1
|
Taya M, Hou X, Veneris JT, Kazi N, Larson MC, Maurer MJ, Heinzen EP, Chen H, Lastra R, Oberg AL, Weroha SJ, Fleming GF, Conzen SD. Investigation of selective glucocorticoid receptor modulation in high-grade serous ovarian cancer PDX models. J Gynecol Oncol 2025; 36:e4. [PMID: 38909640 PMCID: PMC11790989 DOI: 10.3802/jgo.2025.36.e4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/18/2024] [Accepted: 05/07/2024] [Indexed: 06/25/2024] Open
Abstract
OBJECTIVE In ovarian cancer (OvCa), tumor cell high glucocorticoid receptor (GR) has been associated with poor patient prognosis. In vitro, GR activation inhibits chemotherapy-induced OvCa cell death in association with transcriptional upregulation of genes encoding anti-apoptotic proteins. A recent randomized phase II study demonstrated improvement in progression-free survival (PFS) for heavily pre-treated OvCa patients randomized to receive therapy with a selective GR modulator (SGRM) plus chemotherapy compared to chemotherapy alone. We hypothesized that SGRM therapy would improve carboplatin response in OvCa patient-derived xenograft (PDX). METHODS Six high-grade serous (HGS) OvCa PDX models expressing GR mRNA (NR3C1) and protein were treated with chemotherapy +/- SGRM. Tumor size was measured longitudinally by peritoneal transcutaneous ultrasonography. RESULTS One of the 6 GR-positive PDX models showed a significant improvement in PFS with the addition of a SGRM. Interestingly, the single model with an improved PFS was least carboplatin sensitive. Possible explanations for the modest SGRM activity include the high carboplatin sensitivity of 5 of the PDX tumors and the potential that SGRMs activate the tumor invasive immune cells in patients (absent from immunocompromised mice). The level of tumor GR protein expression alone appears insufficient for predicting SGRM response. CONCLUSION The significant improvement in PFS shown in 1 of the 6 models after treatment with a SGRM plus chemotherapy underscores the need to determine predictive biomarkers for SGRM therapy in HGS OvCa and to better identify patient subgroups that are most likely to benefit from adding GR modulation to chemotherapy.
Collapse
Affiliation(s)
- Manisha Taya
- Division of Hematology and Oncology, UT Southwestern, Dallas, TX, USA
| | - Xiaonan Hou
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Jennifer T Veneris
- Department of Medicine, Section of Hematology and Oncology, The University of Chicago, Chicago, IL, USA
| | - Nina Kazi
- Division of Hematology and Oncology, UT Southwestern, Dallas, TX, USA
| | - Melissa C Larson
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Matthew J Maurer
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Ethan P Heinzen
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN, USA
| | - Hao Chen
- Department of Pathology, UT Southwestern, Dallas, TX, USA
| | - Ricardo Lastra
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Ann L Oberg
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - S John Weroha
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Gini F Fleming
- Department of Medicine, Section of Hematology and Oncology, The University of Chicago, Chicago, IL, USA
| | - Suzanne D Conzen
- Division of Hematology and Oncology, UT Southwestern, Dallas, TX, USA.
| |
Collapse
|
2
|
Lai B, Jiang H, Gao Y, Zhou X. Identification of ROCK1 as a novel biomarker for postmenopausal osteoporosis and pan-cancer analysis. Aging (Albany NY) 2023; 15:8873-8907. [PMID: 37683138 PMCID: PMC10522383 DOI: 10.18632/aging.205004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Postmenopausal osteoporosis (PMOP) is a prevalent bone disorder with significant global impact. The elevated risk of osteoporotic fracture in elderly women poses a substantial burden on individuals and society. Unfortunately, the current lack of dependable diagnostic markers and precise therapeutic targets for PMOP remains a major challenge. METHODS PMOP-related datasets GSE7429, GSE56814, GSE56815, and GSE147287, were downloaded from the GEO database. The DEGs were identified by "limma" packages. WGCNA and Machine Learning were used to choose key module genes highly related to PMOP. GSEA, DO, GO, and KEGG enrichment analysis was performed on all DEGs and the selected key hub genes. The PPI network was constructed through the GeneMANIA database. ROC curves and AUC values validated the diagnostic values of the hub genes in both training and validation datasets. xCell immune infiltration and single-cell analysis identified the hub genes' function on immune reaction in PMOP. Pan-cancer analysis revealed the role of the hub genes in cancers. RESULTS A total of 1278 DEGs were identified between PMOP patients and the healthy controls. The purple module and cyan module were selected as the key modules and 112 common genes were selected after combining the DEGs and module genes. Five Machine Learning algorithms screened three hub genes (KCNJ2, HIPK1, and ROCK1), and a PPI network was constructed for the hub genes. ROC curves validate the diagnostic values of ROCK1 in both the training (AUC = 0.73) and validation datasets of PMOP (AUC = 0.81). GSEA was performed for the low-ROCK1 patients, and the top enriched field included protein binding and immune reaction. DCs and NKT cells were highly expressed in PMOP. Pan-cancer analysis showed a correlation between low ROCK1 expression and SKCM as well as renal tumors (KIRP, KICH, and KIRC). CONCLUSIONS ROCK1 was significantly associated with the pathogenesis and immune infiltration of PMOP, and influenced cancer development, progression, and prognosis, which provided a potential therapy target for PMOP and tumors. However, further laboratory and clinical evidence is required before the clinical application of ROCK1 as a therapeutic target.
Collapse
Affiliation(s)
- Bowen Lai
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Heng Jiang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yuan Gao
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xuhui Zhou
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
3
|
Fang S, Zheng L, Shen L, Su Y, Ding J, Chen W, Chen X, Chen W, Shu G, Chen M, Zhao Z, Tu J, Ji J. Inactivation of KDM5A suppresses growth and enhances chemosensitivity in liver cancer by modulating ROCK1/PTEN/AKT pathway. Eur J Pharmacol 2023; 940:175465. [PMID: 36566915 DOI: 10.1016/j.ejphar.2022.175465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Liver cancer is a kind of malignant tumor with poor sensitivity to chemotherapy. It is urgent to investigate approaches to improve the outcome of chemotherapy. KDM5A has been reported to be an oncogene in various cancers and is associated with drug resistance. However, the functions of KDM5A in chemotherapeutic sensitivity of liver cancer not been well illustrated. In this study, we found that KDM5A was upregulated in liver cancer tissue and cell lines. KDM5A knockdown using a gene interference strategy suppressed the growth of liver cancer in vitro and in vivo. CPI-455, a pharmacological inactivation of KDM5A enhanced the cytotoxicity of cisplatin (CDDP) in liver cells. CPI-455 and CDDP cotreatment resulted in apoptosis and mitochondrial dysfunction. We also found that knockdown or inactivation of KDM5A resulted in the downregulation of ROCK1, an oncogene regulating the activation of the PTEN/AKT signaling pathway. In particular, overexpression of ROCK1 or SF1670, a pharmacological inhibitor of PTEN, alleviated the cytotoxicity of CPI-455 and CDDP cotreatment. In HCCLM3 xenografts, CPI-455 and CDDP cotreatment dramatically inhibited the growth of xenograft tumor compared to CPI-455 or CDDP treatment alone. In conclusion, this study suggested that targeting the inactivation of KDM5A is an efficient strategy to enhance the chemosensitivity of liver cancer cells to CDDP by modulating the ROCK1/PTEN/AKT signaling pathway.
Collapse
Affiliation(s)
- Shiji Fang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Interventional Diagnosis and Treatment Center, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Liyun Zheng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Interventional Diagnosis and Treatment Center, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Lin Shen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Interventional Diagnosis and Treatment Center, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Yanping Su
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Jiayi Ding
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Weiyue Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Xiaoxiao Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Weiqian Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Interventional Diagnosis and Treatment Center, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Gaofeng Shu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Interventional Diagnosis and Treatment Center, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Jianfei Tu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Interventional Diagnosis and Treatment Center, Lishui Hospital of Zhejiang University, Lishui, 323000, China.
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Interventional Diagnosis and Treatment Center, Lishui Hospital of Zhejiang University, Lishui, 323000, China.
| |
Collapse
|
4
|
Asadi MR, Moslehian MS, Sabaie H, Sharifi-Bonab M, Hakimi P, Hussen BM, Taheri M, Rakhshan A, Rezazadeh M. CircRNA-Associated CeRNAs Regulatory Axes in Retinoblastoma: A Systematic Scoping Review. Front Oncol 2022; 12:910470. [PMID: 35865469 PMCID: PMC9294360 DOI: 10.3389/fonc.2022.910470] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/10/2022] [Indexed: 12/04/2022] Open
Abstract
Retinoblastoma (RB) is one of the most common childhood cancers caused by RB gene mutations (tumor suppressor gene in various patients). A better understanding of molecular pathways and the development of new diagnostic approaches may lead to better treatment for RB patients. The number of studies on ceRNA axes is increasing, emphasizing the significance of these axes in RB. Circular RNAs (circRNAs) play a vital role in competing endogenous RNA (ceRNA) regulatory axes by sponging microRNAs and regulating gene expression. Because of the broadness of ceRNA interaction networks, they may assist in investigating treatment targets in RB. This study conducted a systematic scoping review to evaluate verified loops of ceRNA in RB, focusing on the ceRNA axis and its relationship to circRNAs. This scoping review was carried out using a six-step strategy and the Prisma guideline, and it involved systematically searching the publications of seven databases. Out of 363 records, sixteen articles were entirely consistent with the defined inclusion criteria and were summarized in the relevant table. The majority of the studies focused on the circRNAs circ_0000527, circ_0000034, and circTET1, with approximately two-fifths of the studies focusing on a single circRNA. Understanding the many features of this regulatory structure may help elucidate RB's unknown causative factors and provide novel molecular potential therapeutic targets and medical fields.
Collapse
Affiliation(s)
- Mohammad Reza Asadi
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Sadat Moslehian
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hani Sabaie
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mirmohsen Sharifi-Bonab
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Hakimi
- Woman’s Reproductive Health Research Center, Tabriz University of medical sciences, Tabriz, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Azadeh Rakhshan
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rezazadeh
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Woman’s Reproductive Health Research Center, Tabriz University of medical sciences, Tabriz, Iran
| |
Collapse
|
5
|
Effects of RhoA on depression-like behavior in prenatally stressed offspring rats. Behav Brain Res 2022; 432:113973. [PMID: 35728732 DOI: 10.1016/j.bbr.2022.113973] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/08/2022] [Accepted: 06/15/2022] [Indexed: 11/20/2022]
Abstract
Depression is a common mental disease that can lead to suicide when severe. Exposure to prenatal stress (PS) can lead to depression-like behavior in offspring, but the mechanism is unclear. RhoA (Ras homology family member A) plays an important role in stress-induced changes in synaptic plasticity, participating in the development of depression by activating the downstream effector ROCK (Rho-associated protein kinase). This study explored the influence in the expression of RhoA and downstream molecules ROCK1/2 in prenatally stressed rats, and the effect of RhoA inhibitor simvastatin on depression-like behavior induced by PS. Depression-like behavior in offspring was detected by sucrose preference test, forced swimming test, and open-field test. The mRNA and protein expression of RhoA and ROCK1/2 in the hippocampus and prefrontal cortex of offspring rats were detected by qRT-PCR and western blotting, respectively. Our results showed that PS causes depression-like behavior in offspring rats, associated with elevated expression of RhoA, ROCK1/2 in the hippocampus and prefrontal cortex. After administration of simvastatin to PS rats, the expression of RhoA and ROCK2 was significantly reduced, alleviating depression-like behavior. Our study demonstrated that RhoA participates in the depression-like behavior in prenatally stressed offspring rats, which may be a potential target for antidepressant therapy.
Collapse
|
6
|
Kim CH, Kim DE, Kim DH, Min GH, Park JW, Kim YB, Sung CK, Yim H. Mitotic protein kinase-driven crosstalk of machineries for mitosis and metastasis. Exp Mol Med 2022; 54:414-425. [PMID: 35379935 PMCID: PMC9076678 DOI: 10.1038/s12276-022-00750-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence indicates that mitotic protein kinases are involved in metastatic migration as well as tumorigenesis. Protein kinases and cytoskeletal proteins play a role in the efficient release of metastatic cells from a tumor mass in the tumor microenvironment, in addition to playing roles in mitosis. Mitotic protein kinases, including Polo-like kinase 1 (PLK1) and Aurora kinases, have been shown to be involved in metastasis in addition to cell proliferation and tumorigenesis, depending on the phosphorylation status and cellular context. Although the genetic programs underlying mitosis and metastasis are different, the same protein kinases and cytoskeletal proteins can participate in both mitosis and cell migration/invasion, resulting in migratory tumors. Cytoskeletal remodeling supports several cellular events, including cell division, movement, and migration. Thus, understanding the contributions of cytoskeletal proteins to the processes of cell division and metastatic motility is crucial for developing efficient therapeutic tools to treat cancer metastases. Here, we identify mitotic kinases that function in cancer metastasis as well as tumorigenesis. Several mitotic kinases, namely, PLK1, Aurora kinases, Rho-associated protein kinase 1, and integrin-linked kinase, are considered in this review, as an understanding of the shared machineries between mitosis and metastasis could be helpful for developing new strategies to treat cancer. Improving understanding of the mechanisms linking cell division and cancer spread (metastasis) could provide novel strategies for treatment. A group of enzymes involved in cell division (mitosis) are also thought to play critical roles in the spread of cancers. Hyungshin Yim at Hanyang University in Ansan, South Korea, and co-workers in Korea and the USA reviewed the roles of several mitotic enzymes that are connected with metastasis as well as tumorigenesis. They discussed how these enzymes modify cytoskeletal proteins and other substrates during cancer progression. Some regulatory control of cell cytoskeletal structures is required for cancer cells to metastasize. Recent research has uncovered crosstalk between mitotic enzymes and metastatic cytoskeletal molecules in various cancers. Targeting mitotic enzymes and the ways they influence cytoskeletal mechanisms could provide valuable therapeutic strategies for suppressing metastasis.
Collapse
Affiliation(s)
- Chang-Hyeon Kim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea
| | - Da-Eun Kim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea
| | - Dae-Hoon Kim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea
| | - Ga-Hong Min
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea
| | - Jung-Won Park
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea
| | - Yeo-Bin Kim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea
| | - Chang K Sung
- Department of Biological and Health Sciences, Texas A&M University-Kingsville, Kingsville, TX, 78363, USA
| | - Hyungshin Yim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea.
| |
Collapse
|
7
|
Nie Y, Zhu X, Bu N, Jiang Y, Su Y, Pan K, Li S. Circ_0064288 acts as an oncogene of hepatocellular carcinoma cells by inhibiting miR-335-5p expression and promoting ROCK1 expression. BMC Cancer 2022; 22:265. [PMID: 35287604 PMCID: PMC8919637 DOI: 10.1186/s12885-022-09323-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 01/28/2022] [Indexed: 11/10/2022] Open
Abstract
Background Reportedly, circular RNA (circRNA) is a key modulator in the development of human malignancies. This work is aimed to probe the expression pattern, biological effects and mechanism of circ_0064288 on hepatocellular carcinoma (HCC) progression. Methods The differentially expressed circRNA was screened by analyzing the expression profiles of circRNAs in HCC tissues and normal tissues. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to examine the expression of circ_0064288, miR-335-5p and Rho associated coiled-coil containing protein kinase 1 (ROCK1) mRNA in HCC specimens. After circ_0064288 was overexpressed or knocked down in HCC cells, cell growth was detected by the CCK-8 experiment, and cell migration was evaluated using Transwell experiment and scratch healing experiment. The targeting relationship between miR-335-5p and circ_0064288 and ROCK1 mRNA was predicted and verified using bioinformatic analysis and dual-luciferase reporter gene experiments, respectively. Western blot was executed to examine ROCK1 protein expression in HCC cells. Results Circ_0064288 and ROCK1 expression was up-modulated in HCC, while miR-335-5p was down-modulated. High circ_0064288 expression was associated with shorter survival time of HCC patients. It was also revealed that circ_0064288 overexpression remarkably enhanced HCC cell growth and migration, while knockdown of circ_0064288 induced opposite effects. Additionally, circ_0064288 could competitively bind with miR-335-5p thereby up-modulate ROCK1 expression. MiR-335-5p overexpression partly counteracted the effect of circ_0064288 overexpression on HCC cells. Conclusion Circ_0064288 facilitates HCC cell growth and migration by modulating the miR-335-5p/ROCK1 axis. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09323-8.
Collapse
Affiliation(s)
- Yingying Nie
- Department of Gastroenterology, Jiamusi Central Hospital, Jiamusi, 154002, Heilongjiang, China
| | - Xuedan Zhu
- Department of Gastroenterology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Nan Bu
- Department of Gastroenterology, Jiamusi Hospital of Traditional Chinese Medicine, No.326 Jiefang Road, Jiamusi, 154002, Heilongjiang, China
| | - Yang Jiang
- Department of Gastroenterology, Jiamusi Central Hospital, Jiamusi, 154002, Heilongjiang, China
| | - Yue Su
- Department of Gastroenterology, Jiamusi Hospital of Traditional Chinese Medicine, No.326 Jiefang Road, Jiamusi, 154002, Heilongjiang, China
| | - Keming Pan
- Department of Gastroenterology, Jiamusi Hospital of Traditional Chinese Medicine, No.326 Jiefang Road, Jiamusi, 154002, Heilongjiang, China
| | - Shanshan Li
- Department of Gastroenterology, Jiamusi Hospital of Traditional Chinese Medicine, No.326 Jiefang Road, Jiamusi, 154002, Heilongjiang, China.
| |
Collapse
|
8
|
Dang L, Shi C, Zhang Q, Liao P, Wang Y. Downregulation of sperm-associated antigen 5 inhibits melanoma progression by regulating forkhead box protein M1/A disintegrin and metalloproteinase 17/NOTCH1 signaling. Bioengineered 2022; 13:4744-4756. [PMID: 35138218 PMCID: PMC8974132 DOI: 10.1080/21655979.2022.2031670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 01/12/2023] Open
Abstract
Sperm-associated antigen 5 (SPAG5) has been identified as a driver in several type of cancers. In this study, we aimed to reveal the role of SPAG5 in melanoma and clarify whether FOXM1 (forkhead box protein M1) /ADAM17 (A disintegrin and metalloproteinase 17) /NOTCH1 signaling was involved. The expression of SPAG5 in malignant melanoma (MM) tissues and matched normal tissues was detected using qRT-PCR, immunohistochemistry and Western blotting. Cell viability was tested using CCK-8 (Cell Count Kit-8), colony formation and EdU staining. Cell migration and epithelial to mesenchymal transition (EMT) were measured using transwell chambers and immunofluorescent staining. Cell cycle distribution and tumorigenesis were assessed by flow cytometry and in vivo tumor-bearing experiments, respectively. The results demonstrated that the expression of SPAG5 was increased in MM tissues and cells. Downregulation of SPAG5 inhibited cell viability, migration, invasion and EMT, and induced a G1-phase arrest. In addition, downregulation of SPAG5 decreased the expression of FOXM1, thereafter inhibiting the expression of ADAM17, NOTCH1 and HES1. Furthermore, deletion of SPAG5 expression decreased the tumorigenesis of MM A375 cells. In conclusion, this study demonstrated that SPAG5 was overexpressed in MM. Downregulation of SPAG5 repressed MM cell growth and EMT, which might be induced by inactivation of the FOXM1/ADAM17/NOTCH1 signaling.
Collapse
Affiliation(s)
- Lin Dang
- Department of Dermatovenology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Cuiping Shi
- Department of Dermatovenology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Qianqian Zhang
- Department of Dermatovenology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Peiyu Liao
- Department of Dermatovenology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Yan Wang
- Department of Pathology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
9
|
Wang J, Zhou L, Chen B, Yu Z, Zhang J, Zhang Z, Hu C, Bai Y, Ruan X, Wang S, Ouyang J, Wu A, Zhao X. Circular RNA circCSPP1 promotes the occurrence and development of colon cancer by sponging miR-431 and regulating ROCK1 and ZEB1. J Transl Med 2022; 20:58. [PMID: 35101080 PMCID: PMC8805259 DOI: 10.1186/s12967-022-03240-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/08/2022] [Indexed: 12/17/2022] Open
Abstract
Background Colon cancer is a common malignant tumor of the digestive tract, and its incidence is ranked third among gastrointestinal tumors. The present study aims to investigate the role of a novel circular RNA (circCSPP1) in colon cancer and its underlying molecular mechanisms. Methods Bioinformatics analysis and reverse transcription-quantitative PCR were used to detect the expression levels of circCSPP1 in colon cancer tissues and cell lines. The effects of circCSPP1 on the behavior of colon cancer cells were investigated using CCK-8, transwell and clonogenic assays. Bioinformatics analysis along with luciferase, fluorescence in situ hybridization and RNA pull-down assays were used to reveal the interaction between circCSPP1, microRNA (miR)-431, Rho associated coiled-coil containing protein kinase 1 (ROCK1) and zinc finger E-box binding homeobox 1 (ZEB1). Results It was found that circCSPP1 expression was significantly upregulated in colon cancer tissues and cell lines. Overexpression of circCSPP1 significantly promoted the proliferation, migration and invasion of colon cancer cells, whereas silencing of circCSPP1 exerted opposite effects. Mechanistically, circCSPP1 was found to bind with miR-431. In addition, ROCK1 and ZEB1 were identified as the target genes of miR-431. Rescue experiments further confirmed the interaction between circCSPP1, miR-431, ROCK1 and ZEB1. Moreover, circCSPP1 promoted the expression level of ROCK1, cyclin D1, cyclin-dependent kinase 4, ZEB1 and Snail, and lowered the E-cadherin expression level. Conclusion Taken together, the findings of the present study indicated that circCSPP1 may function as a competing endogenous RNA in the progression of colon cancer by regulating the miR-431/ROCK1 and miR-431/ZEB1 signaling axes. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03240-x.
Collapse
|
10
|
Qu H, Gao-Wa H, Hou Y, Ren M, Li J, Jing B, Du Y. TRIM37 interacts with PTEN to promote the growth of human T-cell acute lymphocytic leukemia cells through regulating PI3K/AKT pathway. Front Oncol 2022; 12:1016725. [PMID: 36923153 PMCID: PMC10009101 DOI: 10.3389/fonc.2022.1016725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/30/2022] [Indexed: 03/02/2023] Open
Abstract
Background TRIM37 has been reported to be associated with the tumorigenesis of cancers. However, the role of TRIM37 in T-cell acute lymphoblastic leukemia (T-ALL) remains unclear. This study aimed to characterize the effect of TRIM37 on T-ALL. Methods TRIM37 expression in T-ALL patients and T-ALL cell lines was determined by qRT-PCR and Western blot. Knockdown or overexpression of TRIM37 was conducted by transferring small-interfering TRIM37 or lentivirus-mediated transducing into T-ALL cells. CCK-8 assay and flow cytometry assay were conducted to analyze the proliferation and apoptosis of T-ALL cells. Co-immunoprecipitation experiments were conducted to investigate the relationship between TRIM37 and PTEN and the ubiquitination of PTEN. Results Our results suggested that TRIM37 expression was upregulated in the blood of T-ALL patients and T-ALL cell lines. Knockdown of TRIM37 noticeably inhibited the proliferation and promoted apoptosis of T-ALL cells. Ectopic expression of TRIM37 promoted the proliferation and suppressed the apoptosis rate of MOLT-4 cells and enhanced the phosphorylation of AKT. Moreover, TRIM37 interacted with PTEN and accelerated the degradation of PTEN via TRIM37-mediated ubiquitination in T-ALL cells. Moreover, TRIM37 reduced the sensitivity of T-ALL cells to bortezomib treatment. Additionally, PI3K/AKT signaling pathway was involved in the function of TRIM37 in T-ALL. TRIM37 contributed to the proliferation of T-ALL cells and reduced the susceptibility of T-ALL cells to bortezomib treatment through ubiquitination of PTEN and activating PI3K/AKT signaling pathway. Conclusions Our study suggested that TRIM37 could be considered as a therapeutic target for T-ALL.
Collapse
Affiliation(s)
- Honglan Qu
- Department of Hematology and Oncology, Inner Mongolia Forestry General Hospital, The Second Clinical Medical College of Inner Mongolia University for Nationalities, Yakeshi, China
| | - Hasen Gao-Wa
- Department of Hematology and Oncology, Inner Mongolia Forestry General Hospital, The Second Clinical Medical College of Inner Mongolia University for Nationalities, Yakeshi, China
| | - Yanyan Hou
- Department of Hematology and Oncology, Inner Mongolia Forestry General Hospital, The Second Clinical Medical College of Inner Mongolia University for Nationalities, Yakeshi, China
| | - Mengwei Ren
- Department of Hematology and Oncology, Inner Mongolia Forestry General Hospital, The Second Clinical Medical College of Inner Mongolia University for Nationalities, Yakeshi, China
| | - Jun Li
- Department of Hematology and Oncology, Inner Mongolia Forestry General Hospital, The Second Clinical Medical College of Inner Mongolia University for Nationalities, Yakeshi, China
| | - Baoshong Jing
- Department of Hematology and Oncology, Inner Mongolia Forestry General Hospital, The Second Clinical Medical College of Inner Mongolia University for Nationalities, Yakeshi, China
| | - YanDan Du
- Department of Hematology and Oncology, Inner Mongolia Forestry General Hospital, The Second Clinical Medical College of Inner Mongolia University for Nationalities, Yakeshi, China
| |
Collapse
|
11
|
Mei Y, Wu Y, Ma L, Zhang H, Li L, Wang F. Overexpression of ROCK1 promotes cancer cell proliferation and is associated with poor prognosis in human urothelial bladder cancer. Mamm Genome 2021; 32:466-475. [PMID: 34322718 DOI: 10.1007/s00335-021-09896-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/14/2021] [Indexed: 11/27/2022]
Abstract
Rho-associated protein kinase 1 (ROCK1) has been reported to be overexpressed in many types of tumors, but its role in urothelial bladder cancer is poorly understood. The study aims to investigate the role of ROCK1 in urothelial bladder cancer and explored the underlying mechanism. Protein and mRNA levels of ROCK1 were detected in 64 urothelial bladder cancer patients using western blot, immunohistochemistry and qRT-PCR. Relationships between ROCK1 expression and clinicopathological factors and survival rate were analyzed. ROCK1 was silenced by shRNA in multiple urothelial bladder cancer cells to explore its function and underlying mechanism. ROCK1 expression was significantly increased in tumor tissues compared with the paired adjacent healthy tissues of patients. Higher ROCK1 expression of tumor tissues positively correlated with poor prognosis of patients (p = 0.0435). ROCK1 silence significantly inhibited cell proliferation and colony formation, and enhanced activation of apoptotic pathway in urothelial bladder cancer cells. High ROCK1 expression predicts poor prognosis of urothelial bladder cancer. ROCK1 silence inhibit cell proliferation and promote apoptosis, which may be of value as a therapeutic target for bladder cancer treatment.
Collapse
Affiliation(s)
- Yanhui Mei
- Department of Urology, Binzhou Medical University Hospital, No 661 Huanghe 2nd Road, Binzhou, 256603, Shandong, China
| | - Yuhai Wu
- Department of Urology, Binzhou Medical University Hospital, No 661 Huanghe 2nd Road, Binzhou, 256603, Shandong, China
| | - Longbo Ma
- Department of Oncology, Binzhou Medical University Hospital, No 661 Huanghe 2nd Road, Binzhou, 256603, Shandong, China
| | - Hongli Zhang
- Department of Oncology, Guizhou Provincial People's Hospital, No 83 Zhongshan East Road, Guiyang, 550002, Guizhou, China
| | - Lei Li
- Department of Oncology, Binzhou Medical University Hospital, No 661 Huanghe 2nd Road, Binzhou, 256603, Shandong, China
| | - Feng Wang
- Department of Oncology, Binzhou Medical University Hospital, No 661 Huanghe 2nd Road, Binzhou, 256603, Shandong, China.
| |
Collapse
|
12
|
Kim S, Kim SA, Han J, Kim IS. Rho-Kinase as a Target for Cancer Therapy and Its Immunotherapeutic Potential. Int J Mol Sci 2021; 22:ijms222312916. [PMID: 34884721 PMCID: PMC8657458 DOI: 10.3390/ijms222312916] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer immunotherapy is fast rising as a prominent new pillar of cancer treatment, harnessing the immune system to fight against numerous types of cancer. Rho-kinase (ROCK) pathway is involved in diverse cellular activities, and is therefore the target of interest in various diseases at the cellular level including cancer. Indeed, ROCK is well-known for its involvement in the tumor cell and tumor microenvironment, especially in its ability to enhance tumor cell progression, migration, metastasis, and extracellular matrix remodeling. Importantly, ROCK is also considered to be a novel and effective modulator of immune cells, although further studies are needed. In this review article, we describe the various activities of ROCK and its potential to be utilized in cancer treatment, particularly in cancer immunotherapy, by shining a light on its activities in the immune system.
Collapse
Affiliation(s)
- Seohyun Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea; (S.K.); (S.A.K.); (J.H.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Seong A. Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea; (S.K.); (S.A.K.); (J.H.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Jihoon Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea; (S.K.); (S.A.K.); (J.H.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - In-San Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea; (S.K.); (S.A.K.); (J.H.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Correspondence:
| |
Collapse
|
13
|
Cecchi M, Paccosi S, Silvano A, Eid AH, Parenti A. Dexamethasone Induces the Expression and Function of Tryptophan-2-3-Dioxygenase in SK-MEL-28 Melanoma Cells. Pharmaceuticals (Basel) 2021; 14:ph14030211. [PMID: 33806305 PMCID: PMC7998133 DOI: 10.3390/ph14030211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/18/2022] Open
Abstract
Tryptophan-2,3-dioxygenase (TDO) is one of the key tryptophan-catabolizing enzymes with immunoregulatory properties in cancer. Contrary to expectation, clinical trials showed that inhibitors of the ubiquitously expressed enzyme, indoleamine-2,3-dioxygenase-1 (IDO1), do not provide benefits in melanoma patients. This prompted the hypothesis that TDO may be a more attractive target. Because the promoter of TDO harbors glucocorticoid response elements (GREs), we aimed to assess whether dexamethasone (dex), a commonly used glucocorticoid, modulates TDO expression by means of RT-PCR and immunofluorescence and function by assessing cell proliferation and migration as well as metalloproteinase activity. Our results show that, in SK-Mel-28 melanoma cells, dex up-regulated TDO and its downstream effector aryl hydrocarbon receptor (AHR) but not IDO1. Furthermore, dex stimulated cellular proliferation and migration and potentiated MMP2 activity. These effects were inhibited by the selective TDO inhibitor 680C91 and enhanced by IDO1 inhibitors. Taken together, our results demonstrate that the metastatic melanoma cell line SK-Mel-28 possesses a functional TDO which can also modulate cancer cell phenotype directly rather than through immune suppression. Thus, TDO appears to be a promising, tractable target in the management or the treatment of melanoma progression.
Collapse
Affiliation(s)
- Marta Cecchi
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (M.C.); (S.P.); (A.S.)
| | - Sara Paccosi
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (M.C.); (S.P.); (A.S.)
| | - Angela Silvano
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (M.C.); (S.P.); (A.S.)
| | - Ali Hussein Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
- Correspondence: (A.H.E.); (A.P.); Tel.: +974-4403-7893 (A.H.E.)
| | - Astrid Parenti
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (M.C.); (S.P.); (A.S.)
- Correspondence: (A.H.E.); (A.P.); Tel.: +974-4403-7893 (A.H.E.)
| |
Collapse
|
14
|
Iftikhar A, Islam M, Shepherd S, Jones S, Ellis I. Cancer and Stress: Does It Make a Difference to the Patient When These Two Challenges Collide? Cancers (Basel) 2021; 13:cancers13020163. [PMID: 33418900 PMCID: PMC7825104 DOI: 10.3390/cancers13020163] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Head and neck cancers are the sixth most common cancer in the world. The burden of the disease has remained challenging over recent years despite the advances in treatments of other malignancies. The very use of the word malignancy brings about a stress response in almost all adult patients. Being told you have a tumour is not a word anyone wants to hear. We have embarked on a study which will investigate the effect of stress pathways on head and neck cancer patients and which signalling pathways may be involved. In the future, this will allow clinicians to better manage patients with head and neck cancer and reduce the patients’ stress so that this does not add to their tumour burden. Abstract A single head and neck Cancer (HNC) is a globally growing challenge associated with significant morbidity and mortality. The diagnosis itself can affect the patients profoundly let alone the complex and disfiguring treatment. The highly important functions of structures of the head and neck such as mastication, speech, aesthetics, identity and social interactions make a cancer diagnosis in this region even more psychologically traumatic. The emotional distress engendered as a result of functional and social disruption is certain to negatively affect health-related quality of life (HRQoL). The key biological responses to stressful events are moderated through the combined action of two systems, the hypothalamus–pituitary–adrenal axis (HPA) which releases glucocorticoids and the sympathetic nervous system (SNS) which releases catecholamines. In acute stress, these hormones help the body to regain homeostasis; however, in chronic stress their increased levels and activation of their receptors may aid in the progression of cancer. Despite ample evidence on the existence of stress in patients diagnosed with HNC, studies looking at the effect of stress on the progression of disease are scarce, compared to other cancers. This review summarises the challenges associated with HNC that make it stressful and describes how stress signalling aids in the progression of cancer. Growing evidence on the relationship between stress and HNC makes it paramount to focus future research towards a better understanding of stress and its effect on head and neck cancer.
Collapse
|
15
|
Wang Q, Hu X, Du M, Lu Z, Yan K, Zhao D, Jiang N, Peng Y, He X, Yin L. ZNRD1-AS1 Promotes Nasopharyngeal Carcinoma Cell Invasion and Metastasis by Regulating the miR-335-ROCK1 Axis. Onco Targets Ther 2020; 13:4779-4790. [PMID: 32547105 PMCID: PMC7263878 DOI: 10.2147/ott.s250028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) are known as key regulators in many cancer types, but their biological functions in nasopharyngeal carcinoma (NPC) remain largely unknown. In the present study, we aim to explore the role of the lncRNA ZNRD1-AS1 in NPC tumor development. Methods The role of ZNRD1-AS1 in NPC tissues and cells was explored by using quantitative real-time PCR assay. Cellular behavioral experiments were used in testing NPC cell proliferation, invasion, and migration. Luciferase reporter assay, RNA-binding protein immunoprecipitation, and Western blot analysis were used in estimating the associations among ZNRD1-AS1, miR-335, and ROCK1. Results ZNRD1-AS1 expression was elevated in the NPC tissues and cells, and ZNRD1-AS1 overexpression was positively correlated with advanced TNM stage and the presence of lymph node metastasis. Our biological experiments indicated that ZNRD1-AS1 knockdown reduces NPC cell invasion and metastasis. Further analyses revealed that ZNRD1-AS1 as a ceRNA promotes the migration and invasion of NPC cells by sponging miR-335. We provided evidence that ZNRD1-AS1 facilitates the invasion and metastasis of NPC cells via the miR-335–ROCK1 axis. Conclusion Our data shed light on the oncogenic role of ZNRD1-AS1 in NPC tumor development, and a promising therapeutic target for NPC was identified.
Collapse
Affiliation(s)
- Qiang Wang
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, People's Republic of China.,Department of Radiation Oncology, Xuzhou Cancer Hospital, Xuzhou, Jiangsu, People's Republic of China
| | - Xinyu Hu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, People's Republic of China
| | - Mingyu Du
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, People's Republic of China
| | - Zhiwei Lu
- Department of Radiation Oncology, Xuzhou Cancer Hospital, Xuzhou, Jiangsu, People's Republic of China
| | - Keshi Yan
- Department of Anesthesiology, Clinical Medical School of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, People's Republic of China
| | - Dingliang Zhao
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, People's Republic of China
| | - Ning Jiang
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, People's Republic of China
| | - Yi Peng
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, People's Republic of China
| | - Xia He
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, People's Republic of China
| | - Li Yin
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
16
|
Sun C, Hu A, Wang S, Tian B, Jiang L, Liang Y, Wang H, Dong J. ADAM17-regulated CX3CL1 expression produced by bone marrow endothelial cells promotes spinal metastasis from hepatocellular carcinoma. Int J Oncol 2020; 57:249-263. [PMID: 32319605 PMCID: PMC7252465 DOI: 10.3892/ijo.2020.5045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
Spinal metastasis occurs in 50-75% of bone metastases caused by hepatocellular carcinoma (HCC), and HCC-derived spinal metastasis can lead to a less favorable prognosis. Recently, several studies have demonstrated that C-X3-C motif chemokine ligand 1 (CX3CL1) is closely associated with cancer metastasis, and its secretion is modulated by a disintegrin and metalloproteinase 17 (ADAM17). Bone marrow endothelial cells (BMECs) are an essential component of bone marrow. However, little is known about the roles in and effects of BMECs on HCC spinal metastasis. The present study demonstrated that CX3CL1 and C-X-C motif chemokine receptor 3 (CXCR3) expression was upregulated in HCC spinal metastases, and that CX3CL1 promoted the migration and invasion of HCC cells to the spine. Western blot analysis revealed that the Src/protein tyrosine kinase 2 (PTK2) axis participated in CX3CL1-induced HCC cell invasion and migration. CX3CL1 also increased the expression of M2 macrophage markers in THP-1 monocytes. BMECs promoted the migration and invasion of Hep3B and MHCC97H cells by secreting soluble CX3CL1, whereas the neutralization of CX3CL1 inhibited this enhancement. CX3CL1 enhanced the activation of the phosphatidylinositol-4,5-bisphos-phate 3-kinase catalytic subunit alpha (PIK3CA)/AKT serine/threonine kinase 1 (AKT1) and Ras homolog family member A (RHOA)/Rho associated coiled-coil containing protein kinase 2 (ROCK2) signaling pathways through the Src/PTK2 signaling pathway. Furthermore, ADAM17 was activated by mitogen-activated protein kinase (MAPK) z14 in BMECs and significantly promoted the secretion of CX3CL1. HCC cells enhanced the recruitment and proliferation of BMECs. The overexpression of CX3CR1 facilitated the spinal metastasis of HCC in a mouse model in vivo. In addition, in vivo experiments revealed that BMECs promoted the growth of HCC in the spine. The present study demonstrated that CX3CL1 participates in HCC spinal metastasis, and that BMECs play an important role in the regulation of CX3CL1 in the spinal metastatic environment.
Collapse
Affiliation(s)
- Chi Sun
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Annan Hu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Shengxing Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Bo Tian
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Libo Jiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yun Liang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Houlei Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Jian Dong
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
17
|
Melatonin-Induced Cytoskeleton Reorganization Leads to Inhibition of Melanoma Cancer Cell Proliferation. Int J Mol Sci 2020; 21:ijms21020548. [PMID: 31952224 PMCID: PMC7014391 DOI: 10.3390/ijms21020548] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 11/17/2022] Open
Abstract
Neuroindole melatonin, a hormone synthesized during the night mainly-but not exclusively-by the pineal gland of all vertebrates, functions as an adapting signal to the light-dark cycle. Its antioxidant, neuroprotective, anti-inflammatory, and antitumor properties are all well-known and widely reported. Melanoma is one of the most common carcinomas among developed countries and a type of tumor particularly difficult to fight back in medium/advanced stages. In contrast to other types of cancer, influence of melatonin on melanoma has been scarcely investigated. Thus, we have chosen the murine melanoma model B16-F10 cell line to study antiproliferative and antitumoral actions of melatonin. For this purpose, we combined both, cell culture and in vivo models. Melatonin reduced either, growth rate or migration of B16-F10 cells. Furthermore, melanin synthesis was altered by melatonin, promoting its synthesis. Melatonin also induced a G2/M cell cycle arrest and altered the cytoskeletal organization. To corroborate these results, we tested the effect of melatonin in the in vivo model of B16-F10 cell injection in the tail vein, which causes numerous lung metastases. Two different strategies of melatonin administration were used, namely, in drinking water, or daily intraperitoneal injection. However, contrary to what occurred in cell culture, no differences were observed between control and melatonin treated groups. Results obtained led us to conclude that melatonin exerts an antiproliferative and anti-migrating effect on this melanoma model by interfering with the cytoskeleton organization, but this pharmacological effect cannot be translated in vivo as the indole did not prevent metastasis in the murine model, suggesting that further insights into the effects of the indole in melanoma cells should be approached to understand this apparent paradox.
Collapse
|
18
|
Canet G, Pineau F, Zussy C, Hernandez C, Hunt H, Chevallier N, Perrier V, Torrent J, Belanoff JK, Meijer OC, Desrumaux C, Givalois L. Glucocorticoid receptors signaling impairment potentiates amyloid-β oligomers-induced pathology in an acute model of Alzheimer's disease. FASEB J 2019; 34:1150-1168. [PMID: 31914623 DOI: 10.1096/fj.201900723rrr] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 02/01/2023]
Abstract
Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis occurs early in Alzheimer's disease (AD), associated with elevated circulating glucocorticoids (GC) and glucocorticoid receptors (GR) signaling impairment. However, the precise role of GR in the pathophysiology of AD remains unclear. Using an acute model of AD induced by the intracerebroventricular injection of amyloid-β oligomers (oAβ), we analyzed cellular and behavioral hallmarks of AD, GR signaling pathways, processing of amyloid precursor protein, and enzymes involved in Tau phosphorylation. We focused on the prefrontal cortex (PFC), particularly rich in GR, early altered in AD and involved in HPA axis control and cognitive functions. We found that oAβ impaired cognitive and emotional behaviors, increased plasma GC levels, synaptic deficits, apoptosis and neuroinflammatory processes. Moreover, oAβ potentiated the amyloidogenic pathway and enzymes involved both in Tau hyperphosphorylation and GR activation. Treatment with a selective GR modulator (sGRm) normalized plasma GC levels and all behavioral and biochemical parameters analyzed. GR seems to occupy a central position in the pathophysiology of AD. Deregulation of the HPA axis and a feed-forward effect on PFC GR sensitivity could participate in the etiology of AD, in perturbing Aβ and Tau homeostasis. These results also reinforce the therapeutic potential of sGRm in AD.
Collapse
Affiliation(s)
- Geoffrey Canet
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, INSERM U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Fanny Pineau
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, INSERM U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Charleine Zussy
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, INSERM U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Célia Hernandez
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, INSERM U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Hazel Hunt
- Corcept Therapeutics, Menlo Park, CA, USA
| | - Nathalie Chevallier
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, INSERM U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Véronique Perrier
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, INSERM U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Joan Torrent
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, INSERM U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | | | - Onno C Meijer
- Einthoven Laboratory, Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Catherine Desrumaux
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, INSERM U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Laurent Givalois
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, INSERM U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| |
Collapse
|
19
|
Chi J, Jiang Z, Chen X, Peng Y, Liu W, Han B, Han B. Studies on anti-hepatocarcinoma effect, pharmacokinetics and tissue distribution of carboxymethyl chitosan based norcantharidin conjugates. Carbohydr Polym 2019; 226:115297. [PMID: 31582090 DOI: 10.1016/j.carbpol.2019.115297] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022]
Abstract
Aiming to enhance therapeutic efficiency and reduce toxic effect of norcantharidin (NCTD), NCTD-conjugated carboxymethyl chitosan (CMCS) conjugates (CNC) were prepared and evaluated for the treatment of hepatocellular carcinoma. In vitro cellular assays revealed that CNC conjugates possessed potent inhibitory effects on the proliferation and migration of BEL-7402 cells. Besides, CNC could change nuclear morphology of tumor cells. In comparison with free NCTD at equivalent dose, CNC exerted enhanced therapeutic efficiency and diminished systemic toxicity in H22 tumor-bearing mice with a tumor inhibition rate of 56.20%. Further investigation about pharmacokinetics and tissue distribution by high performance liquid chromatography (HPLC) analysis indicated that CNC showed a longer retention time in blood circulation and reduced distribution in heart and kidney tissues, thereby exerting different antitumor efficacy and toxicity compared with free NCTD. Our results suggested that CNC conjugates based on CMCS as polymer carriers might be used as a potential clinical alternative for NCTD in tumor therapy.
Collapse
Affiliation(s)
- Jinhua Chi
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Zhiwen Jiang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, PR China
| | - Xiaotong Chen
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Yanfei Peng
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, PR China
| | - Wanshun Liu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Baosan Han
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China.
| | - Baoqin Han
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, PR China.
| |
Collapse
|
20
|
Hu C, Zhou H, Liu Y, Huang J, Liu W, Zhang Q, Tang Q, Sheng F, Li G, Zhang R. ROCK1 promotes migration and invasion of non‑small‑cell lung cancer cells through the PTEN/PI3K/FAK pathway. Int J Oncol 2019; 55:833-844. [PMID: 31485605 PMCID: PMC6741846 DOI: 10.3892/ijo.2019.4864] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Rho-associated protein kinase 1 (ROCK1), a member of the ROCK family, serves an important function in cell migration and invasion in neoplasms. ROCK1 has been found to be overexpressed in several types of cancers. However, the role of ROCK1 in non-small-cell lung cancer (NSCLC) is poorly understood. In the present study, ROCK1 was found to be overexpressed in NSCLC cells and tissues, and it was associated with poor survival of NSCLC patients. Subsequently, ROCK1 knockdown NSCLC cell lines were established using shRNA. ROCK1 knockdown significantly reduced the migration and invasion ability in the cell monolayer scratching and Transwell assays. ROCK1 knockdown was also found to markedly inhibit cell adhesion ability. Moreover, the phosphorylation of focal adhesion kinase (FAK) was inhibited by ROCK1 knockdown, reducing NSCLC cell migration and invasion ability. This mechanistic study revealed that ROCK1 significantly enhanced cell migration and invasion by inhibiting the phosphatase and tensin homolog (PTEN)/phosphoinositide 3-kinase (PI3K)/FAK pathway. More importantly, the interruption of the PTEN/PI3K/FAK pathway markedly rescued the inhibition of cell migration and invasion mediated by ROCK1 knockdown. Taken together, these results suggest a novel role for ROCK1 in cell migration and invasion by inhibiting cell adhesion ability, and indicate that ROCK1 may be of value as a therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Changpeng Hu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Huyue Zhou
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Yali Liu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Jingbin Huang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Wuyi Liu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Qian Zhang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Qin Tang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Fangfang Sheng
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Guobing Li
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
21
|
Kemmotsu T, Yokoyama U, Saito J, Ito S, Uozumi A, Nishimaki S, Iwasaki S, Seki K, Ito S, Ishikawa Y. Antenatal Administration of Betamethasone Contributes to Intimal Thickening of the Rat Ductus Arteriosus. Circ J 2019; 83:654-661. [PMID: 30726804 DOI: 10.1253/circj.cj-18-1033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Antenatal betamethasone (BMZ) is a standard therapy for reducing respiratory distress syndrome in preterm infants. Recently, some reports have indicated that BMZ promotes ductus arteriosus (DA) closure. DA closure requires morphological remodeling; that is, intimal thickening (IT) formation; however, the role of BMZ in IT formation has not yet been reported. METHODS AND RESULTS First, DNA microarray analysis using smooth muscle cells (SMCs) of rat preterm DA on gestational day 20 (pDASMCs) stimulated with BMZ was performed. Among 58,717 probe sets, ADP-ribosyltransferase 3 (Art3) was markedly increased by BMZ stimulation. Quantitative reverse transcription polymerase chain reaction (RT-PCR) confirmed the BMZ-induced increase of Art3 in pDASMCs, but not in aortic SMCs. Immunocytochemistry showed that BMZ stimulation increased lamellipodia formation. BMZ significantly increased total paxillin protein expression and the ratio of phosphorylated to total paxillin. A scratch assay demonstrated that BMZ stimulation promoted pDASMC migration, which was attenuated byArt3-targeted siRNAs transfection. pDASMC proliferation was not promoted by BMZ, which was analyzed by a 5'-bromo-2'-deoxyuridine (BrdU) assay. Whether BMZ increased IT formation in vivo was examined. BMZ or saline was administered intravenously to maternal rats on gestational days 18 and 19, and DA tissues were obtained on gestational day 20. The ratio of IT to tunica media was significantly higher in the BMZ-treated group. CONCLUSIONS These data suggest that antenatal BMZ administration promotes DA IT through Art3-mediated DASMC migration.
Collapse
Affiliation(s)
- Takahiro Kemmotsu
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University
- Cardiovascular Research Institute, Yokohama City University
| | - Utako Yokoyama
- Cardiovascular Research Institute, Yokohama City University
| | - Junichi Saito
- Cardiovascular Research Institute, Yokohama City University
| | - Satoko Ito
- Cardiovascular Research Institute, Yokohama City University
| | - Azusa Uozumi
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University
| | - Shigeru Nishimaki
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University
| | - Shiho Iwasaki
- Perinatal Center, Yokohama City University Medical Center
| | - Kazuo Seki
- Perinatal Center, Yokohama City University Medical Center
| | - Shuichi Ito
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University
| | | |
Collapse
|
22
|
Li B, Wang Y, Yin L, Huang G, Xu Y, Su J, Ma L, Lu J. Glucocorticoids promote the development of azoxymethane and dextran sulfate sodium-induced colorectal carcinoma in mice. BMC Cancer 2019; 19:94. [PMID: 30665389 PMCID: PMC6341596 DOI: 10.1186/s12885-019-5299-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 01/09/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Stress has been suggested as a promoter of tumor growth and development. Glucocorticoids (GCs) are the main stress hormones and widely prescribed as drugs. However, the effect of GCs on the development and progression of colorectal carcinoma (CRC) is unclear. METHODS We evaluated the effect of corticosterone (CORT) on azoxymethane and dextran sulfate sodium (AOM/DSS)-induced carcinogenesis in the colorectum of C57BL/6 strain mice. Plasma level of CORT was detected by radioimmunoassay. The expression of proliferation markers (Ki-67 and PCNA), nuclear factor (NF)-κB p65 and phosphoto-p65 (P-p65), as well as cyclooxygenase (COX)-2 were determined by immunohistochemistry. Inflammation in colorectum was evaluated by histopathology. RESULTS CORT feeding in drinking water of mice not only significantly elevated plasma CORT concentration, but also significantly increased the incidence and neoplasms burden (number and size of neoplasms) in colorectum. CORT also significant enhanced the expression of cell proliferation marker (Ki-67 and PCNA), NF-κB p65 and P-p65 as well as COX-2 in colorectal neoplasm of AOM/DSS-treated mice. CONCLUSION In this study, we have found for the first time that CORT at stress level potentially promotes the growth and development of AOM/DSS-induced colorectal adenoma and carcinoma in mice. Up-regulation of NF-κB and COX-2 may be involved in the promoting effect of CORT.
Collapse
Affiliation(s)
- Bo Li
- Department of pathophysiology, Second Military Medical University, 800 Xiangyin Road, Shanghai, 200433, People's Republic of China.,Department of general surgery, Changhai hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Yan Wang
- Department of pathophysiology, Second Military Medical University, 800 Xiangyin Road, Shanghai, 200433, People's Republic of China
| | - Lijuan Yin
- Department of pathology, Changhai hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Gaoxiang Huang
- Department of pathophysiology, Second Military Medical University, 800 Xiangyin Road, Shanghai, 200433, People's Republic of China
| | - Yi Xu
- Department of pathology, Changhai hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Jie Su
- Department of pathophysiology, Second Military Medical University, 800 Xiangyin Road, Shanghai, 200433, People's Republic of China
| | - Liye Ma
- Department of general surgery, Changhai hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Jian Lu
- Department of pathophysiology, Second Military Medical University, 800 Xiangyin Road, Shanghai, 200433, People's Republic of China.
| |
Collapse
|