating in the formation of vertebrate morphology. In addition, they may activate certain tumour suppressor genes that then act as tumour inhibitors. In the past decades, retinoids have been regarded as promising chemotherapeutic and chemopreventive agents; however, their mechanisms are still not fully understood. Immune cells that participate in or are associated with the immune response play vital roles in the initiation and development of many cancers. Interestingly, recent studies have demonstrated that retinoids can also exert various effects on immune cells including macrophages, T cells and dendritic cells in tumour tissues to execute anti-tumour actions, providing new insights into chemoprevention and chemotherapeutics. In this review, we focus on the effects of retinoids on immune cells in the tumour, which may provide new approaches for antineoplastic strategies.
Collapse
Affiliation(s)
- Li Jiang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Rong Dong
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
35
|
Rubio C, Munera-Maravilla E, Lodewijk I, Suarez-Cabrera C, Karaivanova V, Ruiz-Palomares R, Paramio JM, Dueñas M. Macrophage polarization as a novel weapon in conditioning tumor microenvironment for bladder cancer: can we turn demons into gods? Clin Transl Oncol 2018; 21:391-403. [PMID: 30291519 DOI: 10.1007/s12094-018-1952-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022]
Abstract
Macrophages are major components of the immune infiltration in cancer where they can affect tumor behavior. In the bladder, they play important roles during the resolution of infectious processes and they have been associated with a worse clinical prognosis in bladder cancer. The present review focused on the characteristics of these important immune cells, not only eliciting an innate immune surveillance, but also on their importance during the cancer immunoediting process. We further discuss the potential of targeting macrophages for anticancer therapy, the current strategies and the state of the art as well as the foreseen role on combined therapies on the near future. This review shows how a comprehensive understanding of macrophages within the tumor should translate to better clinical outcome and new therapeutic strategies focusing especially on bladder cancer.
Collapse
Affiliation(s)
- C Rubio
- Biomedical Research Institute I + 12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041, Madrid, Spain.,Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - E Munera-Maravilla
- Biomedical Research Institute I + 12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041, Madrid, Spain.,Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040, Madrid, Spain
| | - I Lodewijk
- Biomedical Research Institute I + 12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041, Madrid, Spain.,Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040, Madrid, Spain
| | - C Suarez-Cabrera
- Biomedical Research Institute I + 12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041, Madrid, Spain.,Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040, Madrid, Spain
| | - V Karaivanova
- Biomedical Research Institute I + 12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041, Madrid, Spain.,Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040, Madrid, Spain
| | - R Ruiz-Palomares
- Biomedical Research Institute I + 12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041, Madrid, Spain.,Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040, Madrid, Spain
| | - J M Paramio
- Biomedical Research Institute I + 12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041, Madrid, Spain. .,Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain.
| | - M Dueñas
- Biomedical Research Institute I + 12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041, Madrid, Spain. .,Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain.
| |
Collapse
|
36
|
Wang K, Baldwin GS, Nikfarjam M, He H. p21-activated kinase signalling in pancreatic cancer: New insights into tumour biology and immune modulation. World J Gastroenterol 2018; 24:3709-3723. [PMID: 30197477 PMCID: PMC6127653 DOI: 10.3748/wjg.v24.i33.3709] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/22/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the most aggressive and lethal malignancies worldwide, with a very poor prognosis and a five-year survival rate less than 8%. This dismal outcome is largely due to delayed diagnosis, early distant dissemination and resistance to conventional chemo-therapies. Kras mutation is a well-defined hallmark of pancreatic cancer, with over 95% of cases harbouring Kras mutations that give rise to constitutively active forms of Kras. As important down-stream effectors of Kras, p21-activated kinases (PAKs) are involved in regulating cell proliferation, apoptosis, invasion/migration and chemo-resistance. Immunotherapy is now emerging as a promising treatment modality in the era of personalized anti-cancer therapeutics. In this review, basic knowledge of PAK structure and regulation is briefly summarised and the pivotal role of PAKs in Kras-driven pancreatic cancer is highlighted in terms of tumour biology and chemo-resistance. Finally, the involvement of PAKs in immune modulation in the tumour microenvironment is discussed and the potential advantages of targeting PAKs are explored.
Collapse
Affiliation(s)
- Kai Wang
- Department of Surgery, University of Melbourne, Melbourne 3084, Australia
| | - Graham S Baldwin
- Department of Surgery, University of Melbourne, Melbourne 3084, Australia
| | - Mehrdad Nikfarjam
- Department of Surgery, University of Melbourne, Melbourne 3084, Australia
| | - Hong He
- Department of Surgery, University of Melbourne, Melbourne 3084, Australia
| |
Collapse
|
37
|
CXCL1 derived from tumor-associated macrophages promotes breast cancer metastasis via activating NF-κB/SOX4 signaling. Cell Death Dis 2018; 9:880. [PMID: 30158589 PMCID: PMC6115425 DOI: 10.1038/s41419-018-0876-3] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/22/2018] [Accepted: 07/10/2018] [Indexed: 12/30/2022]
Abstract
Tumor-associated macrophages (TAMs) have been implicated in the promotion of breast cancer growth and metastasis, and multiple TAM-secreted cytokines have been identified associating with poor clinical outcomes. However, the therapeutic targets existing in the loop between TAMs and cancer cells are still required for further investigation. Here in, cytokine array validated that C-X-C motif chemokine ligand 1 (CXCL1) is the most abundant chemokine secreted by TAMs, and CXCL1 can promote breast cancer migration and invasion ability, as well as epithelial–mesenchymal transition in both mouse and human breast cancer cells. QPCR screening further validated SOX4 as the highest responsive gene following CXCL1 administration. Mechanistic study revealed that CXCL1 binds to SOX4 promoter and activates its transcription via NF-κB pathway. In vivo breast cancer xenografts demonstrated that CXCL1 silencing in TAMs results in a significant reduction in breast cancer growth and metastatic burden. Bioinformatic analysis and clinical investigation finally suggested that high CXCL1 expression is significantly correlated with breast cancer lymph node metastasis, poor overall survival and basal-like subtype. Taken together, our results indicated that TAMs/CXCL1 promotes breast cancer metastasis via NF-κB/SOX4 activation, and CXCL1-based therapy might become a novel strategy for breast cancer metastasis prevention.
Collapse
|
38
|
Chemopreventive Effects of Phytochemicals and Medicines on M1/M2 Polarized Macrophage Role in Inflammation-Related Diseases. Int J Mol Sci 2018; 19:ijms19082208. [PMID: 30060570 PMCID: PMC6121620 DOI: 10.3390/ijms19082208] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/16/2018] [Accepted: 07/23/2018] [Indexed: 12/31/2022] Open
Abstract
Macrophages can polarize into two different states (M1 and M2), which play contrasting roles during pathogenesis or tissue damage. M1 polarized macrophages produce pro-inflammatory cytokines and mediators resulting in inflammation, while M2 macrophages have an anti-inflammatory effect. Secretion of appropriate cytokines and chemokines from macrophages can lead to the modification of the microenvironment for bridging innate and adaptive immune responses. Increasing evidence suggests that polarized macrophages are pivotal for disease progression, and the regulation of macrophage polarization may provide a new approach in therapeutic treatment of inflammation-related diseases, including cancer, obesity and metabolic diseases, fibrosis in organs, brain damage and neuron injuries, and colorectal disease. Polarized macrophages affect the microenvironment by secreting cytokines and chemokines while cytokines or mediators that are produced by resident cells or tissues may also influence macrophages behavior. The interplay of macrophages and other cells can affect disease progression, and therefore, understanding the activation of macrophages and the interaction between polarized macrophages and disease progression is imperative prior to taking therapeutic or preventive actions. Manipulation of macrophages can be an entry point for disease improvement, but the mechanism and potential must be understood. In this review, some advanced studies regarding the role of macrophages in different diseases, potential mechanisms involved, and intervention of drugs or phytochemicals, which are effective on macrophage polarization, will be discussed.
Collapse
|
39
|
Gu LL, Shen ZL, Li YL, Bao YQ, Lu H. Oxymatrine Causes Hepatotoxicity by Promoting the Phosphorylation of JNK and Induction of Endoplasmic Reticulum Stress Mediated by ROS in LO2 Cells. Mol Cells 2018; 41:401-412. [PMID: 29754474 PMCID: PMC5974617 DOI: 10.14348/molcells.2018.2180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/23/2017] [Accepted: 01/16/2018] [Indexed: 12/11/2022] Open
Abstract
Oxymatrine (OMT) often used in treatment for chronic hepatitis B virus infection in clinic. However, OMT-induced liver injury has been reported. In this study, we aim to investigate the possible mechanism of OMT-induced hepatotoxicity in human normal liver cells (L02). Exposed cells to OMT, the cell viability was decreased and apoptosis rate increased, the intracellular markers of oxidative stress were changed. Simultaneously, OMT altered apoptotic related proteins levels, including Bcl-2, Bax and pro-caspase-8/-9/-3. In addition, OMT enhanced the protein levels of endoplasmic reticulum (ER) stress makers (GRP78/Bip, CHOP, and cleaved-Caspase-4) and phosphorylation of c-Jun N-terminal kinase (p-JNK), as well as the mRNA levels of GRP78/Bip, CHOP, caspase-4, and ER stress sensors (IREI, ATF6, and PERK). Pre-treatment with Z-VAD-fmk, JNK inhibitor SP600125 and N-acetyl-l-cysteine (NAC), a ROS scavenger, partly improved the survival rates and restored OMT-induced cellular damage, and reduced caspase-3 cleavage. SP600125 or NAC reduced OMT-induced p-JNK and NAC significantly lowered caspase-4. Furthermore, 4-PBA, the ER stress inhibitor, weakened inhibitory effect of OMT on cells, on the contrary, TM worsen. 4-PBA also reduced the levels of p-JNK and cleaved-caspase-3 proteins. Therefore, OMT-induced injury in L02 cells was related to ROS mediated p-JNK and ER stress induction. Antioxidant, by inhibition of p-JNK or ER stress, may be a feasible method to alleviate OMT-induced liver injury.
Collapse
Affiliation(s)
- Li-li Gu
- College of Pharmaceutical science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province,
China
| | - Zhe-lun Shen
- College of Pharmaceutical science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province,
China
| | - Yang-Lei Li
- College of Pharmaceutical science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province,
China
| | - Yi-Qi Bao
- College of Pharmaceutical science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province,
China
| | - Hong Lu
- College of Pharmaceutical science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province,
China
| |
Collapse
|
40
|
Guerriero JL. Macrophages: The Road Less Traveled, Changing Anticancer Therapy. Trends Mol Med 2018; 24:472-489. [PMID: 29655673 PMCID: PMC5927840 DOI: 10.1016/j.molmed.2018.03.006] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/04/2018] [Accepted: 03/12/2018] [Indexed: 12/13/2022]
Abstract
Macrophages are present in all vertebrate tissues and have emerged as multifarious cells with complex roles in development, tissue homeostasis, and disease. Macrophages are a major constituent of the tumor microenvironment, where they either promote or inhibit tumorigenesis and metastasis depending on their state. Successful preclinical strategies to target macrophages for anticancer therapy are now being evaluated in the clinic and provide proof of concept that targeting macrophages may enhance current therapies; however, clinical success has been limited. This review discusses the promise of targeting macrophages for anticancer therapy, yet highlights how much is unknown regarding their ontogeny, regulation, and tissue-specific diversity. Further work might identify subsets of macrophages within different tissues, which could reveal novel therapeutic opportunities for anticancer therapy.
Collapse
Affiliation(s)
- Jennifer L Guerriero
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
41
|
Wang C, Li Y, Chen H, Huang K, Liu X, Qiu M, Liu Y, Yang Y, Yang J. CYP4X1 Inhibition by Flavonoid CH625 Normalizes Glioma Vasculature through Reprogramming TAMs via CB2 and EGFR-STAT3 Axis. J Pharmacol Exp Ther 2018; 365:72-83. [PMID: 29437915 DOI: 10.1124/jpet.117.247130] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/29/2018] [Indexed: 01/03/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are pivotal effector cells in angiogenesis. Here, we tested whether CYP4X1 inhibition in TAMs by flavonoid CH625 prolongs survival and normalizes glioma vasculature. CH625 was selected against the CYP4X1 3D model by virtual screening and showed inhibitory activity on the CYP4X1 catalytic production of 14,15-EET-EA in the M2-polarized human peripheral blood mononuclear cells (IC50 = 16.5 μM). CH625 improved survival and reduced tumor burden in the C6 and GL261 glioma intracranial and subcutaneous model. In addition, CH625 normalized vasculature (evidenced by a decrease in microvessel density and HIF-1α expression and an increase in tumor perfusion, pericyte coverage, and efficacy of temozolomide therapy) accompanied with the decreased secretion of 14,15-EET-EA, VEGF, and TGF-β in the TAMs. Furthermore, CH625 attenuated vascular abnormalization and immunosuppression induced by coimplantation of GL261 cells with CYP4X1high macrophages. In vitro TAM polarization away from the M2 phenotype by CH625 inhibited proliferation and migration of endothelial cells, enhanced pericyte migration and T cell proliferation, and decreased VEGF and TGF-β production accompanied with the downregulation of CB2 and EGFR-dependent downstream STAT3 expression. These effects were reversed by overexpression of CYP4X1 and STAT3 or exogenous addition of 14,15-EET-EA, VEGF, TGF-β, EGF, and CB2 inhibitor AM630. These results suggest that CYP4X1 inhibition in TAMs by CH625 prolongs survival and normalizes tumor vasculature in glioma via CB2 and EGFR-STAT3 axis and may serve as a novel therapeutic strategy for human glioma.
Collapse
Affiliation(s)
- Chenlong Wang
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases (C.W., Y.L., K.H., X.L., M.Q., Y.L., J.Y.), Experimental Teaching Center (J.Y.), and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-central University for Nationalities, Wuhan, China (C.W.); and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Ying Li
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases (C.W., Y.L., K.H., X.L., M.Q., Y.L., J.Y.), Experimental Teaching Center (J.Y.), and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-central University for Nationalities, Wuhan, China (C.W.); and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Honglei Chen
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases (C.W., Y.L., K.H., X.L., M.Q., Y.L., J.Y.), Experimental Teaching Center (J.Y.), and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-central University for Nationalities, Wuhan, China (C.W.); and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Keqing Huang
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases (C.W., Y.L., K.H., X.L., M.Q., Y.L., J.Y.), Experimental Teaching Center (J.Y.), and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-central University for Nationalities, Wuhan, China (C.W.); and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Xiaoxiao Liu
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases (C.W., Y.L., K.H., X.L., M.Q., Y.L., J.Y.), Experimental Teaching Center (J.Y.), and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-central University for Nationalities, Wuhan, China (C.W.); and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Miao Qiu
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases (C.W., Y.L., K.H., X.L., M.Q., Y.L., J.Y.), Experimental Teaching Center (J.Y.), and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-central University for Nationalities, Wuhan, China (C.W.); and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Yanzhuo Liu
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases (C.W., Y.L., K.H., X.L., M.Q., Y.L., J.Y.), Experimental Teaching Center (J.Y.), and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-central University for Nationalities, Wuhan, China (C.W.); and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Yuqing Yang
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases (C.W., Y.L., K.H., X.L., M.Q., Y.L., J.Y.), Experimental Teaching Center (J.Y.), and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-central University for Nationalities, Wuhan, China (C.W.); and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Jing Yang
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases (C.W., Y.L., K.H., X.L., M.Q., Y.L., J.Y.), Experimental Teaching Center (J.Y.), and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-central University for Nationalities, Wuhan, China (C.W.); and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| |
Collapse
|
42
|
Zhu X, Yang J, Gao Y, Wu C, Yi L, Li G, Qi Y. The dual effects of a novel peptibody on angiogenesis inhibition and M2 macrophage polarization on sarcoma. Cancer Lett 2017; 416:1-10. [PMID: 29104145 DOI: 10.1016/j.canlet.2017.10.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 10/18/2022]
Abstract
Inhibition of the VEGF/VEGF receptor (VEGFR) and angiopoietin-2 (Ang-2)/TEK receptor tyrosine kinase (Tie-2) pathway is a potential target for tumor angiogenesis. We previously showed that a peptide AS16 which dually inhibits VEGFR/Ang-2 could reduce the tumor growth and decrease the number of microvessels in tumor. However, its short circulating half-life in the serum limits its clinical applications. In this study, as an effort to prolong the short in vivo half-life of AS16, we designed a fusion protein containing peptide AS16 and an IgG Fc fragment. Pharmacokinetic study also revealed that AS16-Fc has a prolonged circulating half-life of about 231 min in rats. We examined the effects of treatment on the tumor vasculature and immune cell populations, tumor growth, in both the MCA-205 and S180 tumor models. We found that AS16-Fc dramatically reduced tumor volume, vascular density and tumor-associated macrophages. Macrophages were identified as potential novel targets following anti-angiogenic therapy, our findings imply a novel role for anti-angiogenic peptide AS16-Fc. These findings indicate that AS16-Fc could be more effective on inhibiting tumor growth angiogenesis and tumor immune microenvironment than that of peptide AS16.
Collapse
Affiliation(s)
- Xiaoqing Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jiali Yang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yanfeng Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Chunjing Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lili Yi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Guodong Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China.
| | - Yuanming Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China.
| |
Collapse
|
43
|
Tariq M, Zhang JQ, Liang GK, He QJ, Ding L, Yang B. Gefitinib inhibits M2-like polarization of tumor-associated macrophages in Lewis lung cancer by targeting the STAT6 signaling pathway. Acta Pharmacol Sin 2017; 38:1501-1511. [PMID: 29022575 DOI: 10.1038/aps.2017.124] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 04/28/2017] [Indexed: 02/07/2023]
Abstract
M2-like polarized tumor-associated macrophages (TAMs) play a pivotal role in promoting cancer cell growth, invasion, metastasis and angiogenesis. The identification of M2-like TAMs during tumor progression is an attractive approach for cancer therapy. In this study, we investigated the relevance of macrophage polarization and the antitumor effect of gefitinib in Lewis Lung cancer (LLC) in vitro and in vivo. Gefitinib at a concentration below 2.5 μmol/L did not cause significant growth inhibition on LLC and RAW 264.7 cell lines and bone marrow-derived macrophage (BMDMs). However, a small concentration of gefitinib (0.62 μmol/L) significantly inhibited IL-13-induced M2-like polarization of macrophages, evidenced by the decreased expression of the M2 surface markers CD206 and CD163, down-regulation of specific M2-marker genes (Mrc1, Ym1, Fizz1, Arg1, IL-10 and CCL2) as well as inhibition of M2-like macrophage-mediated invasion and migration of LLC cells. In RAW 264.7 cells, gefitinib inhibits IL-13-induced phosphorylation of STAT6, which was a crucial signaling pathway in macrophage M2-like polarization. In LLC mice metastasis model, oral administration of gefitinib (75 mg·kg-1·d-1, for 21 d) significantly reduced the number of lung metastasis nodules, down-regulated the expression of M2 marker genes and the percentages CD206+ and CD68+ macrophages in tumor tissues. These results demonstrated that gefitinib effectively inhibits M2-like polarization both in vitro and in vivo, revealing a novel potential mechanism for the chemopreventative effect of gefitinib.
Collapse
|
44
|
Genard G, Lucas S, Michiels C. Reprogramming of Tumor-Associated Macrophages with Anticancer Therapies: Radiotherapy versus Chemo- and Immunotherapies. Front Immunol 2017; 8:828. [PMID: 28769933 PMCID: PMC5509958 DOI: 10.3389/fimmu.2017.00828] [Citation(s) in RCA: 290] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/30/2017] [Indexed: 12/15/2022] Open
Abstract
Tumor-associated macrophages (TAMs) play a central role in tumor progression, metastasis, and recurrence after treatment. Macrophage plasticity and diversity allow their classification along a M1–M2 polarization axis. Tumor-associated macrophages usually display a M2-like phenotype, associated with pro-tumoral features whereas M1 macrophages exert antitumor functions. Targeting the reprogramming of TAMs toward M1-like macrophages would thus be an efficient way to promote tumor regression. This can be achieved through therapies including chemotherapy, immunotherapy, and radiotherapy (RT). In this review, we first describe how chemo- and immunotherapies can target TAMs and, second, we detail how RT modifies macrophage phenotype and present the molecular pathways that may be involved. The identification of irradiation dose inducing macrophage reprogramming and of the underlying mechanisms could lead to the design of novel therapeutic strategies and improve synergy in combined treatments.
Collapse
Affiliation(s)
- Géraldine Genard
- URBC - NARILIS, University of Namur, Namur, Belgium.,Laboratory of Analysis by Nuclear Reaction (LARN/PMR) - NARILIS, University of Namur, Namur, Belgium
| | - Stéphane Lucas
- Laboratory of Analysis by Nuclear Reaction (LARN/PMR) - NARILIS, University of Namur, Namur, Belgium
| | | |
Collapse
|
45
|
Inhibition of CYP4A by a novel flavonoid FLA-16 prolongs survival and normalizes tumor vasculature in glioma. Cancer Lett 2017; 402:131-141. [PMID: 28602979 DOI: 10.1016/j.canlet.2017.05.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/03/2017] [Accepted: 05/11/2017] [Indexed: 10/19/2022]
Abstract
Glioblastomas rapidly become refractory to anti-VEGF therapies. We previously showed that cytochrome P450 (CYP) 4A-derived 20-hydroxyeicosatetraenoic acid (20-HETE) promotes angiogenesis. Here, we tested whether a novel flavonoid (FLA-16) prolongs survival and normalizes tumor vasculature in glioma through CYP4A inhibition. FLA-16 improved survival, reduced tumor burden, and normalized vasculature, accompanied with the decreased secretion of 20-HETE, VEGF and TGF-β in tumor-associated macrophages (TAMs) and endothelial progenitor cells (EPCs) in C6 and U87 gliomas. FLA-16 attenuated vascular abnormalization induced by co-implantation of GL261 glioma cells with CYP4A10high macrophages or EPCs. Mechanistically, the conditional medium from TAMs and EPCs treated with FLA-16 enhanced the migration of pericyte cells, and decreased the proliferation and migration of endothelial cells, which were reversed by CYP4A overexpression or exogenous addition of 20-HETE, VEGF and TGF-β. Furthermore, FLA-16 prevented crosstalk between TAMs and EPCs during angiogenesis. These results suggest that CYP4A inhibition by FLA-16 prolongs survival and normalizes vasculature in glioma through decreasing production of TAMs and EPCs-derived VEGF and TGF-β. This may represent a potential therapeutic strategy to overcome resistance to anti-VEGF treatment by effects on vessels and immune cells.
Collapse
|