1
|
Sevilla A, Grichnik J. Therapeutic modulation of KIT ligand in melanocytic disorders with implications for mast cell diseases. Exp Dermatol 2024; 33:e15091. [PMID: 38711220 DOI: 10.1111/exd.15091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024]
Abstract
KIT ligand and its associated receptor KIT serve as a master regulatory system for both melanocytes and mast cells controlling survival, migration, proliferation and activation. Blockade of this pathway results in cell depletion, while overactivation leads to mastocytosis or melanoma. Expression defects are associated with pigmentary and mast cell disorders. KIT ligand regulation is complex but efficient targeting of this system would be of significant benefit to those suffering from melanocytic or mast cell disorders. Herein, we review the known associations of this pathway with cutaneous diseases and the regulators of this system both in skin and in the more well-studied germ cell system. Exogenous agents modulating this pathway will also be presented. Ultimately, we will review potential therapeutic opportunities to help our patients with melanocytic and mast cell disease processes potentially including vitiligo, hair greying, melasma, urticaria, mastocytosis and melanoma.
Collapse
Affiliation(s)
- Alec Sevilla
- Department of Dermatology, New York Medical College, New York, New York, USA
- Department of Internal Medicine, Lakeland Regional Health, Lakeland, Florida, USA
| | - James Grichnik
- Department of Dermatology and Cutaneous Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| |
Collapse
|
2
|
Su DQ, Tian XF. Causal associations of cytokines and growth factors with cholelithiasis: a bidirectional Mendelian randomization study. Postgrad Med J 2024; 100:84-90. [PMID: 37857513 DOI: 10.1093/postmj/qgad101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/18/2023] [Accepted: 09/28/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND It has been reported that patients with cholelithiasis may have changes in levels of cytokines and growth factors, while their causal relationships were still unclear. METHODS This study was a bidirectional Mendelian randomization (MR) study. Datasets of 41 circulation cytokines and growth factors and the data on cholelithiasis were obtained. Six steps of strict instrumental variable filtration were set, and inverse-variance weighted analysis, MR-Egger regression, and weighted median test were used to identify the causal relationships. Benjamini-Hochberg method was used to adjust the P-values. RESULTS After adjustments of P-values, four cytokines and growth factors were still causally associated with cholelithiasis significantly: interleukin 2 receptor alpha (adjusted P: 4.59E-02), interleukin 8 (adjusted P: 1.09E-02), monocyte-specific chemokine 3 (adjusted P: 2.73E-04), and stem cell factor (adjusted P: 2.73E-04). In the reverse MR analysis, no significant causal relationship was detected after adjustment. CONCLUSIONS Four cytokines and growth factors, including interleukin 2 receptor alpha, interleukin 8, monocyte-specific chemokine 3, and stem cell factor, were proven to relate to cholelithiasis causally and unidirectionally.
Collapse
Affiliation(s)
- De-Qiang Su
- Department of Hepatopancreatobiliary Surgery, China-Japan Union Hospital of Jilin University, Changchun, 132000, China
| | - Xiao-Feng Tian
- Department of Hepatopancreatobiliary Surgery, China-Japan Union Hospital of Jilin University, Changchun, 132000, China
| |
Collapse
|
3
|
Wang X, Zhou L, Xu A, NIMA D, Dong Z. Effects of stem cell factor in follicular fluid and granulosa cells on oocyte maturity and clinical pregnancy. Medicine (Baltimore) 2023; 102:e36749. [PMID: 38206705 PMCID: PMC10754551 DOI: 10.1097/md.0000000000036749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/30/2023] [Indexed: 01/13/2024] Open
Abstract
Stem cell factor (SCF) is implicated in cell growth, proliferation, differentiation, migration, and apoptosis. SCF in follicular fluid (FF) and granulosa cells (GCs) plays a key role in oocyte maturation and clinical pregnancy; however, the exact mechanism is unclear. We aimed to investigate SCF potential in predicting oocyte maturity and clinical pregnancy. We collected 60 FF and 60 GCs samples from different patients with infertility. Real-time polymerase chain reaction and cellular immunofluorescence analyses were used to quantitatively and qualitatively determine SCF concentration in GCs; enzyme-linked immunosorbent assay was used to determine SCF concentration in FF. GC and FF SCF concentrations were positively correlated with metaphase (M)II oocyte proportion and clinical pregnancy (R = 0.280, 0.735 vs R = 0.257, 0.354). SCF concentrations in GCs were significantly higher in the clinical pregnancy group than in the nonclinical pregnancy group. Immunofluorescence analysis showed that SCF expression was higher in the clinical pregnancy and high-MII -oocyte proportion groups. Receiver operating characteristic curve analysis showed that combined SCF and serum anti-Müllerian hormone levels could predict oocyte maturity and clinical pregnancy better than either of these factors alone. SCF concentration in GCs and FF can serve as a predictor of oocyte maturity and clinical pregnancy.
Collapse
Affiliation(s)
- Xu Wang
- Department of Obstetrics and Gynecology, People’s Hospital of Leshan, Leshan, China
| | - Lixiang Zhou
- Department of Gynecology, People’s Hospital of Anshun, Anshun, China
| | - Anli Xu
- Department of Reproductive Medicine, The First Affiliated Hospital of Dali University, Dali, China
| | - Dunzhu NIMA
- Clinical Lab, Tibet Autonomous Region People’s Hospital, Lhasa, China
| | - Zhaomei Dong
- Department of Reproductive Medicine, The First Affiliated Hospital of Dali University, Dali, China
| |
Collapse
|
4
|
Garcia PJB, Huang SKH, De Castro-Cruz KA, Leron RB, Tsai PW. An In Vitro Evaluation and Network Pharmacology Analysis of Prospective Anti-Prostate Cancer Activity from Perilla frutescens. PLANTS (BASEL, SWITZERLAND) 2023; 12:3006. [PMID: 37631218 PMCID: PMC10457999 DOI: 10.3390/plants12163006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Perilla frutescens (L.) Britt. is extensively cultivated in East Asia as a dietary vegetable, and nutraceuticals are reportedly rich in bioactive compounds, especially with anticancer activities. This study explored the in vitro cytotoxic effects of P. frutescens parts' (stems, leaves, and seeds) extracts on prostate cancer cells (DU-145) and possible interactions of putative metabolites to related prostate cancer targets in silico. The ethanol extract of P. frutescens leaves was the most cytotoxic for the prostate cancer cells. From high-performance liquid chromatography analysis, rosmarinic acid was identified as the major metabolite in the leaf extracts. Network analysis revealed interactions from multiple affected targets and pathways of the metabolites. From gene ontology enrichment analysis, P. frutescens leaf metabolites could significantly affect 14 molecular functions and 12 biological processes in five cellular components. Four (4) KEGG pathways, including for prostate cancer, and six (6) Reactome pathways were shown to be significantly affected. The molecular simulation confirmed the interactions of relevant protein targets with key metabolites, including rosmarinic acid. This study could potentially lead to further exploration of P. frutescens leaves or their metabolites for prostate cancer treatment and prevention.
Collapse
Affiliation(s)
- Patrick Jay B. Garcia
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Intramuros, Manila 1002, Philippines; (P.J.B.G.); (K.A.D.C.-C.); (R.B.L.)
- School of Graduate Studies, Mapúa University, Intramuros, Manila 1002, Philippines
| | - Steven Kuan-Hua Huang
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan;
- Division of Urology, Department of Surgery, Chi Mei Medical Center, Tainan 711, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Kathlia A. De Castro-Cruz
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Intramuros, Manila 1002, Philippines; (P.J.B.G.); (K.A.D.C.-C.); (R.B.L.)
| | - Rhoda B. Leron
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Intramuros, Manila 1002, Philippines; (P.J.B.G.); (K.A.D.C.-C.); (R.B.L.)
| | - Po-Wei Tsai
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan;
| |
Collapse
|
5
|
Ma L, Li B, Ma J, Wu C, Li N, Zhou K, Yan Y, Li M, Hu X, Yan H, Wang Q, Zheng Y, Wu Z. Novel discovery of Schisandrin A regulating the interplay of autophagy and apoptosis in oligoasthenospermia by targeting SCF/c-kit and TRPV1 via biosensors. Acta Pharm Sin B 2023. [DOI: 10.1016/j.apsb.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
6
|
Olguín-Martínez E, Ruiz-Medina BE, Licona-Limón P. Tissue-Specific Molecular Markers and Heterogeneity in Type 2 Innate Lymphoid Cells. Front Immunol 2021; 12:757967. [PMID: 34759931 PMCID: PMC8573327 DOI: 10.3389/fimmu.2021.757967] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/21/2021] [Indexed: 12/25/2022] Open
Abstract
Innate lymphoid cells (ILCs) are the most recently described group of lymphoid subpopulations. These tissue-resident cells display a heterogeneity resembling that observed on different groups of T cells, hence their categorization as cytotoxic NK cells and helper ILCs type 1, 2 and 3. Each one of these groups is highly diverse and expresses different markers in a context-dependent manner. Type 2 innate lymphoid cells (ILC2s) are activated in response to helminth parasites and regulate the immune response. They are involved in the etiology of diseases associated with allergic responses as well as in the maintenance of tissue homeostasis. Markers associated with their identification differ depending on the tissue and model used, making the study and understanding of these cells a cumbersome task. This review compiles evidence for the heterogeneity of ILC2s as well as discussion and analyses of molecular markers associated with their identity, function, tissue-dependent expression, and how these markers contribute to the interaction of ILC2s with specific microenvironments to maintain homeostasis or respond to pathogenic challenges.
Collapse
Affiliation(s)
- Enrique Olguín-Martínez
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico
| | - Blanca E Ruiz-Medina
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico
| | - Paula Licona-Limón
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico
| |
Collapse
|
7
|
Foster BM, Langsten KL, Mansour A, Shi L, Kerr BA. Tissue distribution of stem cell factor in adults. Exp Mol Pathol 2021; 122:104678. [PMID: 34450114 PMCID: PMC8516741 DOI: 10.1016/j.yexmp.2021.104678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/22/2021] [Accepted: 08/22/2021] [Indexed: 11/22/2022]
Abstract
Stem cell factor (SCF) is an essential cytokine during development and is necessary for gametogenesis, hematopoiesis, mast cell development, stem cell function, and melanogenesis. Here, we measure SCF concentration and distribution in adult humans and mice using gene expression analysis, tissue staining, and organ protein lysates. We demonstrate continued SCF expression in many cell types and tissues into adulthood. Tissues with high expression in adult humans included stomach, spleen, kidney, lung, and pancreas. In mice, we found high SCF expression in the esophagus, ovary, uterus, kidney, and small intestine. Future studies may correlate our findings of increased, organ-specific SCF concentrations within adult tissues with increased risk of SCF/CD117-related disease.
Collapse
Affiliation(s)
- Brittni M Foster
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Kendall L Langsten
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Ammar Mansour
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Lihong Shi
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Bethany A Kerr
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States of America; Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, United States of America.
| |
Collapse
|
8
|
BMP2-induction of FN14 promotes protumorigenic signaling in gynecologic cancer cells. Cell Signal 2021; 87:110146. [PMID: 34517088 DOI: 10.1016/j.cellsig.2021.110146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 01/12/2023]
Abstract
We previously reported that bone morphogenetic protein (BMP) signaling promotes tumorigenesis in gynecologic cancer cells. BMP2 enhances proliferation of ovarian and endometrial cancer cells via c-KIT induction, and triggers epithelial-mesenchymal transition (EMT) by SNAIL and/or SLUG induction, leading to increased cell migration. However, the downstream effectors of BMP signaling in gynecological cancer cells have not been clearly elucidated. In this study, we performed RNA-sequencing of Ishikawa endometrial and SKOV3 ovarian cancer cells after BMP2 stimulation, and identified TNFRSF12A, encoding fibroblast growth factor-inducible 14 (FN14) as a common BMP2-induced gene. FN14 knockdown suppressed BMP2-induced cell proliferation and migration, confirmed by MTS and scratch assays, respectively. In addition, FN14 silencing augmented chemosensitivity of SKOV3 cells. As a downstream effector of BMP signaling, FN14 modulated both c-KIT and SNAIL expression, which are important for growth and migration of ovarian and endometrial cancer cells. These results support the notion that the tumor promoting effects of BMP signaling in gynecological cancers are partially attributed to FN14 induction.
Collapse
|
9
|
BMP signaling is a therapeutic target in ovarian cancer. Cell Death Discov 2020; 6:139. [PMID: 33298901 PMCID: PMC7719168 DOI: 10.1038/s41420-020-00377-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/02/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
BMP signaling has been found to have tumor-promoting as well as tumor-suppressing effects in different types of tumors. In this study, we investigated the effects of BMP signaling and of BMP inhibitors on ovarian cancer (OC) cells in vitro and in vivo. High expression of BMP receptor 2 (BMPR2) correlated with poor overall survival of OC patients in the TCGA dataset. Both BMP2 and BMPR2 enhanced OC cell proliferation, whereas BMP receptor kinase inhibitors inhibited OC cell growth in cell culture as well as in a mouse model. BMP2 also augmented sphere formation, migration, and invasion of OC cells, and induced EMT. High BMP2 expression was observed after chemotherapy of OC patients in the GSE109934 dataset. In accordance, carboplatin, used for the treatment of OC patients, increased BMP2 secretion from OC cells, and induced EMT partially via activation of BMP signaling. Our data suggest that BMP signaling has tumor-promoting effects in OC, and that BMP inhibitors might be useful therapeutic agents for OC patients. Considering that carboplatin treatment augmented BMP2 secretion, the possibility to use a combination of BMP inhibitors and carboplatin in the treatment of OC patients, would be worth exploring.
Collapse
|
10
|
Wang Y, Shuang L, Yujie S, Xiaohui M, Wei W, Jidong W. Activin A overexpression promotes rat follicular development through SCF-kit-mediated cell signals. Gynecol Endocrinol 2020; 36:1070-1073. [PMID: 32133888 DOI: 10.1080/09513590.2020.1736026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
We explored the possible signaling pathway by which activin A induces oocyte maturation. Inhba-overexpressing lentivirus vectors were constructed and transfected into primary granulosa cells in vitro and ovary tissues in vivo in rats. The granulosa cell growth curve was drawn, and antibodies for phospho-Smad2, phospho-Erk5, phospho-Nur77, and stem cell factor (SCF) were prepared for western blot analysis. Protein expression of SCF and C-kit in the rat ovaries was detected by immunohistochemical staining. The rate of granulosa cell proliferation was higher in the Inhba gene overexpression group (INH) than in the control groups (CON group and GFP group) in vitro. Protein expression of SCF and C-kit was higher in the INH group than in the other two groups. phospho-Smad2, phospho-ERK5, P-nur77, and SCF proteins showed positive expression in rat ovarian granulosa cells in each group and were obviously increased in the INH group. Activin A overexpression may promote rat granulosa cell proliferation through Smad2/ERK5/nur77 signaling pathways, and rat granulosa cells overexpressing activin A in vitro showed increased levels of SCF and c-kit proteins.
Collapse
Affiliation(s)
- Yuxia Wang
- Gynecology Department of Jinan Central Hospital, Shandong University, Jinan, China
| | - Luo Shuang
- Gynecology and Obstetrics Department of Suining Central Hospital, Suining, China
| | - Su Yujie
- Gynecology Department of Jinan Central Hospital, Shandong University, Jinan, China
| | - Ma Xiaohui
- Department of Intensive Care Unit (ICU), Shandong Maternal and Child Health Hospital, Jinan, China
| | - Wang Wei
- Clinical Department of Shandong Maternal and Child Health Hospital, Jinan, China
| | - Wang Jidong
- Gynecology Department of Shandong Maternal and Child Health Hospital, Shandong University, Jinan, China
| |
Collapse
|
11
|
Suzan ZT, Tumkaya L, Mercantepe T, Atak M, Uydu HA. The effect of imatinib administered in the prenatal period on testis development in rats. Hum Exp Toxicol 2020; 40:634-648. [PMID: 32990058 DOI: 10.1177/0960327120958458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The purpose of this study was to examine the effects of exposure to imatinib in the prenatal period on testis development in rats. METHODS Although all the study groups received intraperitoneal imatinib on prenatal days 1-8, no pregnancy occurred in the Imatinib-80 group. Immunohistochemical analysis, TUNEL, c-kit and PDGF staining revealed no difference between the groups in terms of positivity scoring. RESULTS A significant decrease was detected in total sperm counts in the Imatinib-20 group compared to the control group, but the sperm count was higher in the Imatinib-60 group than in the Imatinib-20 group. At biochemical measurements, the drug increased oxidative stress in the testis and serum in the Imatinib-20 group, but caused a decrease in tissue in the Imatinib-60 group. Thiol measurements revealed a decrease in the testis and serum in the Imatinib-60 group, while an increase in serum measurements was observed in the Imatinib-40 group. Analysis revealed no difference between the groups in terms of protamine and histone gene expression levels in testis tissue exposed to imatinib. CONCLUSION Our findings show that prenatal exposure to imatinib can lead to histopathological and biochemical changes in testis tissue, but that no adverse effect occurs in nuclear maturation of germ cells during spermiogenesis.
Collapse
Affiliation(s)
- Z Topal Suzan
- Department of Histology and Embryology, Faculty of Medicine, 175650Recep Tayyip Erdoğan University, Rize, Turkey
| | - L Tumkaya
- Department of Histology and Embryology, Faculty of Medicine, 175650Recep Tayyip Erdoğan University, Rize, Turkey
| | - T Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, 175650Recep Tayyip Erdoğan University, Rize, Turkey
| | - M Atak
- Department of Biochemistry, Faculty of Medicine, 187475Recep Tayyip Erdoğan University, Rize, Turkey
| | - H A Uydu
- Department of Biochemistry, Faculty of Medicine, 187475Recep Tayyip Erdoğan University, Rize, Turkey
| |
Collapse
|
12
|
Gaudichon J, Jakobczyk H, Debaize L, Cousin E, Galibert MD, Troadec MB, Gandemer V. Mechanisms of extramedullary relapse in acute lymphoblastic leukemia: Reconciling biological concepts and clinical issues. Blood Rev 2019; 36:40-56. [PMID: 31010660 DOI: 10.1016/j.blre.2019.04.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 04/03/2019] [Accepted: 04/15/2019] [Indexed: 12/17/2022]
Abstract
Long-term survival rates in childhood acute lymphoblastic leukemia (ALL) are currently above 85% due to huge improvements in treatment. However, 15-20% of children still experience relapses. Relapses can either occur in the bone marrow or at extramedullary sites, such as gonads or the central nervous system (CNS), formerly referred to as ALL-blast sanctuaries. The reason why ALL cells migrate to and stay in these sites is still unclear. In this review, we have attempted to assemble the evidence concerning the microenvironmental factors that could explain why ALL cells reside in such sites. We present criteria that make extramedullary leukemia niches and solid tumor metastatic niches comparable. Indeed, considering extramedullary leukemias as metastases could be a useful approach for proposing more effective treatments. In this context, we conclude with several examples of potential niche-based therapies which could be successfully added to current treatments of ALL.
Collapse
Affiliation(s)
- Jérémie Gaudichon
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France; Pediatric Hematology and Oncology Department, University Hospital, Caen, France.
| | - Hélène Jakobczyk
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France
| | - Lydie Debaize
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France
| | - Elie Cousin
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France; Pediatric Hematology Department, University Hospital, Rennes, France
| | - Marie-Dominique Galibert
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France.
| | - Marie-Bérengère Troadec
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France
| | - Virginie Gandemer
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France; Pediatric Hematology Department, University Hospital, Rennes, France.
| |
Collapse
|
13
|
Lafin JT, Bagrodia A, Woldu S, Amatruda JF. New insights into germ cell tumor genomics. Andrology 2019; 7:507-515. [PMID: 30896089 DOI: 10.1111/andr.12616] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/27/2019] [Accepted: 03/04/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Testicular germ cell tumors (GCTs) represent the most common malignancy in young men. While GCTs represent a model for curable solid tumors due to exquisite chemosensitivity, mortality for patients with GCT comprises the most life years lost for non-pediatric malignancies. Given limited options for patients with platinum-resistant disease, improved insight into GCT biology could identify novel therapeutic options for patients with platinum-resistant disease. Recent studies into molecular characteristics of both early stage and advanced germ cell tumors suggest a role for rationally targeted agents and potentially immunotherapy. RECENT DEVELOPMENTS Recent GWAS meta-analyses have uncovered additional susceptibility loci for GCT and provide further evidence that GCT risk is polygenic. Chromosome arm level amplifications and reciprocal loss of heterozygosity have been described as significantly enriched in GCT compared to other cancer types. Contemporary analyses confirm ubiquitous gain of isochromosome 12 and mutations in addition to previously described GCT-associated genes such as KIT and KRAS. Alterations within the TP53-MDM2 signal transduction pathway appear to be enriched among patients with platinum-resistant disease. Potentially actionable targets, including alterations in TP53-MDM2, Wnt/β-catenin, PI3K, and MAPK signaling, are present in significant proportions of patients with platinum-resistant disease and may be exploited as therapeutic options. Pre-clinical and early clinical data also suggest a potential role for immunotherapy among patients with GCTs. CONCLUSION Molecular characterization of GCT patients may provide biologic rationale for novel treatment options in patients with platinum-resistant disease.
Collapse
Affiliation(s)
- J T Lafin
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - A Bagrodia
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - S Woldu
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - J F Amatruda
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| |
Collapse
|
14
|
Discovery of novel Syk/PDGFR-α/c-Kit inhibitors as multi-targeting drugs to treat rheumatoid arthritis. Bioorg Med Chem 2018; 26:4375-4381. [DOI: 10.1016/j.bmc.2018.06.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/14/2018] [Accepted: 06/21/2018] [Indexed: 12/19/2022]
|
15
|
Qi H, Wen B, Wu Q, Cheng W, Lou J, Wei J, Huang J, Yao X, Weng G. Long noncoding RNA SNHG7 accelerates prostate cancer proliferation and cycle progression through cyclin D1 by sponging miR-503. Biomed Pharmacother 2018; 102:326-332. [DOI: 10.1016/j.biopha.2018.03.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/01/2018] [Accepted: 03/05/2018] [Indexed: 10/17/2022] Open
|