1
|
Habibi S, Bahramian S, Saeedeh ZJ, Mehri S, Ababzadeh S, Kavianpour M. Novel strategies in breast cancer management: From treatment to long-term remission. Crit Rev Oncol Hematol 2025; 211:104715. [PMID: 40187709 DOI: 10.1016/j.critrevonc.2025.104715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/22/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025] Open
Abstract
Breast cancer (BC) is the most common malignancy among women and a leading cause of cancer-related mortality worldwide. Although improvements in early detection and therapy have been made, metastatic breast cancer (mBC) continues to be an incurable disease. Although existing treatments can prolong survival and enhance quality of life, they do not provide a definitive cure. Targeted therapies have significantly improved outcomes, particularly for subtypes such as human epidermal growth factor receptor 2 (HER2)-positive and hormone receptor (HR)-positive (HR+) BC. Key innovations include antibodydrug conjugates (ADCs) and next-generation endocrine therapies. ADCs combine monoclonal antibodies with cytotoxic agents, allowing targeted delivery to tumor cells while minimizing systemic toxicity. Immunotherapy is emerging as a promising approach for aggressive subtypes, such as triple-negative breast cancer (TNBC). Strategies under investigation include chimeric antigen receptor T-cell (CAR-T) therapy, tumor-infiltrating lymphocyte (TIL) therapies, and natural killer (NK) cell treatments, all aimed at enhancing the ability of the immune system to target and eliminate resistant tumor cells. Tissue engineering, particularly hydrogel-based delivery systems, offers the potential for localized treatment. These systems enable the controlled release of therapeutic agents or immune cells directly to the tumor site, supporting tissue regeneration and enhancing immune surveillance to reduce recurrence. Despite these advancements, challenges remain, including treatment resistance, the immunosuppressive tumor microenvironment, and high costs. Overcoming these barriers requires further innovation in drug delivery systems and a deeper understanding of tumor biology.
Collapse
Affiliation(s)
- Sina Habibi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shabbou Bahramian
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Zare Jalise Saeedeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Sara Mehri
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Guilan, Iran
| | - Shima Ababzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran; Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Maria Kavianpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran; Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| |
Collapse
|
2
|
Xiong Y, Zhang X, Xie W, Yin Y, Qian Y, Ying X, Zheng X, Wang X. DUSP4 inhibited tumor cell proliferation by downregulating glycolysis via p-ERK/p-PGK1 signaling in ovarian cancer. Cancer Cell Int 2025; 25:87. [PMID: 40082940 PMCID: PMC11908039 DOI: 10.1186/s12935-025-03722-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 03/01/2025] [Indexed: 03/16/2025] Open
Abstract
Ovarian cancer (OC) remains a leading cause of gynecological cancer-related mortality, with poor prognosis and limited therapeutic options, underscoring the urgent need for a deeper understanding of OC biology. In this study, we identified a marked reduction in dual-specificity phosphatase 4 (DUSP4) expression in OC tissues compared to benign ovarian masses, with even further decreases observed in metastatic lesions. Moreover, DUSP4 expression varied among OC subtypes, with the lowest levels observed in serous ovarian cancer, and was associated with P53 and KI67 protein levels, altered TP53 mutation rates, advanced tumor stages, and poorer prognosis. Functional experiments demonstrated that DUSP4 overexpression suppressed OC cell proliferation, migration, and invasion in vitro. Phosphoproteomic profiling via LC-MS/MS analysis identified the MAPK pathway and cellular metabolism as key downstream targets of DUSP4. Notably, DUSP4 overexpression reduced phosphorylation of PGK1 at Ser203, a critical regulator of anaerobic glycolysis, and decreased its mitochondrial localization, leading to reduced lactate production and increased ROS levels. Mechanistically, DUSP4 dephosphorylated p-ERK, disrupting its interaction with PGK1 and subsequently reducing PGK1 S203 phosphorylation. In vivo, DUSP4 overexpression significantly inhibited tumor growth in mouse models, accompanied by decreased p-ERK and PGK1 S203 levels. These findings highlight a regulatory axis involving DUSP4, p-ERK, and PGK1, through which DUSP4 modulates glycolysis and tumor progression. This study establishes DUSP4 as a prognostic biomarker and a potential therapeutic target for OC, offering new insights into its role in tumor metabolism and growth.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Xiaoqian Zhang
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Weiwei Xie
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Yujia Yin
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Yujing Qian
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Xiang Ying
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Xiaocui Zheng
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.
| | - Xipeng Wang
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
3
|
Jiang H, Deng L, Lin Z, Yang K, Yang J, Zhao W, Gong W. GSDMB interacts with IGF2BP1 to suppress colorectal cancer progression by modulating DUSP6-ERK pathway. Int Immunopharmacol 2024; 143:113280. [PMID: 39353395 DOI: 10.1016/j.intimp.2024.113280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
There is growing evidence that the protein family of Gasdermins (GSDMs) play an essential role during the progression of colorectal cancer (CRC). However, it is not completely clear that how GSDMB, abundantly expressed in epithelial cells of gastrointestinal tract, regulates the tumorigenesis of CRC. A wealth of evidence linking GSDMB to the pathogenesis of cancer has come from genome-wide association studies. Here, we provide evidence that aberrantly upregulated GSDMB is responsible for suppressing the CRC progression by using in vitro cell and intestinal organoid, as well as in vivo GSDMB transgenic mice models. Mechanistically, GSDMB interacts with insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), which directly binds to and recognizes the 3'-UTR of dual specificity phosphatase 6 (DUSP6) mRNA, enhances the translation of DUSP6 protein and inhibits downstream ERK phosphorylation, thereby facilitating cell death and restraining cell proliferation. Our results suggest that GSDMB has potential as a novel therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Haiyang Jiang
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; BenQ Medical Center, the Affiliated BenQ Hospital of Nanjing Medical University, Nanjing 210019, China
| | - Liting Deng
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Zexing Lin
- BenQ Medical Center, the Affiliated BenQ Hospital of Nanjing Medical University, Nanjing 210019, China
| | - Kui Yang
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jun Yang
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Wei Zhao
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Wenbin Gong
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
4
|
Tang L, Ruan Y, Wang B, Zhang M, Xue J, Wang T. Erianin inhibits the progression of DDP-resistant lung adenocarcinoma by regulating the Wnt/β-catenin pathway and activating the caspase-3 for apoptosis in vitro and in vivo. Hereditas 2024; 161:48. [PMID: 39605083 PMCID: PMC11600767 DOI: 10.1186/s41065-024-00351-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Platinum-based chemotherapy is one of the main treatments for lung adenocarcinoma (LUAD). However, the toxic side effects and drug resistance of chemotherapeutic drugs on normal cells are still a thorny problem in clinical treatment. Dendrobium is one of the three largest genera of Orchidaceous family, which has ornamental and medicinal value. Dendrobium is mainly distributed in the tropics and subtropics of South Asia, Oceania and other regions, with 1547 species of Dendrobium currently known. In China, "Shi hu" and "Tie pi shi hu" are well-known traditional medicines and have been included in the Chinese Pharmacopoeia (Editorial Board of Chinese Pharmacopoeia, 2020). Erianin is a natural product isolated from Dendrobium and is considered as a potential anticancer molecule due to its remarkable anti-tumor effects through various mechanisms, among which induced cancer cell apoptosis, inhibited invasion and migration. This study preliminarily explored the mechanism of Erianin inhibiting the progression of cisplatin (DDP) resistant LUAD in vivo and in vitro. METHODS The effect of Erianin on the proliferation of DDP-resistant LUAD cells was detected by CCK-8 assay, wound healing assay and cloning assay. Transwell assay was used to evaluate the effect of Erianin on cell invasion and migration. The changes of cell cycle and apoptosis were detected by flow cytometry and TUNEL assay. Finally, the effects of Erianin on cell function and signaling pathway-related protein expression in vivo and in vitro were examined based on the enrichment analysis. RESULTS Erianin could inhibit the proliferation, invasion and migration, induce apoptosis, altered cell cycle of DDP-resistant LUAD cells, and reverse the resistance to DDP. Western blotting results showed that Erianin exerted its anti-tumor effects by regulating the Wnt/β-catenin cascade in DDP-resistant LUAD cells. CONCLUSION Erianin may exerted its anti-tumor effect in DDP-resistant LUAD cells by regulating the Wnt3/β-Catenin/Survivin/Bcl-2/Caspase-3/Cyclin D1 axis.
Collapse
Affiliation(s)
- Lingxue Tang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yiling Ruan
- Department of General practice, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Beibei Wang
- Department of General practice, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mingjun Zhang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jie Xue
- Department of General Practice, Suixi County Hospital, Huaibei, Anhui, China.
| | - Tong Wang
- Department of General practice, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
5
|
Png CW, Weerasooriya M, Li H, Hou X, Teo FY, Huang S, Ser Z, Weng FYK, Rethnam M, Chia G, Sobota RM, Chong CS, Tan KK, Zhang Y. DUSP6 regulates Notch1 signalling in colorectal cancer. Nat Commun 2024; 15:10087. [PMID: 39572549 PMCID: PMC11582695 DOI: 10.1038/s41467-024-54383-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/08/2024] [Indexed: 11/24/2024] Open
Abstract
Notch1 plays various roles in cancer development, and Notch1-induced transactivation is controlled by phosphorylation of its cleaved intracellular domain. However, it is unclear whether there are phosphatases capable of dephosphorylating the cleaved Notch1 transmembrane/intracellular region (NTM) to regulate its function. Here, we show that DUSP6 can function as a phosphatase for Notch1, thereby regulating NTM stability and transcriptional activity, thus influencing colorectal cancer (CRC) development. In human CRC cells, elevated DUSP6 expression correlates with increased NTM levels, leading to enhanced CRC cell proliferation both in vitro and in vivo. High tumoral DUSP6 protein expression is associated with poorer overall CRC patient survival. In mice, DUSP6 deficiency results in reduced CRC development. Mechanistically, DUSP6 dephosphorylates phospho-Y2116, which in turn reduces NTM ubiquitination, leading to increased NTM stability and transcriptional activity. As a result, the expression of Notch1-targeted proliferation genes is increased to promote tumour cell growth.
Collapse
Affiliation(s)
- Chin Wen Png
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- NUSMED Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Madhushanee Weerasooriya
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- NUSMED Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Heng Li
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- NUSMED Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Xiaowen Hou
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- NUSMED Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Fiona Yayuan Teo
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- NUSMED Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Shiying Huang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- NUSMED Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Zheng Ser
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Franklin Yau Kok Weng
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- NUSMED Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Malini Rethnam
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, 117597, Singapore
- Institute for Health Innovation & Technology (iHealthtech), National University of Singapore, Singapore, 117597, Singapore
| | - Gloryn Chia
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, 117597, Singapore
- Institute for Health Innovation & Technology (iHealthtech), National University of Singapore, Singapore, 117597, Singapore
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Choon Seng Chong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Ker-Kan Tan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore.
- NUSMED Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore.
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore, 117456, Singapore.
| |
Collapse
|
6
|
Nishida M, Sato A, Shimizu A, Rahman N, Wada A, Kageyama S, Ogita H. EphA-Mediated Regulation of Stomatin Expression in Prostate Cancer Cells. Cancer Med 2024; 13:e70276. [PMID: 39377541 PMCID: PMC11459579 DOI: 10.1002/cam4.70276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND AND AIMS Tumor growth and progression are affected by interactions between tumor cells and stromal cells within the tumor microenvironment. We previously showed that the expression of an integral membrane protein, called stomatin, was increased in cancer cells following their association with stromal cells. Additionally, stomatin impaired the Akt signaling pathway to suppress tumor growth. However, it remains unclear how stomatin expression is regulated. To explore this, we examined the cell surface molecules that can transduce the intercellular communication signals between cancer cells and stromal cells. RESULTS Among these molecules, EphA3 and EphA7 receptors and their ligand ephrin-A5 were found to be expressed in prostate cancer cells, but not in prostate stromal cells. Cell-to-cell contact of prostate cancer cells through the EphA-ephrin-A interaction suppressed stomatin expression, while knockdown of EphA3/7 or ephrin-A5 increased stomatin expression. This increase contributed to an inhibition of prostate cancer cell proliferation. Intracellularly, the binding of ephrin-A to EphA attenuated extracellular signaling-regulated kinase (ERK) activation that promoted stomatin expression. Furthermore, ELK1 and ELK4, which are Ets family transcription factors phosphorylated by ERK, were involved in the induction of stomatin expression. We also found that higher Gleason score prostate cancer tissue samples had increased activation of EphA, while the stomatin expression and activated ERK and ELK levels were all low. In the mouse xenograft tumor samples generated by implantation of prostate cancer cells, EphA3 phosphorylation was attenuated and the ERK-ELK signaling and stomatin expression were enhanced in the area where stromal cells infiltrated the tumor. CONCLUSION The EphA-mediated signaling suppresses the ERK-ELK pathway, leading to the reduction of stomatin expression that affects prostate cancer malignancy.
Collapse
Affiliation(s)
- Masanari Nishida
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular BiologyShiga University of Medical ScienceOtsuJapan
- Department of UrologyShiga University of Medical ScienceOtsuJapan
| | - Akira Sato
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular BiologyShiga University of Medical ScienceOtsuJapan
| | - Akio Shimizu
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular BiologyShiga University of Medical ScienceOtsuJapan
| | - Nor Idayu A. Rahman
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular BiologyShiga University of Medical ScienceOtsuJapan
| | - Akinori Wada
- Department of UrologyShiga University of Medical ScienceOtsuJapan
| | - Susumu Kageyama
- Department of UrologyShiga University of Medical ScienceOtsuJapan
| | - Hisakazu Ogita
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular BiologyShiga University of Medical ScienceOtsuJapan
| |
Collapse
|
7
|
Momeny M, Tienhaara M, Sharma M, Chakroborty D, Varjus R, Takala I, Merisaari J, Padzik A, Vogt A, Paatero I, Elenius K, Laajala TD, Kurppa KJ, Westermarck J. DUSP6 inhibition overcomes neuregulin/HER3-driven therapy tolerance in HER2+ breast cancer. EMBO Mol Med 2024; 16:1603-1629. [PMID: 38886591 PMCID: PMC11251193 DOI: 10.1038/s44321-024-00088-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 05/08/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Despite clinical benefits of tyrosine kinase inhibitors (TKIs) in cancer, most tumors can reactivate proliferation under TKI therapy. Here we present transcriptional profiling of HER2+ breast cancer cells transitioning from dormant drug tolerant cells to re-proliferating cells under continuous HER2 inhibitor (HER2i) therapy. Focusing on phosphatases, expression of dual-specificity phosphatase DUSP6 was found inhibited in dormant cells, but strongly induced upon regrowth. DUSP6 expression also selectively associated with poor patient survival in HER2+ breast cancers. DUSP6 overexpression conferred apoptosis resistance, whereas its pharmacological blockade prevented therapy tolerance development under HER2i therapy. DUSP6 targeting also synergized with clinically used HER2i combination therapies. Mechanistically DUSP6 is a positive regulator of HER3 expression, and its impact on HER2i tolerance was mediated by neuregulin-HER3 axis. In vivo, genetic targeting of DUSP6 reduced tumor growth in brain metastasis model, whereas its pharmacological targeting induced synthetic lethal therapeutic effect in combination with HER2i. Collectively this work demonstrates that DUSP6 drives escape from HER2i-induced dormancy, and that DUSP6 is a druggable target to overcome HER3-driven TKI resistance.
Collapse
Affiliation(s)
- Majid Momeny
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA.
| | - Mari Tienhaara
- Medicity Research Laboratories, Faculty of Medicine, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Mukund Sharma
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Deepankar Chakroborty
- Medicity Research Laboratories, Faculty of Medicine, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Roosa Varjus
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Iina Takala
- Medicity Research Laboratories, Faculty of Medicine, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Joni Merisaari
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Artur Padzik
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Andreas Vogt
- University of Pittsburgh Drug Discovery Institute, Department of Computational and Systems Biology, Pittsburgh Technology Center, Pittsburgh, PA, USA
| | - Ilkka Paatero
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Klaus Elenius
- Medicity Research Laboratories, Faculty of Medicine, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Teemu D Laajala
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - Kari J Kurppa
- Medicity Research Laboratories, Faculty of Medicine, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jukka Westermarck
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
- Institute of Biomedicine, University of Turku, Turku, Finland.
| |
Collapse
|
8
|
Shen X, Sun H, Shu S, Tang W, Yuan Y, Su H, Li Y, Fan H. Suppression of NSUN2 enhances the sensitivity to chemosensitivity and inhibits proliferation by mediating cell apoptosis in gastric cancer. Pathol Res Pract 2024; 253:154986. [PMID: 38039743 DOI: 10.1016/j.prp.2023.154986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/24/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
NSUN2 is a critical methyltransferase for adding m5C to RNA. Its upregulation promotes the growth and metastasis of several tumors including gastric cancer (GC). However, it is unclear if NSUN2 can improve the chemosensitivity of GC to treatment with therapeutic agents such as cisplatin (CDDP) and 5-fluorouracil (5-FU). Flow cytometry was used to measure the effects of knocked-down NSUN2 expression on GC cell apoptosis and cell cycle progression. Western blot analysis examined specific signaling pathways through which NSUN2 mediates control of responses underlying the GC tumorous phenotype. NSUN2 expression was upregulated in GC tissues and its levels of rises were related to the extent of lymph node metastasis and increases in Ki67 proliferative marker expression. NSUN2 shRNA transfection suppressed rises in ERK1/2 phosphorylation status and downregulated anti-apoptosis protein Bcl-2 and upregulated pro-apoptosis protein Bax. Overall, the results reveal that NSUN2 downregulation promotes the GC chemosensitivity to inverse modulation by chemotherapeutic agents of Bcl-2 and Bax expression levels and declines in ERK1/2-induced proliferation. Our results indicate that inhibition of NSUN2 activation may be an effective procedure to enhance the efficacy of chemotherapeutic agents used to clinically treat GC.
Collapse
Affiliation(s)
- Xiaohui Shen
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing 210009, China
| | - Hui Sun
- School of Life Science, Southeast University, Nanjing 210018, China
| | - Shihui Shu
- School of Life Science, Southeast University, Nanjing 210018, China
| | - Wenqing Tang
- School of Life Science, Southeast University, Nanjing 210018, China
| | - Yujie Yuan
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing 210009, China
| | - Hongmeng Su
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing 210009, China
| | - Yiping Li
- Department of Pathophysiology, Medical School of Southeast University, Nanjing 210009, China
| | - Hong Fan
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing 210009, China.
| |
Collapse
|
9
|
Ecker V, Brandmeier L, Stumpf M, Giansanti P, Moreira AV, Pfeuffer L, Fens MHAM, Lu J, Kuster B, Engleitner T, Heidegger S, Rad R, Ringshausen I, Zenz T, Wendtner CM, Müschen M, Jellusova J, Ruland J, Buchner M. Negative feedback regulation of MAPK signaling is an important driver of chronic lymphocytic leukemia progression. Cell Rep 2023; 42:113017. [PMID: 37792532 DOI: 10.1016/j.celrep.2023.113017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/08/2023] [Accepted: 08/06/2023] [Indexed: 10/06/2023] Open
Abstract
Despite available targeted treatments for the disease, drug-resistant chronic lymphocytic leukemia (CLL) poses a clinical challenge. The objective of this study is to examine whether the dual-specific phosphatases DUSP1 and DUSP6 are required to negatively regulate mitogen-activated protein kinases (MAPKs) and thus counterbalance excessive MAPK activity. We show that high expression of DUSP6 in CLL correlates with poor clinical prognosis. Importantly, genetic deletion of the inhibitory phosphatase DUSP1 or DUSP6 and blocking DUSP1/6 function using a small-molecule inhibitor reduces CLL cell survival in vitro and in vivo. Using global phospho-proteome approaches, we observe acute activation of MAPK signaling by DUSP1/6 inhibition. This promotes accumulation of mitochondrial reactive oxygen species and, thereby, DNA damage and apoptotic cell death in CLL cells. Finally, we observe that DUSP1/6 inhibition is particularly effective against treatment-resistant CLL and therefore suggest transient DUSP1/6 inhibition as a promising treatment concept to eliminate drug-resistant CLL cells.
Collapse
Affiliation(s)
- Veronika Ecker
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany; TranslaTUM - Central Institute for Translational Cancer Research, Technische Universität München, 81675 Munich, Germany
| | - Lisa Brandmeier
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany; TranslaTUM - Central Institute for Translational Cancer Research, Technische Universität München, 81675 Munich, Germany
| | - Martina Stumpf
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany; TranslaTUM - Central Institute for Translational Cancer Research, Technische Universität München, 81675 Munich, Germany
| | - Piero Giansanti
- TranslaTUM - Central Institute for Translational Cancer Research, Technische Universität München, 81675 Munich, Germany; Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Bavaria, Germany; Bavarian Center for Biomolecular Mass Spectrometry at the University hospital rechts der Isar (BayBioMS@MRI), Technical University of Munich, Munich, Germany
| | - Aida Varela Moreira
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Lisa Pfeuffer
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany; TranslaTUM - Central Institute for Translational Cancer Research, Technische Universität München, 81675 Munich, Germany
| | - Marcel H A M Fens
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Junyan Lu
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Bavaria, Germany; Bavarian Center for Biomolecular Mass Spectrometry at the University hospital rechts der Isar (BayBioMS@MRI), Technical University of Munich, Munich, Germany; German Cancer Consortium (DKTK), Munich Partner Site, Munich, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Engleitner
- TranslaTUM - Central Institute for Translational Cancer Research, Technische Universität München, 81675 Munich, Germany; Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Simon Heidegger
- TranslaTUM - Central Institute for Translational Cancer Research, Technische Universität München, 81675 Munich, Germany; Department of Medicine III, School of Medicine, Technical University of Munich, Munich, Germany
| | - Roland Rad
- TranslaTUM - Central Institute for Translational Cancer Research, Technische Universität München, 81675 Munich, Germany; German Cancer Consortium (DKTK), Munich Partner Site, Munich, Germany; Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Ingo Ringshausen
- Wellcome Trust/MRC Cambridge Stem Cell Institute and Department of Haematology, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AH, UK
| | - Thorsten Zenz
- Department of Medical Oncology and Hematology, University Hospital and University of Zurich, 8091 Zurich, Switzerland
| | - Clemens-Martin Wendtner
- Munich Clinic Schwabing, Academic Teaching Hospital, Ludwig-Maximilian University (LMU), Munich, Germany
| | - Markus Müschen
- Center of Molecular and Cellular Oncology, Yale School of Medicine, 300 George Street, New Haven, CT 06520, USA
| | - Julia Jellusova
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany; TranslaTUM - Central Institute for Translational Cancer Research, Technische Universität München, 81675 Munich, Germany
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany; TranslaTUM - Central Institute for Translational Cancer Research, Technische Universität München, 81675 Munich, Germany; German Cancer Consortium (DKTK), Munich Partner Site, Munich, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Maike Buchner
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany; TranslaTUM - Central Institute for Translational Cancer Research, Technische Universität München, 81675 Munich, Germany.
| |
Collapse
|
10
|
Marciniak B, Kciuk M, Mujwar S, Sundaraj R, Bukowski K, Gruszka R. In Vitro and In Silico Investigation of BCI Anticancer Properties and Its Potential for Chemotherapy-Combined Treatments. Cancers (Basel) 2023; 15:4442. [PMID: 37760412 PMCID: PMC10526149 DOI: 10.3390/cancers15184442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/10/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND DUSP6 phosphatase serves as a negative regulator of MAPK kinases involved in numerous cellular processes. BCI has been identified as a potential allosteric inhibitor with anticancer activity. Our study was designed to test the anticancer properties of BCI in colon cancer cells, to characterize the effect of this compound on chemotherapeutics such as irinotecan and oxaliplatin activity, and to identify potential molecular targets for this inhibitor. METHODS BCI cytotoxicity, proapoptotic activity, and cell cycle distribution were investigated in vitro on three colon cancer cell lines (DLD1, HT-29, and Caco-2). In silico investigation was prepared to assess BCI drug-likeness and identify potential molecular targets. RESULTS The exposure of colorectal cancer cells with BCI resulted in antitumor effects associated with cell cycle arrest and induction of apoptosis. BCI exhibited strong cytotoxicity on DLD1, HT-29, and Caco-2 cells. BCI showed no significant interaction with irinotecan, but strongly attenuated the anticancer activity of oxaliplatin when administered together. Analysis of synergy potential further confirmed the antagonistic interaction between these two compounds. In silico investigation indicated CDK5 as a potential new target of BCI. CONCLUSIONS Our studies point to the anticancer potential of BCI but note the need for a precise mechanism of action.
Collapse
Affiliation(s)
- Beata Marciniak
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (M.K.); (K.B.); (R.G.)
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (M.K.); (K.B.); (R.G.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India;
| | - Rajamanikandan Sundaraj
- Centre for Drug Discovery, Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India;
| | - Karol Bukowski
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (M.K.); (K.B.); (R.G.)
| | - Renata Gruszka
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (M.K.); (K.B.); (R.G.)
| |
Collapse
|
11
|
Kim J, Hong SK, Yang Y, Lee A, Hoffmeister KM, Gantner BN, Park JI. Prolonged warm ischemia time increases mitogen-activated protein kinase activity and decreases perfusate cytokine levels in ex vivo rat liver machine perfusion. FRONTIERS IN TRANSPLANTATION 2023; 2:1215182. [PMID: 38993858 PMCID: PMC11235240 DOI: 10.3389/frtra.2023.1215182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/10/2023] [Indexed: 07/13/2024]
Abstract
Introduction Machine perfusion is increasingly being utilized in liver transplantation in lieu of traditional cold static organ preservation. Nevertheless, better understanding of the molecular mechanisms underlying the ischemia-reperfusion injury (IRI) during ex vivo perfusion is necessary to improve the viability of liver grafts after transplantation using machine perfusion technology. Since key cellular signaling pathways involved in hepatic IRI may allow a chance for designing a promising approach to improve the clinical outcomes from this technology, we determined how warm ischemia time (WIT) during procurement affects the activity of mitogen-activated protein kinase (MAPK) and perfusate concentration of cytokines in an ex vivo rat liver machine perfusion model. Methods Male Sprague-Dawley rats underwent in situ hepatic ischemia with varying WIT (0, 10, 20, 30 min, n = 5 each), and subsequently 3 h of cold ischemia time and 2 h of machine perfusion prior to determining the degree of MAPK activation-phosphorylation and cytokine concentration in liver tissue and perfusates, respectively. Results Our data revealed a strong correlation between incremental WIT and a series of liver injury markers, and that prolonged WIT increases ERK1/2 and p54 JNK phosphorylation during machine perfusion. Notably, specific cytokine levels (MCP-1, MIP-2, GRO/KC, IL-10, and IL-5) were inversely correlated with the phosphorylation levels of ERK1/2, p38 MAPK, and p46/p54 JNK. Discussion These results suggest that MAPK activation, specifically ERK1/2 and p54 JNK phosphorylation, have potential as a biomarker for hepatic IRI pathophysiology during machine perfusion. Elucidation of their functional significance may lead to designing a novel strategy to increase the clinical benefit of machine perfusion.
Collapse
Affiliation(s)
- Joohyun Kim
- Department of Surgery, Division of Transplant Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Seung-Keun Hong
- Department of Surgery, Division of Transplant Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Yongqiang Yang
- Department of Surgery, Division of Transplant Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Alice Lee
- Department of Surgery, Division of Transplant Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Karin M. Hoffmeister
- Versiti Translational Glycomics Center, Blood Research Institute and Medical College of Wisconsin, Milwaukee, WI, United States
| | - Benjamin N. Gantner
- Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jong-In Park
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
12
|
Xu J, Wang J, Chen M, Chao B, He J, Bai Y, Luo X, Liu H, Xie L, Tao Y, Qi H, Luo X. miR-101-5p suppresses trophoblast cell migration and invasion via modulating the DUSP6-ERK1/2 axis in preeclampsia. J Assist Reprod Genet 2023; 40:1597-1610. [PMID: 37300650 PMCID: PMC10352218 DOI: 10.1007/s10815-023-02846-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
PURPOSE Dysregulated behaviors of trophoblast cells leading to defective placentation are considered the main cause of preeclampsia (PE). Abnormal miRNA expression profiles have been observed in PE placental tissue, indicating the significant role of miRNAs in PE development. This study aimed to investigate the expression of miR-101-5p in PE placental tissue and its biological functions. METHODS The expression of miR-101-5p in placental tissue was detected by quantitative real-time PCR (qRT-PCR). The localization of miR-101-5p in term placental tissue and decidual tissue was determined by the fluorescence in situ hybridization (FISH)-immunofluorescence (IF) double labeling assay. The effect of miR-101-5p on the migration, invasion, proliferation, and apoptosis of the HTR8/SVneo trophoblast cells was investigated. Online databases combined with transcriptomics were used to identify potential target genes and related pathways of miR-101-5p. Finally, the interaction between miR-101-5p and the target gene was verified by qRT-PCT, WB, dual-luciferase reporter assay, and rescue experiments. RESULTS The study found that miR-101-5p was upregulated in PE placental tissue compared to normal controls and was mainly located in various trophoblast cell subtypes in placental and decidual tissues. Overexpression of miR-101-5p impaired the migration and invasion of HTR8/SVneo cells. DUSP6 was identified as a potential downstream target of miR-101-5p. The expression of miR-101-5p was negatively correlated with DUSP6 expression in HTR8/SVneo cells, and miR-101-5p directly bound to the 3' UTR region of DUSP6. DUSP6 upregulation rescued the migratory and invasive abilities of HTR8/SVneo cells in the presence of miR-101-5p overexpression. Additionally, miR-101-5p downregulated DUSP6, resulting in enhanced ERK1/2 phosphorylation. CONCLUSION This study revealed that miR-101-5p inhibits the migration and invasion of HTR8/SVneo cells by regulating the DUSP6-ERK1/2 axis, providing a new molecular mechanism for the pathogenesis of PE.
Collapse
Affiliation(s)
- Jiacheng Xu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Jie Wang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Miaomiao Chen
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei Province, China
| | - Bingdi Chao
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Jie He
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Yuxiang Bai
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xiaofang Luo
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongli Liu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Lumei Xie
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Yuelan Tao
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Hongbo Qi
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.
- Women and Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Xin Luo
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
13
|
Martin-Vega A, Earnest S, Augustyn A, Wichaidit C, Gazdar A, Girard L, Peyton M, Kollipara RK, Minna JD, Johnson JE, Cobb MH. ASCL1-ERK1/2 Axis: ASCL1 restrains ERK1/2 via the dual specificity phosphatase DUSP6 to promote survival of a subset of neuroendocrine lung cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545148. [PMID: 37398419 PMCID: PMC10312738 DOI: 10.1101/2023.06.15.545148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The transcription factor achaete-scute complex homolog 1 (ASCL1) is a lineage oncogene that is central for the growth and survival of small cell lung cancers (SCLC) and neuroendocrine non-small cell lung cancers (NSCLC-NE) that express it. Targeting ASCL1, or its downstream pathways, remains a challenge. However, a potential clue to overcoming this challenage has been information that SCLC and NSCLC-NE that express ASCL1 exhibit extremely low ERK1/2 activity, and efforts to increase ERK1/2 activity lead to inhibition of SCLC growth and surival. Of course, this is in dramatic contrast to the majority of NSCLCs where high activity of the ERK pathway plays a major role in cancer pathogenesis. A major knowledge gap is defining the mechanism(s) underlying the low ERK1/2 activity in SCLC, determining if ERK1/2 activity and ASCL1 function are inter-related, and if manipulating ERK1/2 activity provides a new therapeutic strategy for SCLC. We first found that expression of ERK signaling and ASCL1 have an inverse relationship in NE lung cancers: knocking down ASCL1 in SCLCs and NE-NSCLCs increased active ERK1/2, while inhibition of residual SCLC/NSCLC-NE ERK1/2 activity with a MEK inhibitor increased ASCL1 expression. To determine the effects of ERK activity on expression of other genes, we obtained RNA-seq from ASCL1-expressing lung tumor cells treated with an ERK pathway MEK inhibitor and identified down-regulated genes (such as SPRY4, ETV5, DUSP6, SPRED1) that potentially could influence SCLC/NSCLC-NE tumor cell survival. This led us to discover that genes regulated by MEK inhibition suppress ERK activation and CHIP-seq demonstrated these are bound by ASCL1. In addition, SPRY4, DUSP6, SPRED1 are known suppressors of the ERK1/2 pathway, while ETV5 regulates DUSP6. Survival of NE lung tumors was inhibited by activation of ERK1/2 and a subset of ASCL1-high NE lung tumors expressed DUSP6. Because the dual specificity phosphatase 6 (DUSP6) is an ERK1/2-selective phosphatase that inactivates these kinases and has a pharmacologic inhibitor, we focused mechanistic studies on DUSP6. These studies showed: Inhibition of DUSP6 increased active ERK1/2, which accumulated in the nucleus; pharmacologic and genetic inhibition of DUSP6 affected proliferation and survival of ASCL1-high NE lung cancers; and that knockout of DUSP6 "cured" some SCLCs while in others resistance rapidly developed indicating a bypass mechanism was activated. Thus, our findings fill this knowledge gap and indicate that combined expression of ASCL1, DUSP6 and low phospho-ERK1/2 identify some neuroendocrine lung cancers for which DUSP6 may be a therapeutic target.
Collapse
|
14
|
Zhang Z, Chen Y, Zheng L, Du J, Wei S, Zhu X, Xiong JW. A DUSP6 inhibitor suppresses inflammatory cardiac remodeling and improves heart function after myocardial infarction. Dis Model Mech 2023; 16:285836. [PMID: 36478044 PMCID: PMC9789401 DOI: 10.1242/dmm.049662] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/13/2022] [Indexed: 12/12/2022] Open
Abstract
Acute myocardial infarction (MI) results in loss of cardiomyocytes and abnormal cardiac remodeling with severe inflammation and fibrosis. However, how cardiac repair can be achieved by timely resolution of inflammation and cardiac fibrosis remains incompletely understood. Our previous findings have shown that dual-specificity phosphatase 6 (DUSP6) is a regeneration repressor from zebrafish to rats. In this study, we found that intravenous administration of the DUSP6 inhibitor (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI) improved heart function and reduced cardiac fibrosis in MI rats. Mechanistic analysis revealed that BCI attenuated macrophage inflammation through NF-κB and p38 signaling, independent of DUSP6 inhibition, leading to the downregulation of various cytokines and chemokines. In addition, BCI suppressed differentiation-related signaling pathways and decreased bone-marrow cell differentiation into macrophages through inhibiting DUSP6. Furthermore, intramyocardial injection of poly (D, L-lactic-co-glycolic acid)-loaded BCI after MI had a notable effect on cardiac repair. In summary, BCI improves heart function and reduces abnormal cardiac remodeling by inhibiting macrophage formation and inflammation post-MI, thus providing a promising pro-drug candidate for the treatment of MI and related heart diseases. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Zongwang Zhang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
- Peking University-Nanjing Institute of Translational Medicine, Nanjing 211800, China
| | - Yang Chen
- Peking University-Nanjing Institute of Translational Medicine, Nanjing 211800, China
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Lixia Zheng
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
- Peking University-Nanjing Institute of Translational Medicine, Nanjing 211800, China
| | - Jianyong Du
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
- Peking University-Nanjing Institute of Translational Medicine, Nanjing 211800, China
| | - Shicheng Wei
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiaojun Zhu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
- Peking University-Nanjing Institute of Translational Medicine, Nanjing 211800, China
- Authors for correspondence (; )
| | - Jing-Wei Xiong
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
- Peking University-Nanjing Institute of Translational Medicine, Nanjing 211800, China
- Authors for correspondence (; )
| |
Collapse
|
15
|
Weng YC, Huang YT, Chiang IC, Chuang HC, Lee TH, Tan TH, Chou WH. DUSP6 Deficiency Attenuates Neurodegeneration after Global Cerebral Ischemia. Int J Mol Sci 2023; 24:ijms24097690. [PMID: 37175394 PMCID: PMC10177974 DOI: 10.3390/ijms24097690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Transient global cerebral ischemia (tGCI) resulting from cardiac arrest causes selective neurodegeneration in hippocampal CA1 neurons. Although the effect is clear, the underlying mechanisms directing this process remain unclear. Previous studies have shown that phosphorylation of Erk1/2 promotes cell survival in response to tGCI. DUSP6 (also named MKP3) serves as a cytosolic phosphatase that dephosphorylates Erk1/2, but the role of DUSP6 in tGCI has not been characterized. We found that DUSP6 was specifically induced in the cytoplasm of hippocampal CA1 neurons 4 to 24 h after tGCI. DUSP6-deficient mice showed normal spatial memory acquisition and retention in the Barnes maze. Impairment of spatial memory acquisition and retention after tGCI was attenuated in DUSP6-deficient mice. Neurodegeneration after tGCI, revealed by Fluoro-Jade C and H&E staining, was reduced in the hippocampus of DUSP6-deficient mice and DUSP6 deficiency enhanced the phosphorylation and nuclear translocation of Erk1/2 in the hippocampal CA1 region. These data support the role of DUSP6 as a negative regulator of Erk1/2 signaling and indicate the potential of DUSP6 inhibition as a novel therapeutic strategy to treat neurodegeneration after tGCI.
Collapse
Affiliation(s)
- Yi-Chinn Weng
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Yu-Ting Huang
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - I-Chen Chiang
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Huai-Chia Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
| | - Tsong-Hai Lee
- Stroke Center and Department of Neurology, Linkou Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
| | - Wen-Hai Chou
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli County 35053, Taiwan
| |
Collapse
|
16
|
Yang J, Xu P, Chen Z, Zhang X, Xia Y, Fang L, Xie L, Li B, Xu Z. N6-methyadenosine modified SUV39H2 regulates homologous recombination through epigenetic repression of DUSP6 in gastric cancer. Cancer Lett 2023; 558:216092. [PMID: 36806557 DOI: 10.1016/j.canlet.2023.216092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023]
Abstract
Despite many advances in treatment over the past few years, the poor 5-year survival rate and high recurrence rate of gastric cancer (GC) remain unsatisfactory. As the most abundant epigenetic modification in the eukaryotic mRNA, N6-methyladenosine (m6A) methylation participates in tumor progression and tissue development. During tumor progression, DNA damage repair mechanisms can be reprogrammed to give new growth advantages on tumor clones whose genomic integrity is disturbed. Here we detected the elevated SUV39H2 expression in GC tissues and cell lines. Functionally, SUV39H2 promoted GC proliferation and inhibited apoptosis in vitro and in vivo. Mechanistically, METTL3-mediated m6A modification promotes mRNA stability of SUV39H2 in an IGF2BP2 dependent manner, resulting in upregulated mRNA expression of SUV39H2. As a histone methyltransferase, SUV39H2 was verified to increase the phosphorylation level of ATM through transcriptional repression of DUSP6, thereby promoting HRR and ultimately inhibiting GC chemosensitivity to cisplatin. Collectively, these results indicate the specific mechanism of m6A-modified SUV39H2 as a histone methyltransferase promoting HRR to inhibit the chemosensitivity of GC. SUV39H2 is expected to become a key target in the precision targeted therapy of GC.
Collapse
Affiliation(s)
- Jing Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Penghui Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Zetian Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Xing Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Yiwen Xia
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Lang Fang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Li Xie
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Bowen Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China.
| |
Collapse
|
17
|
SHP2 inhibition mitigates adaptive resistance to MEK inhibitors in KRAS-mutant gastric cancer through the suppression of KSR1 activity. Cancer Lett 2023; 555:216029. [PMID: 36493900 DOI: 10.1016/j.canlet.2022.216029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/15/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022]
Abstract
Despite the promising antitumor activity of RAF/MEK inhibitors for RAS-driven cancers, not all patients respond to these therapies. Adaptive resistance has been reported as a major culprit in non-responders, which can be reversed by SHP2 inhibitors (SHP2is) in multiple cancer cells; however, the underlying mechanisms remain unknown. In this study, we found that KRAS-mutant gastric cancer cells respond to MEK inhibitors (MEKis) with adaptive resistance. Markedly, SHP2 activation accompanied by ERK signaling restoration in MEKi-treated cells, and a MEKi and SHP2i combination had a synergistic effect on downstream signaling blockade. In vivo, SHP099 combined with AZD6244 (selumetinib) was highly efficacious for the treatment of xenografts. Mechanistically, SHP2 was found to interact with the scaffold protein KSR1 through its protein tyrosine phosphatase domain. KSR1 knockdown sensitized cells to AZD6244, whereas a KSR1 activating mutation (S269A) diminished the synergistic anti-proliferative effect of SHP2i and MEKi. Interestingly, activated SHP2, during adaptive resistance to MEKis, impaired the interaction with KSR1, activating KSR1 to promote MAPK signaling. In conclusion, SHP2 promotes adaptive resistance to MEKis by activating KSR1; selumetinib combined with SHP099 might be an available therapeutic strategy for KRAS-mutant gastric cancers.
Collapse
|
18
|
Abstract
Phosphatases and kinases maintain an equilibrium of dephosphorylated and phosphorylated proteins, respectively, that are required for critical cellular functions. Imbalance in this equilibrium or irregularity in their function causes unfavorable cellular effects that have been implicated in the development of numerous diseases. Protein tyrosine phosphatases (PTPs) catalyze the dephosphorylation of protein substrates on tyrosine residues, and their involvement in cell signaling and diseases such as cancer and inflammatory and metabolic diseases has made them attractive therapeutic targets. However, PTPs have proved challenging in therapeutics development, garnering them the unfavorable reputation of being undruggable. Nonetheless, great strides have been made toward the inhibition of PTPs over the past decade. Here, we discuss the advancement in small-molecule inhibition for the PTP subfamily known as the mitogen-activated protein kinase (MAPK) phosphatases (MKPs). We review strategies and inhibitor discovery tools that have proven successful for small-molecule inhibition of the MKPs and discuss what the future of MKP inhibition potentially might yield.
Collapse
Affiliation(s)
- Shanelle R Shillingford
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA;
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | - Anton M Bennett
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA;
- Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
19
|
Patient-specific identification of genome-wide DNA-methylation differences between intracranial and extracranial melanoma metastases. Sci Rep 2023; 13:444. [PMID: 36624125 PMCID: PMC9829750 DOI: 10.1038/s41598-022-24940-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/22/2022] [Indexed: 01/11/2023] Open
Abstract
Melanomas frequently metastasize to distant organs and especially intracranial metastases still represent a major clinical challenge. Epigenetic reprogramming of intracranial metastases is thought to be involved in therapy failure, but so far only little is known about patient-specific DNA-methylation differences between intra- and extracranial melanoma metastases. Hierarchical clustering of the methylomes of 24 patient-matched intra- and extracranial melanoma metastases pairs revealed that intra- and extracranial metastases of individual patients were more similar to each other than to metastases in the same tissue from other patients. Therefore, a personalized analysis of each metastases pair was done by a Hidden Markov Model to classify methylation levels of individual CpGs as decreased, unchanged or increased in the intra- compared to the extracranial metastasis. The predicted DNA-methylation alterations were highly patient-specific differing in the number and methylation states of altered CpGs. Nevertheless, four important general observations were made: (i) intracranial metastases of most patients mainly showed a reduction of DNA-methylation, (ii) cytokine signaling was most frequently affected by differential methylation in individual metastases pairs, but also MAPK, PI3K/Akt and ECM signaling were often altered, (iii) frequently affected genes were mainly involved in signaling, growth, adhesion or apoptosis, and (iv) an enrichment of functional terms related to channel and transporter activities supports previous findings for a brain-like phenotype. In addition, the derived set of 17 signaling pathway genes that distinguished intra- from extracranial metastases in more than 50% of patients included well-known oncogenes (e.g. PRKCA, DUSP6, BMP4) and several other genes known from neuronal disorders (e.g. EIF4B, SGK1, CACNG8). Moreover, associations of gene body methylation alterations with corresponding gene expression changes revealed that especially the three signaling pathway genes JAK3, MECOM, and TNXB differ strongly in their expression between patient-matched intra- and extracranial metastases. Our analysis contributes to an in-depth characterization of DNA-methylation differences between patient-matched intra- and extracranial melanoma metastases and may provide a basis for future experimental studies to identify targets for new therapeutic approaches.
Collapse
|
20
|
Wen J, Zhong X, Gao C, Yang M, Tang M, Yuan Z, Wang Q, Xu L, Ma Q, Guo X, Fang L. TPP1 Inhibits DNA Damage Response and Chemosensitivity in Esophageal Cancer. Crit Rev Eukaryot Gene Expr 2023; 33:77-91. [PMID: 37606165 DOI: 10.1615/critreveukaryotgeneexpr.2023048720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
TPP1, as one of the telomere-protective protein complex, functions to maintain telomere stability. In this study, we found that TPP1 was significantly upregulated in esophageal cancer (EC). We found that the proliferation and migration ability were significantly inhibited, while the results of flow cytometry assay indicated that the growth was hindered in the G1 phase after TPP1 knockdown. However, the proliferative viability and migratory ability were reversed after TPP1 overexpression in EC cells. Then, we found a significant increase in β-galactosidase positivity following TPP1 knockdown and the opposite following TPP1 overexpression in EC cells. Furthermore, TPP1 knockdown increased DNA damage and upregulated expression of the γ-H2AXS139 in the cell nucleus. Correspondingly, DNA damage was reversed after TPP1 overexpression in EC cells. Similarly, we found that the expression of ATM/ATR pathway proteins were upregulated after TPP1 knockdown, while the expression of the above proteins was downregulated after TPP1 overexpression in EC cells. TPP1 knockdown significantly inhibited the growth of transplanted tumors and upregulated the expression of ATM/ATR pathway proteins in transplanted tissues, whereas TPP1 overexpression significantly promoted their proliferation and downregulated the expression of the above proteins in vivo. Strikingly, we found that TPP1 could reduce the chemosensitivity of EC cells to cisplatin, which may have a potential link to clinical chemoresistance. In conclusion, TPP1 regulates the DNA damage response through the ATM/ATR-p53 signaling pathway and chemoresistance and may be a new target for improving the efficacy of chemotherapy in the treatment of EC.
Collapse
Affiliation(s)
- Jilin Wen
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong 637000, China
| | - Xiaowu Zhong
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China; Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China; Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Chuanli Gao
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong 637000, China
| | - Miyuan Yang
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong 637000, China
| | - Maoju Tang
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong 637000, China
| | - Zichun Yuan
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China; Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Qin Wang
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong 637000, China
| | - Lei Xu
- Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Qiang Ma
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China; Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China; Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Xiaolan Guo
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China; Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China; Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Li Fang
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong 637000, China; Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| |
Collapse
|
21
|
Li S, Qian L, Chen Y, Lu H, Tsai H, Lyu H, Yang R, Chen C. Targeting MYO1B impairs tumorigenesis via inhibiting the SNAI2/cyclin D1 signaling in esophageal squamous cell carcinoma. J Cell Physiol 2022; 237:3671-3686. [DOI: doi.org/10.1002/jcp.30831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/06/2022] [Indexed: 09/01/2023]
Abstract
AbstractMyosin‐related proteins play an important role in cancer progression. However, the clinical significance, biological functions, and mechanisms of myosin 1B (MYO1B), in esophageal squamous cell carcinoma (ESCC) remain unclear. The clinical relevance of MYO1B, SNAI2, and cyclin D1 in ESCC was determined by immunohistochemistry, Oncomine, and GEPIA databases. The oncogenic roles of MYO1B were determined by CCK8, colony formation assays, wound healing, and Transwell assay. MYO1B, SNAI2, and cyclin D1 at mRNA and protein levels in ESCC cells were detected by qPCR and Western blot analysis. In our study, we found that MYO1B expression was increased in ESCC tissue samples and correlated with tumor stage, TNM stage, and poor outcomes. Functional assays indicated that depletion of MYO1B impaired oncogenesis, and enhanced chemosensitivity in ESCC. Bioinformatic analysis and mechanistic studies illustrated that SNAI2 was a key downstream effector of MYO1B. Suppression of MYO1B downregulated expression of SNAI2, thereby inhibiting the SNAI2/cyclin D1 pathway. Furthermore, a selective inhibitor of cyclin D1 activation reversed siMYO1B cells overexpressing SNAI2‐elicited aggressive phenotypes of ESCC cells. MYO1B positively correlated with SNAI2 and cyclin D1 in ESCC samples, and higher SNAI2 expression was also associated with poor prognosis in ESCC patients. Our finding demonstrated that MYO1B activates the SNAI2/cyclin D1 pathway to drive tumorigenesis and cisplatin cytotoxicity in ESCC, indicating that MYO1B is a potential therapeutic target for patients with ESCC.
Collapse
Affiliation(s)
- Shau‐Hsuan Li
- Department of Hematology‐Oncology Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine Kaohsiung Taiwan
| | - Limei Qian
- Department of Medical Oncology Sun Yat‐sen University Cancer Center Guangzhou China
| | - Yen‐Hao Chen
- Department of Hematology‐Oncology Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine Kaohsiung Taiwan
| | - Hung‐I Lu
- Department of Thoracic & Cardiovascular Surgery Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine Kaohsiung Taiwan
| | - Hsin‐Ting Tsai
- Institute of Medicine Chung Shan Medical University Taichung Taiwan
| | - Haiwen Lyu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease The Sixth Affiliated Hospital of Sun Yat‐sen University Guangzhou China
- Guangdong Research Institute Of Gastroenterology The Sixth Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Runxiang Yang
- The Second Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University Yunnan Cancer Hospital Kunming Yunnan China
| | - Chang‐Han Chen
- Institute of Medicine Chung Shan Medical University Taichung Taiwan
- Department of Medical Research Chung Shan Medical University Hospital Taichung Taiwan
| |
Collapse
|
22
|
Tavakoli Hafshejani K, Sohrabi N, Eslami Moghadam M, Oftadeh M. Investigation of the physico-chemical interaction of ct-DNA with Anticancer Glycine Derivative of Pt-complex by applying docking and MD simulation methods and multi-spectroscopic techniques. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
23
|
Li SH, Qian L, Chen YH, Lu HI, Tsai HT, Lyu H, Yang R, Chen CH. Targeting MYO1B impairs tumorigenesis via inhibiting the SNAI2/cyclin D1 signaling in esophageal squamous cell carcinoma. J Cell Physiol 2022; 237:3671-3686. [PMID: 35861939 DOI: 10.1002/jcp.30831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/09/2022]
Abstract
Myosin-related proteins play an important role in cancer progression. However, the clinical significance, biological functions, and mechanisms of myosin 1B (MYO1B), in esophageal squamous cell carcinoma (ESCC) remain unclear. The clinical relevance of MYO1B, SNAI2, and cyclin D1 in ESCC was determined by immunohistochemistry, Oncomine, and GEPIA databases. The oncogenic roles of MYO1B were determined by CCK8, colony formation assays, wound healing, and Transwell assay. MYO1B, SNAI2, and cyclin D1 at mRNA and protein levels in ESCC cells were detected by qPCR and Western blot analysis. In our study, we found that MYO1B expression was increased in ESCC tissue samples and correlated with tumor stage, TNM stage, and poor outcomes. Functional assays indicated that depletion of MYO1B impaired oncogenesis, and enhanced chemosensitivity in ESCC. Bioinformatic analysis and mechanistic studies illustrated that SNAI2 was a key downstream effector of MYO1B. Suppression of MYO1B downregulated expression of SNAI2, thereby inhibiting the SNAI2/cyclin D1 pathway. Furthermore, a selective inhibitor of cyclin D1 activation reversed siMYO1B cells overexpressing SNAI2-elicited aggressive phenotypes of ESCC cells. MYO1B positively correlated with SNAI2 and cyclin D1 in ESCC samples, and higher SNAI2 expression was also associated with poor prognosis in ESCC patients. Our finding demonstrated that MYO1B activates the SNAI2/cyclin D1 pathway to drive tumorigenesis and cisplatin cytotoxicity in ESCC, indicating that MYO1B is a potential therapeutic target for patients with ESCC.
Collapse
Affiliation(s)
- Shau-Hsuan Li
- Department of Hematology-Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Limei Qian
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yen-Hao Chen
- Department of Hematology-Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hung-I Lu
- Department of Thoracic & Cardiovascular Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsin-Ting Tsai
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Haiwen Lyu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Research Institute Of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Runxiang Yang
- The Second Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Chang-Han Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
24
|
Thompson EM, Patel V, Rajeeve V, Cutillas PR, Stoker AW. The cytotoxic action of BCI is not dependent on its stated DUSP1 or DUSP6 targets in neuroblastoma cells. FEBS Open Bio 2022; 12:1388-1405. [PMID: 35478300 PMCID: PMC9249316 DOI: 10.1002/2211-5463.13418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/04/2022] [Accepted: 04/26/2022] [Indexed: 12/04/2022] Open
Abstract
Neuroblastoma (NB) is a heterogeneous cancer of the sympathetic nervous system, which accounts for 7-10% of paediatric malignancies worldwide. Due to the lack of targetable molecular aberrations in NB, most treatment options remain relatively nonspecific. Here, we investigated the therapeutic potential of BCI, an inhibitor of DUSP1 and DUSP6, in cultured NB cells. BCI was cytotoxic in a range of NB cell lines and induced a short-lived activation of the AKT and stress-inducible MAP kinases, although ERK phosphorylation was unaffected. Furthermore, a phosphoproteomic screen identified significant upregulation of JNK signalling components and suppression in mTOR and R6K signalling. To assess the specificity of BCI, CRISPR-Cas9 was employed to introduce insertions and deletions in the DUSP1 and DUSP6 genes. Surprisingly, BCI remained fully cytotoxic in NB cells with complete loss of DUSP6 and partial depletion of DUSP1, suggesting that BCI exerts cytotoxicity in NB cells through a complex mechanism that is unrelated to these phosphatases. Overall, these data highlight the risk of using an inhibitor such as BCI as supposedly specific DUSP1/6, without understanding its full range of targets in cancer cells.
Collapse
Affiliation(s)
- Elliott M. Thompson
- Developmental Biology & Cancer Research and Teaching DepartmentUCL Great Ormond Street Institute of Child HealthLondonUK
| | - Vruti Patel
- Developmental Biology & Cancer Research and Teaching DepartmentUCL Great Ormond Street Institute of Child HealthLondonUK
- Present address:
Current Address: Discovery Research MRL UKMSDThe London Bioscience Innovation Centre (LBIC)LondonUK
| | - Vinothini Rajeeve
- Mass Spectrometry LaboratoryBarts Cancer InstituteQueen Mary University of LondonUK
| | - Pedro R Cutillas
- Mass Spectrometry LaboratoryBarts Cancer InstituteQueen Mary University of LondonUK
| | - Andrew W. Stoker
- Developmental Biology & Cancer Research and Teaching DepartmentUCL Great Ormond Street Institute of Child HealthLondonUK
| |
Collapse
|
25
|
Kubota H, Yamada H, Sugimoto T, Wada N, Motoyama S, Saburi M, Miyawaki D, Wakana N, Kami D, Ogata T, Ibi M, Matoba S. Repeated Social Defeat Enhances CaCl 2-Induced Abdominal Aortic Aneurysm Expansion by Inhibiting the Early Fibrotic Response via the MAPK-MKP-1 Pathway. Cells 2022; 11:cells11040732. [PMID: 35203381 PMCID: PMC8870675 DOI: 10.3390/cells11040732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 01/25/2023] Open
Abstract
Depression is an independent risk factor for cardiovascular disease and is significantly associated with the prevalence of abdominal aortic aneurysm (AAA). We investigated the effect of repeated social defeat (RSD) on AAA development. Eight-week-old male wild-type mice were exposed to RSD by being housed with larger CD-1 mice in a shared cage. They were subjected to vigorous physical contact. After the confirmation of depressive-like behavior, calcium chloride was applied to the infrarenal aorta of the mice. At one week, AAA development was comparable between the defeated and control mice, without any differences being observed in the accumulated macrophages or in the matrix metalloproteinase activity. At two weeks, the maximum diameter and circumference of the aneurysm were significantly increased in the defeated mice, and a significant decrease in periaortic fibrosis was also observed. Consistently, the phosphorylation of the extracellular signal-regulated kinase and the incorporation of 5-bromo-2'-deoxyuridine in the primarily cultured aortic vascular smooth muscle cells were significantly reduced in the defeated mice, which was accompanied by a substantial increase in mitogen-activated protein kinase phosphatase-1 (MKP-1). The MKP-1 mRNA and protein expression levels during AAA were much higher in the defeated mice than they were in the control mice. Our findings demonstrate that RSD enhances AAA development by suppressing periaortic fibrosis after an acute inflammatory response and imply novel mechanisms that are associated with depression-related AAA development.
Collapse
Affiliation(s)
- Hiroshi Kubota
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.K.); (T.S.); (N.W.); (S.M.); (M.S.); (D.M.); (N.W.); (S.M.)
| | - Hiroyuki Yamada
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.K.); (T.S.); (N.W.); (S.M.); (M.S.); (D.M.); (N.W.); (S.M.)
- Correspondence: ; Tel.: +81-75-251-5511
| | - Takeshi Sugimoto
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.K.); (T.S.); (N.W.); (S.M.); (M.S.); (D.M.); (N.W.); (S.M.)
| | - Naotoshi Wada
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.K.); (T.S.); (N.W.); (S.M.); (M.S.); (D.M.); (N.W.); (S.M.)
| | - Shinichiro Motoyama
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.K.); (T.S.); (N.W.); (S.M.); (M.S.); (D.M.); (N.W.); (S.M.)
| | - Makoto Saburi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.K.); (T.S.); (N.W.); (S.M.); (M.S.); (D.M.); (N.W.); (S.M.)
| | - Daisuke Miyawaki
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.K.); (T.S.); (N.W.); (S.M.); (M.S.); (D.M.); (N.W.); (S.M.)
| | - Noriyuki Wakana
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.K.); (T.S.); (N.W.); (S.M.); (M.S.); (D.M.); (N.W.); (S.M.)
| | - Daisuke Kami
- Department of Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan;
| | - Takehiro Ogata
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan;
| | - Masakazu Ibi
- Department of Pharmacy, Kinjo Gakuin University, Nagoya 463-8521, Japan;
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.K.); (T.S.); (N.W.); (S.M.); (M.S.); (D.M.); (N.W.); (S.M.)
| |
Collapse
|
26
|
Inhibition of DUSP6 Activates Autophagy and Rescues the Retinal Pigment Epithelium in Sodium Iodate-Induced Retinal Degeneration Models In Vivo and In Vitro. Biomedicines 2022; 10:biomedicines10010159. [PMID: 35052838 PMCID: PMC8773272 DOI: 10.3390/biomedicines10010159] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 01/27/2023] Open
Abstract
Autophagy plays a protective role in the retinal pigment epithelium (RPE) by eliminating damaged organelles in response to reactive oxygen species (ROS). Dual-specificity protein phosphatase 6 (DUSP6), which belongs to the DUSP subfamily, works as a negative-feedback regulator of the extracellular signal-regulated kinase (ERK) pathway. However, the complex interplay between DUSP6 and autophagy induced by ROS in RPE is yet to be investigated. To investigate the relationship between DUSP6 and autophagy, we exposed the ARPE-19 cell line and C57BL/6N mice to sodium iodate (NaIO3) as an oxidative stress inducer. Our data showed that the inhibition of DUSP6 activity promotes autophagy flux through the ERK pathway via the upregulation of immunoblotting expression in ARPE-19 cells. Live imaging showed a significant increase in autophagic flux activities, which suggested the restoration autophagy after treatment with the DUSP6 inhibitor. Furthermore, the mouse RPE layer exhibited an irregular structure and abnormal deposits following NaIO3 injection. The retina layer was recovered after being treated with DUSP6 inhibitor; this suggests that DUSP6 inhibitor can rescue retinal damage by restoring the mouse retina’s autophagy flux. This study suggests that the upregulation of DUSP6 can cause autophagy flux malfunctions in the RPE. The DUSP6 inhibitor can restore autophagy induction, which may serve as a potential therapeutic approach for retinal degeneration disease.
Collapse
|
27
|
Zandi Z, Kashani B, Alishahi Z, Pourbagheri-Sigaroodi A, Esmaeili F, Ghaffari SH, Bashash D, Momeny M. Dual-specificity phosphatases: therapeutic targets in cancer therapy resistance. J Cancer Res Clin Oncol 2022; 148:57-70. [PMID: 34981193 DOI: 10.1007/s00432-021-03874-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/25/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Therapy resistance is the principal obstacle to achieving cures in cancer patients and its successful tackling requires a deep understanding of the resistance mediators. Increasing evidence indicates that tumor phosphatases are novel and druggable targets in translational oncology and their modulation may hinder tumor growth and motility and potentiate therapeutic sensitivity in various neoplasms via regulation of various signal transduction pathways. Dual-specificity phosphatases (DUSPs) are key players of cell growth, survival and death and have essential roles in tumor initiation, malignant progression and therapy resistance through regulation of the MAPK signaling pathway. In this review, different aspects of DUSPs are discussed. METHODS A comprehensive literature review was performed using various websites including PubMed. RESULTS We provide mechanistic insights into the roles of well-known DUSPs in resistance to a wide range of cancer therapeutic approaches including chemotherapy, radiation and molecular targeted therapy in human malignancies. Moreover, we discuss the development of DUSP modulators, with a focus on DUSP1 and 6 inhibitors. Ultimately, the preclinical investigations of small molecule inhibitors of DUSP1 and 6 are outlined. CONCLUSION Emerging evidence indicates that the DUSP family is aberrantly expressed in human malignancies and plays critical roles in determining sensitivity to a wide range of cancer therapeutic strategies through regulation of the MAPK signaling pathways. Consequently, targeting DUSPs and their downstream molecules can pave the way for more effective cancer therapies.
Collapse
Affiliation(s)
- Zahra Zandi
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Kashani
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zivar Alishahi
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Esmaeili
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Momeny
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Cai C, Hu W, Zhang Y, Hu X, Yang S, Qiu H, Wang R, Ma M, Qiu Y, Chu T. BCI Suppresses RANKL-Mediated Osteoclastogenesis and Alleviates Ovariectomy-Induced Bone Loss. Front Pharmacol 2021; 12:772540. [PMID: 34803714 PMCID: PMC8596812 DOI: 10.3389/fphar.2021.772540] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis is a common aging-related metabolic disease that mainly occurs in older adults and postmenopausal women. Despite advances in anti-osteoporosis treatment, outcomes remain unsatisfactory due to detrimental side effects. BCI hydrochloride (BCI), a selective dual-specificity phosphatase 6 (DUSP6) inhibitor, is associated with multiple cellular functions, including inhibiting tumor growth and macrophage inflammation; however, its role in regulating osteoclast differentiation remains unknown. Here, we revealed that treatment with BCI attenuated RANKL-mediated osteoclast differentiation in vitro and alleviated ovariectomy-induced osteoporosis without obvious toxicity. Specifically, BCI disrupted F-actin ring formation and bone-resorption activity and decreased osteoclast-specific gene and protein levels in a dose-dependent manner. KEGG pathway analysis, GSEA based on transcriptome sequencing, and western blot results suggested that BCI inhibited RANKL-induced osteoclastogenesis by restraining STAT3 and NF-κB signaling and attenuating NF-κB/p65 interaction with NFATc1. These results revealed that BCI treatment prevented postmenopausal osteoporosis and might represent an effective approach for treating osteoporosis.
Collapse
Affiliation(s)
- Chenhui Cai
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wenhui Hu
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ying Zhang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xu Hu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Sizhen Yang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hao Qiu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Rujie Wang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Min Ma
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yiyun Qiu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tongwei Chu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
29
|
Nair J, Syed SB, Mahaddalkar T, Ketkar M, Thorat R, Sastri Goda J, Dutt S. DUSP6 regulates radio-sensitivity in glioblastoma by modulating the recruitment of p-DNAPKcs at DNA double-strand breaks. J Cell Sci 2021; 134:273732. [PMID: 34792128 DOI: 10.1242/jcs.259520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/20/2022] Open
Abstract
Glioblastoma (GBM) has poor median survival due to its resistance to chemo-radiotherapy regimen, resulting in tumor recurrence. Recurrent GBMs currently lack effective treatments. DUSP6 is known to be pro-tumorigenic and is up-regulated in GBM. We show that DUSP6 expression is significantly higher in recurrent GBM patient biopsies (n=11) compared to primary biopsies (n=11). Importantly, although reported as cytoplasmic protein, we found nuclear localization of DUSP6 in primary and recurrent patient samples and in parent and relapse population of GBM cell lines generated from in vitro radiation survival model. DUSP6 inhibition using BCI resulted in decreased proliferation and clonogenic survival of parent and relapse cells. Pharmacological or genetic inhibition of DUSP6 catalytic activity radio-sensitized primary and importantly, relapse GBM cells by inhibiting the recruitment of p-DNAPKcs, subsequently down-regulating the recruitment of γH2AX and 53BP1. This resulted in decreased cell survival and prolonged growth arrest upon irradiation in vitro and significantly increased the progression-free survival in orthotopic mouse models of GBM. Our study highlights a non-canonical function of DUSP6, emphasizing the potential application of DUSP6 inhibitors in the treatment of recurrent GBM.
Collapse
Affiliation(s)
- Jyothi Nair
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai - 410210, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India
| | - Safiulla Basha Syed
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai - 410210, India
| | - Tejashree Mahaddalkar
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai - 410210, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India
| | - Madhura Ketkar
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai - 410210, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India
| | - Rahul Thorat
- Laboratory Animal Facility, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai - 410210, India
| | - Jayant Sastri Goda
- Department of Radiation Oncology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai - 410210, India
| | - Shilpee Dutt
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai - 410210, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India
| |
Collapse
|
30
|
Turdo A, D'Accardo C, Glaviano A, Porcelli G, Colarossi C, Colarossi L, Mare M, Faldetta N, Modica C, Pistone G, Bongiorno MR, Todaro M, Stassi G. Targeting Phosphatases and Kinases: How to Checkmate Cancer. Front Cell Dev Biol 2021; 9:690306. [PMID: 34778245 PMCID: PMC8581442 DOI: 10.3389/fcell.2021.690306] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/04/2021] [Indexed: 12/21/2022] Open
Abstract
Metastatic disease represents the major cause of death in oncologic patients worldwide. Accumulating evidence have highlighted the relevance of a small population of cancer cells, named cancer stem cells (CSCs), in the resistance to therapies, as well as cancer recurrence and metastasis. Standard anti-cancer treatments are not always conclusively curative, posing an urgent need to discover new targets for an effective therapy. Kinases and phosphatases are implicated in many cellular processes, such as proliferation, differentiation and oncogenic transformation. These proteins are crucial regulators of intracellular signaling pathways mediating multiple cellular activities. Therefore, alterations in kinases and phosphatases functionality is a hallmark of cancer. Notwithstanding the role of kinases and phosphatases in cancer has been widely investigated, their aberrant activation in the compartment of CSCs is nowadays being explored as new potential Achille's heel to strike. Here, we provide a comprehensive overview of the major protein kinases and phosphatases pathways by which CSCs can evade normal physiological constraints on survival, growth, and invasion. Moreover, we discuss the potential of inhibitors of these proteins in counteracting CSCs expansion during cancer development and progression.
Collapse
Affiliation(s)
- Alice Turdo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Caterina D'Accardo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Antonino Glaviano
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Gaetana Porcelli
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Cristina Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | - Lorenzo Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | - Marzia Mare
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | | | - Chiara Modica
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Giuseppe Pistone
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Maria Rita Bongiorno
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Matilde Todaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy.,Azienda Ospedaliera Universitaria Policlinico (AOUP), Palermo, Italy
| | - Giorgio Stassi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| |
Collapse
|
31
|
Duan S, Moro L, Qu R, Simoneschi D, Cho H, Jiang S, Zhao H, Chang Q, de Stanchina E, Arbini AA, Pagano M. Loss of FBXO31-mediated degradation of DUSP6 dysregulates ERK and PI3K-AKT signaling and promotes prostate tumorigenesis. Cell Rep 2021; 37:109870. [PMID: 34686346 PMCID: PMC8577224 DOI: 10.1016/j.celrep.2021.109870] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/12/2021] [Accepted: 09/29/2021] [Indexed: 02/07/2023] Open
Abstract
FBXO31 is the substrate receptor of one of many CUL1-RING ubiquitin ligase (CRL1) complexes. Here, we show that low FBXO31 mRNA levels are associated with high pre-operative prostate-specific antigen (PSA) levels and Gleason grade in human prostate cancer. Mechanistically, the ubiquitin ligase CRL1FBXO31 promotes the ubiquitylation-mediated degradation of DUSP6, a dual specificity phosphatase that dephosphorylates and inactivates the extracellular-signal-regulated kinase-1 and -2 (ERK1/2). Depletion of FBXO31 stabilizes DUSP6, suppresses ERK signaling, and activates the PI3K-AKT signaling cascade. Moreover, deletion of FBXO31 promotes tumor development in a mouse orthotopic model of prostate cancer. Treatment with BCI, a small molecule inhibitor of DUSP6, suppresses AKT activation and prevents tumor formation, suggesting that the FBXO31 tumor suppressor activity is dependent on DUSP6. Taken together, our studies highlight the relevance of the FBXO31-DUSP6 axis in the regulation of ERK- and PI3K-AKT-mediated signaling pathways, as well as its therapeutic potential in prostate cancer.
Collapse
Affiliation(s)
- Shanshan Duan
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA
| | - Loredana Moro
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA
| | - Rui Qu
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA
| | - Daniele Simoneschi
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA
| | - Hyunwoo Cho
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA
| | - Shaowen Jiang
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA
| | - Huiyong Zhao
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Qing Chang
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Elisa de Stanchina
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Arnaldo A Arbini
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA; Department of Pathology, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA; Howard Hughes Medical Institute, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA.
| |
Collapse
|
32
|
Liu D, Ke J, Liu Y, Rao H, Tang Z, Liu Y, Zhang Z, You L, Luo X, Sun Z, He Z, Li F, Qiu Z, Hu J, Mbadhi MN, Tang J, Wu F, Li S. The interaction between PDCD4 and YB1 is critical for cervical cancer stemness and cisplatin resistance. Mol Carcinog 2021; 60:813-825. [PMID: 34499772 DOI: 10.1002/mc.23345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/17/2021] [Accepted: 08/22/2021] [Indexed: 12/27/2022]
Abstract
Cancer multidrug resistance (MDR) is existence in stem cell-like cancer cells characterized by stemness including high-proliferation and self-renewal. Programmed cell death 4 (PDCD4), as a proapoptotic gene, whether it engaged in cancer stemness and cisplatin resistance is still unknown. Here we showed that PDCD4 expressions in Hela/DDP (cisplatin resistance) cells were lower than in parental Hela cells. Moreover, the levels of drug resistance genes and typical stemness markers were markedly elevated in Hela/DDP cells. In vivo, xenograft tumor assay confirmed that knockdown of PDCD4 accelerated the grafted tumor growth. In vitro, colony formation and MTT assay demonstrated that PDCD4 overexpression inhibited cells proliferation in conditions with or without cisplatin. By contrast, PDCD4 deficiency provoked cell proliferation and cisplatin resistance. On mechanism, PDCD4 decreased the protein levels of pAKT and pYB1, accompanied by reduced MDR1 expression. Correspondingly, luciferase reporter assay showed PDCD4 regulated MDR1 promoter activity entirely relied on YB1. Furthermore, Ch-IP, GST-pulldown, and Co-IP assays provided novel evidence that PDCD4 could directly bind with YB1 by the nucleolar localization signal (NOLS) segment, causing the reduced YB1 binding into the MDR1 promoter region through blocking YB1 nucleus translocation, triggering the decreased MDR1 transcription. Taken together, PDCD4-pAKT-pYB1 forms the integrated molecular network to regulate MDR1 transcription during the process of stemness-associated cisplatin resistance.
Collapse
Affiliation(s)
- Dan Liu
- Institute of Basic Medical Science, Hubei University of Medicine, Shiyan, P. R. China.,Department of Clinical Laboratory, Central hospital of Xiaogan, Xiaogan, P. R. China
| | - Jing Ke
- Institute of Basic Medical Science, Hubei University of Medicine, Shiyan, P. R. China
| | - Yang Liu
- Institute of Basic Medical Science, Hubei University of Medicine, Shiyan, P. R. China
| | - Huiling Rao
- Institute of Basic Medical Science, Hubei University of Medicine, Shiyan, P. R. China
| | - Zhiming Tang
- Department of Integrated Medicine, Dongfeng Hospital of Guoyao, Hubei University of Medicine, Shiyan, P. R. China
| | - Ying Liu
- Institute of Basic Medical Science, Hubei University of Medicine, Shiyan, P. R. China
| | - Zhaoyang Zhang
- Institute of Basic Medical Science, Hubei University of Medicine, Shiyan, P. R. China
| | - Lei You
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, P. R. China
| | - Xiangyin Luo
- Institute of Basic Medical Science, Hubei University of Medicine, Shiyan, P. R. China
| | - Zequn Sun
- Department of Digestive Disease, Renmin Hospital, Hubei University of Medicine, Shiyan, P. R. China
| | - Zhijun He
- Department of Digestive Disease, Renmin Hospital, Hubei University of Medicine, Shiyan, P. R. China
| | - Fei Li
- Institute of Basic Medical Science, Hubei University of Medicine, Shiyan, P. R. China
| | - Zhengpeng Qiu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, P. R. China
| | - Junjie Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, P. R. China
| | | | - Junming Tang
- Institute of Basic Medical Science, Hubei University of Medicine, Shiyan, P. R. China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, P. R. China
| | - Fuyun Wu
- Institute of Basic Medical Science, Hubei University of Medicine, Shiyan, P. R. China
| | - Shan Li
- Institute of Basic Medical Science, Hubei University of Medicine, Shiyan, P. R. China.,Department of Integrated Medicine, Dongfeng Hospital of Guoyao, Hubei University of Medicine, Shiyan, P. R. China.,Department of Digestive Disease, Renmin Hospital, Hubei University of Medicine, Shiyan, P. R. China
| |
Collapse
|
33
|
New Advances in the Research of Resistance to Neoadjuvant Chemotherapy in Breast Cancer. Int J Mol Sci 2021; 22:ijms22179644. [PMID: 34502549 PMCID: PMC8431789 DOI: 10.3390/ijms22179644] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer has an extremely high incidence in women, and its morbidity and mortality rank first among female tumors. With the increasing development of medicine today, the clinical application of neoadjuvant chemotherapy has brought new hope to the treatment of breast cancer. Although the efficacy of neoadjuvant chemotherapy has been confirmed, drug resistance is one of the main reasons for its treatment failure, contributing to the difficulty in the treatment of breast cancer. This article focuses on multiple mechanisms of action and expounds a series of recent research advances that mediate drug resistance in breast cancer cells. Drug metabolizing enzymes can mediate a catalytic reaction to inactivate chemotherapeutic drugs and develop drug resistance. The drug efflux system can reduce the drug concentration in breast cancer cells. The combination of glutathione detoxification system and platinum drugs can cause breast cancer cells to be insensitive to drugs. Changes in drug targets have led to poorer efficacy of HER2 receptor inhibitors. Moreover, autophagy, epithelial–mesenchymal transition, and tumor microenvironment can all contribute to the development of resistance in breast cancer cells. Based on the relevant research on the existing drug resistance mechanism, the current treatment plan for reversing the resistance of breast cancer to neoadjuvant chemotherapy is explored, and the potential drug targets are analyzed, aiming to provide a new idea and strategy to reverse the resistance of neoadjuvant chemotherapy drugs in breast cancer.
Collapse
|
34
|
Kambaru A, Chaudhary N. Role of Protein Tyrosine Phosphatase in Regulation of Cell Signaling Cascades Affecting Tumor Cell Growth: A Future Perspective as Anti- Cancer Drug Target. Curr Pharm Biotechnol 2021; 23:920-931. [PMID: 34375185 DOI: 10.2174/1389201022666210810094739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 11/22/2022]
Abstract
Protein Tyrosine Phosphatase (PTP) superfamily is a key enzyme involved in the regulation of growth-related cell signaling cascades, such as the RAS/MAPK pathway, that directly affect cancer cell growth and metastasis. Several studies have indicated that the drug resistance observed in several late-stage tumors might also be affected by the levels of PTP in the cell. Hence, these phosphatases have been in the limelight for the past few decades as potential drug-targets and several promising drug candidates have been developed, even though none of these drugs have reached the market yet. In this review, we explore the potential of PTP as a viable anti-cancer drug target by studying PTPs, their regulation of several key cancer cell signaling pathways and how their levels affect various types of cancer. Furthermore, we present the current scenario of PTP as a molecular target and the various challenges faced in the development of PTP-targeting anti-cancer drugs.
Collapse
Affiliation(s)
| | - Nidhee Chaudhary
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
35
|
Vainonen JP, Momeny M, Westermarck J. Druggable cancer phosphatases. Sci Transl Med 2021; 13:13/588/eabe2967. [PMID: 33827975 DOI: 10.1126/scitranslmed.abe2967] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022]
Abstract
The phosphorylation status of oncoproteins is regulated by both kinases and phosphatases. Kinase inhibitors are rarely sufficient for successful cancer treatment, and phosphatases have been considered undruggable targets for cancer drug development. However, innovative pharmacological approaches for targeting phosphatases have recently emerged. Here, we review progress in the therapeutic targeting of oncogenic Src homology region 2 domain-containing phosphatase-2 (SHP2) and tumor suppressor protein phosphatase 2A (PP2A) and select other druggable oncogenic and tumor suppressor phosphatases. We describe the modes of action for currently available small molecules that target phosphatases, their use in drug combinations, and advances in clinical development toward future cancer therapies.
Collapse
Affiliation(s)
- Julia P Vainonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Majid Momeny
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Jukka Westermarck
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland. .,Institute of Biomedicine, University of Turku, 20520 Turku, Finland
| |
Collapse
|
36
|
Sun G, Shvab A, Leclerc GJ, Li B, Beckedorff F, Shiekhattar R, Barredo JC. Protein Kinase D-Dependent Downregulation of Immediate Early Genes through Class IIA Histone Deacetylases in Acute Lymphoblastic Leukemia. Mol Cancer Res 2021; 19:1296-1307. [PMID: 33980612 DOI: 10.1158/1541-7786.mcr-20-0808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/12/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is a leading cause of cancer-related death in children and adolescents, and cure rates for relapsed/refractory ALL remain dismal, highlighting the need for novel targeted therapies. To identify genome-wide metabolic-stress regulated genes, we used RNA-sequencing in ALL cells treated with AICAR, an AMPK activator. RNA-sequencing identified the immediate early genes (IEGs) as a subset of genes downregulated by AICAR. We show that AICAR-induced IEGs downregulation was blocked by an adenosine uptake inhibitor indicating AICAR was responsible for IEGs reprogramming. Using pharmacologic and genetic models we established this mechanism was AMPK-independent. Further investigations using kinase assays, PKD/PKC inhibitors and rescue experiments, demonstrated that AICAR directly inhibited PKD kinase activity and identified PKD as responsible for IEGs downregulation. Mechanistically, PKD inhibition suppressed phosphorylation and nuclear export of class IIa HDACs, which lowered histone H3 acetylation and decreased NFκB(p65) recruitment to IEGs promoters. Finally, PKD inhibition induced apoptosis via DUSP1/DUSP6 downregulation eliciting a DNA damage response. More importantly, ALL patient cells exhibited the same PKD-HDACs-IEGs-mediated mechanism. As proof of principle of the therapeutic potential of targeting PKD, we established the in vivo relevance of our findings using an NSG ALL mouse model. In conclusion, we identified a previously unreported PKD-dependent survival mechanism in response to AICAR-induced cellular stress in ALL through regulation of DUSPs and IEGs' expression. IMPLICATIONS: PKD mediates early transcriptional responses in ALL cells as an adaptive survival mechanism to overcome cellular stress.
Collapse
Affiliation(s)
- Guangyan Sun
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida
| | - Anna Shvab
- Cancer Biology Program, University of Miami Miller School of Medicine, Miami, Florida
| | - Guy J Leclerc
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida
| | - Bin Li
- Stemsynergy Therapeutics, Inc, Miami, Florida
| | - Felipe Beckedorff
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida
| | - Ramin Shiekhattar
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Julio C Barredo
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida. .,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida.,Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
37
|
Chen T, Yang P, Jia Y. Molecular mechanisms of astragaloside‑IV in cancer therapy (Review). Int J Mol Med 2021; 47:13. [PMID: 33448320 PMCID: PMC7834967 DOI: 10.3892/ijmm.2021.4846] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/23/2020] [Indexed: 12/26/2022] Open
Abstract
Radix Astragali (RA) is widely used in traditional Chinese medicine (TCM), and astragaloside IV (AS-IV) is the most critical component of RA. Previous studies have demonstrated that AS-IV exerts effects on the myocardium, nervous system and endocrine system, among others. In the present review article, data from studies conducted over the past 20 years were collated, which have evaluated the effects of AS-IV on tumors. The mechanisms of action of AS-IV on malignant cells both in vivo and in vitro were summarized and it was demonstrated that AS-IV plays a vital role, particularly in inhibiting tumor growth and metastasis, promoting the apoptosis of tumor cells, enhancing immune function and preventing drug resistance. Moreover, AS-IV controls several epithelial-mesenchymal transformation (EMT)-related and autophagy-related pathways, such as the phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT), Wnt/β-catenin, mitogen-activated protein kinase (MAPK)/extracellular regulated protein kinase (ERK) and transforming growth factor-β (TGF-β)/SMAD signaling pathways, which are commonly affected in the majority of tumors. The present review provides new perspectives on the functions of AS-IV and its role as an adjuvant treatment in cancer chemotherapy.
Collapse
Affiliation(s)
- Tianqi Chen
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300380, P.R. China
| | - Peiying Yang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300380, P.R. China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300380, P.R. China
| |
Collapse
|
38
|
Sexton RE, Al Hallak MN, Diab M, Azmi AS. Gastric cancer: a comprehensive review of current and future treatment strategies. Cancer Metastasis Rev 2020; 39:1179-1203. [PMID: 32894370 PMCID: PMC7680370 DOI: 10.1007/s10555-020-09925-3] [Citation(s) in RCA: 428] [Impact Index Per Article: 85.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
Gastric cancer remains a major unmet clinical problem with over 1 million new cases worldwide. It is the fourth most commonly occurring cancer in men and the seventh most commonly occurring cancer in women. A major fraction of gastric cancer has been linked to variety of pathogenic infections including but not limited to Helicobacter pylori (H. pylori) or Epstein Barr virus (EBV). Strategies are being pursued to prevent gastric cancer development such as H. pylori eradication, which has helped to prevent significant proportion of gastric cancer. Today, treatments have helped to manage this disease and the 5-year survival for stage IA and IB tumors treated with surgery are between 60 and 80%. However, patients with stage III tumors undergoing surgery have a dismal 5-year survival rate between 18 and 50% depending on the dataset. These figures indicate the need for more effective molecularly driven treatment strategies. This review discusses the molecular profile of gastric tumors, the success, and challenges with available therapeutic targets along with newer biomarkers and emerging targets.
Collapse
Affiliation(s)
- Rachel E Sexton
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, HWCRC 732, Detroit, MI, 48201, USA
| | - Mohammed Najeeb Al Hallak
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, HWCRC 732, Detroit, MI, 48201, USA
| | - Maria Diab
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, HWCRC 732, Detroit, MI, 48201, USA
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, HWCRC 732, Detroit, MI, 48201, USA.
| |
Collapse
|
39
|
Ma H, Shen L, Yang H, Gong H, Du X, Li J. m6A methyltransferase Wilms' tumor 1-associated protein facilitates cell proliferation and cisplatin resistance in NK/T cell lymphoma by regulating dual-specificity phosphatases 6 expression via m6A RNA methylation. IUBMB Life 2020; 73:108-117. [PMID: 33205540 DOI: 10.1002/iub.2410] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/19/2020] [Accepted: 10/28/2020] [Indexed: 12/21/2022]
Abstract
Nasal-type natural killer/T-cell lymphoma (NKTCL) is an aggressive malignancy with poor survival outcomes that is relatively resistant to chemotherapy. N6-Methyladenosine (m6A) modification, the most prevalent modification of eukaryotic messenger RNA, is involved in the progression of various tumors. However, it is unclear whether it has a physiological role in NKTCL development. To address this question, we probed its function and molecular mechanisms in NKTCL. Initially, we demonstrated that Wilms' tumor 1-associated protein (WTAP), a major RNA N6-adenosine methyltransferase, was obviously upregulated in human NKTCL cell lines (YTS and SNK-6 cells), compared with normal NK cells. Functionally, depletion of WTAP noticeably repressed proliferation and facilitated apoptosis in YTS and SNK-6 cells. Moreover, intervention of WTAP evidently prohibited NKTCL cell chemotherapy resistance to cisplatin, as reflected by a lower inhibition of cell viability and decreased expression of drug resistance-associated protein expression MRP-1 and P-gp in YTS and SNK-6 cells. With regard to the mechanism, we revealed that WTAP enhanced dual-specificity phosphatases 6 (DUSP6) expression by increasing m6A levels of DUSP6 mRNA transcript, leading to oncogenic functions in NKTCL. Interestingly, WTAP contributed to the progression and chemotherapy sensitivity of NKTCL by stabilizing DUSP6 mRNA in an m6A-dependent manner. Taken together, these findings uncovered a critical function for WTAP-guided m6A methylation and identified DUSP6 as an important target of m6A modification in the regulation of chemotherapy resistance in NKTCL oncogenesis. This study highlights WTAP as a potential therapeutic target of NKTCL treatment.
Collapse
Affiliation(s)
- HongYan Ma
- Department of Hematopathology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - LiYun Shen
- Department of Hematopathology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hua Yang
- Department of Hematopathology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - HongTao Gong
- Department of Hematopathology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - XingJun Du
- Department of Hematopathology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - JunBo Li
- Department of Hematopathology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
40
|
Mofers A, Selvaraju K, Gubat J, D'Arcy P, Linder S. Identification of proteasome inhibitors using analysis of gene expression profiles. Eur J Pharmacol 2020; 889:173709. [PMID: 33166494 DOI: 10.1016/j.ejphar.2020.173709] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/14/2020] [Accepted: 10/29/2020] [Indexed: 12/29/2022]
Abstract
Inhibitors of the 20S proteasome such as bortezomib (Velcade®) and carfilzomib (Kypriolis®) are in clinical use for the treatment of patients with multiple myeloma and mantle cell lymphoma. In an attempt to identify novel inhibitors of the ubiquitin-proteasome system (UPS) we used the connectivity map (CMap) resource, based on alterations of gene expression profiles by perturbagens, and performed COMPARE analyses of drug sensitivity patterns in the NCI60 panel. Cmap analysis identified a large number of small molecules with strong connectivity to proteasome inhibition, including both well characterized inhibitors of the 20S proteasome and molecules previously not described to inhibit the UPS. A number of these compounds have been reported to be cytotoxic to tumor cells and were tested for their ability to decrease processing of proteasome substrates. The antibiotic thiostrepton and the natural products celastrol and curcumin induced strong accumulation of polyubiquitinated proteasome substrates in exposed cells. Other compounds elicited modest increases of proteasome substrates, including the protein phosphatase inhibitor BCI-Cl and the farnesyltransferase inhibitor manumycin A, suggesting that these compounds inhibit proteasome function. Induction of chaperone expression in the absence of proteasome inhibition was observed by a number of compounds, suggesting other effects on the UPS. We conclude that the combination of bioinformatic analyses and cellular assays resulted in the identification of compounds with potential to inhibit the UPS.
Collapse
Affiliation(s)
- Arjan Mofers
- Biomedical and Clinical Sciences, Linköping University, SE-58183, Linköping, Sweden
| | - Karthik Selvaraju
- Biomedical and Clinical Sciences, Linköping University, SE-58183, Linköping, Sweden
| | - Johannes Gubat
- Biomedical and Clinical Sciences, Linköping University, SE-58183, Linköping, Sweden
| | - Padraig D'Arcy
- Biomedical and Clinical Sciences, Linköping University, SE-58183, Linköping, Sweden
| | - Stig Linder
- Biomedical and Clinical Sciences, Linköping University, SE-58183, Linköping, Sweden; Department of Oncology-Pathology, Karolinska Institutet, SE-17176, Stockholm, Sweden.
| |
Collapse
|
41
|
Capicua in Human Cancer. Trends Cancer 2020; 7:77-86. [PMID: 32978089 DOI: 10.1016/j.trecan.2020.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022]
Abstract
Capicua (CIC) is a highly conserved transcriptional repressor that is differentially regulated through mitogen-activated protein kinase (MAPK) signaling or genetic alteration across human cancer. CIC contributes to tumor progression and metastasis through direct transcriptional control of effector target genes. Recent findings indicate that CIC dysregulation is mechanistically linked and restricted to specific cancer subtypes, yet convergence on key downstream transcriptional nodes are critical for CIC-regulated oncogenesis across these cancers. In this review, we focus on how differential regulation of CIC through functional and genetic mechanisms contributes to subtype-specific cancer phenotypes and we propose new therapeutic strategies to effectively target CIC-altered cancers.
Collapse
|
42
|
Negative MAPK-ERK regulation sustains CIC-DUX4 oncoprotein expression in undifferentiated sarcoma. Proc Natl Acad Sci U S A 2020; 117:20776-20784. [PMID: 32788348 DOI: 10.1073/pnas.2009137117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Transcription factor fusions (TFFs) are present in ∼30% of soft-tissue sarcomas. TFFs are not readily "druggable" in a direct pharmacologic manner and thus have proven difficult to target in the clinic. A prime example is the CIC-DUX4 oncoprotein, which fuses Capicua (CIC) to the double homeobox 4 gene, DUX4. CIC-DUX4 sarcoma is a highly aggressive and lethal subtype of small round cell sarcoma found predominantly in adolescents and young adults. To identify new therapeutic targets in CIC-DUX4 sarcoma, we performed chromatin immunoprecipitation sequencing analysis using patient-derived CIC-DUX4 cells. We uncovered multiple CIC-DUX4 targets that negatively regulate MAPK-ERK signaling. Mechanistically, CIC-DUX4 transcriptionally up-regulates these negative regulators of MAPK to dampen ERK activity, leading to sustained CIC-DUX4 expression. Genetic and pharmacologic MAPK-ERK activation through DUSP6 inhibition leads to CIC-DUX4 degradation and apoptotic induction. Collectively, we reveal a mechanism-based approach to therapeutically degrade the CIC-DUX4 oncoprotein and provide a precision-based strategy to combat this lethal cancer.
Collapse
|
43
|
Comprehensive Analysis of a circRNA-miRNA-mRNA Network to Reveal Potential Inflammation-Related Targets for Gastric Adenocarcinoma. Mediators Inflamm 2020; 2020:9435608. [PMID: 32801999 PMCID: PMC7416288 DOI: 10.1155/2020/9435608] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer (GC) is the most common malignancy of the stomach. This study was aimed at elucidating the regulatory network of circRNA-miRNA-mRNA and identifying the precise inflammation-related targets in GC. The expression profiles of GSE83521, GSE78091, and GSE33651 were obtained from the GEO database. Interactions between miRNAs and circRNAs were investigated by the Circular RNA Interactome, and targets of miRNAs were predicted with miRTarBase. Then, a circRNA/miRNA/mRNA regulatory network was constructed. Also, functional enrichment analysis of selected differentially expressed genes (DEGs) was performed. The inflammation-/GC-related targets were collected in the GeneCards and GenLiP3 database, respectively. And a protein-protein interaction (PPI) network of DE mRNAs was constructed with STRING and Cytoscape to identify hub genes. The genetic alterations, neighboring gene networks, expression levels, and the poor prognosis of hub genes were investigated in cBioPortal, Oncomine, and Human Protein Atlas databases and Kaplan-Meier plotter, respectively. A total of 10 DE miRNAs and 33 DEGs were identified. The regulatory network contained 26 circRNAs, 10 miRNAs, and 1459 mRNAs. Functional enrichment analysis revealed that the selected 33 DEGs were involved in negative regulation of fat cell differentiation, response to wounding, extracellular matrix- (ECM-) receptor interaction, and regulation of cell growth pathways. THBS1, FN1, CALM1, COL4A1, CTGF, and IGFBP5 were selected as inflammation-related hub genes of GC in the PPI network. The genetic alterations in these hub genes were related to amplification and missense mutations. Furthermore, the genes RYR2, ERBB2, PI3KCA, and HELZ2 were connected to hub genes in this study. The hub gene levels in clinical specimens were markedly upregulated in GC tissues and correlated with poor overall survival (OS). Our results suggest that THBS1, FN1, CALM1, COL4A1, CTGF, and IGFBP5 were associated with the pathogenesis of gastric carcinogenesis and may serve as biomarkers and inflammation-related targets for GC.
Collapse
|
44
|
Gao E, Li Z, Zhu X, Ma Z, Zhu M. Synthesis, characterization, DNA binding, cytotoxicity and molecular docking properties of three novel butterfly‐like complexes with nitrogen‐containing heterocyclic ligands. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Enjun Gao
- School of Chemical EngineeringUniversity of Science and Technology Liaoning Anshan 114051 China
| | - Zhipeng Li
- Key Laboratory of Inorganic Molecule‐Based Chemistry of Liaoning Province and Laboratory of Coordination ChemistryShenyang University of Chemical Technology Shenyang 110142 China
| | - Xiaopeng Zhu
- Key Laboratory of Inorganic Molecule‐Based Chemistry of Liaoning Province and Laboratory of Coordination ChemistryShenyang University of Chemical Technology Shenyang 110142 China
| | - Zhiyan Ma
- Yingkou Institute of Technology 115014 China
| | - Mingchang Zhu
- Key Laboratory of Inorganic Molecule‐Based Chemistry of Liaoning Province and Laboratory of Coordination ChemistryShenyang University of Chemical Technology Shenyang 110142 China
| |
Collapse
|
45
|
Ren N, Jiang T, Wang C, Xie S, Xing Y, Piao D, Zhang T, Zhu Y. LncRNA ADAMTS9-AS2 inhibits gastric cancer (GC) development and sensitizes chemoresistant GC cells to cisplatin by regulating miR-223-3p/NLRP3 axis. Aging (Albany NY) 2020; 12:11025-11041. [PMID: 32516127 PMCID: PMC7346038 DOI: 10.18632/aging.103314] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/28/2020] [Indexed: 12/19/2022]
Abstract
The role of LncRNA ADAMTS9-AS2 in the regulation of chemoresistance of gastric cancer (GC) is largely unknown. Here we found that LncRNA ADAMTS9-AS2 was low-expressed in GC tissues and cells compared to their normal counterparts. In addition, LncRNA ADAMTS9-AS2 inhibited miR-223-3p expressions in GC cells by acting as competing endogenous RNA, and the levels of LncRNA ADAMTS9-AS2 and miR-223-3p showed negative correlations in GC tissues. Of note, overexpression of LncRNA ADAMTS9-AS2 inhibited GC cell viability and motility by sponging miR-223-3p. In addition, the levels of LncRNA ADAMTS9-AS2 were lower, and miR-223-3p was higher in cisplatin-resistant GC (CR-GC) cells than their parental cisplatin-sensitive GC (CS-GC) cells. LncRNA ADAMTS9-AS2 overexpression enhanced the cytotoxic effects of cisplatin on CR-GC cells, which were reversed by overexpressing miR-223-3p. Furthermore, LncRNA ADAMTS9-AS2 increased NLRP3 expressions by targeting miR-223-3p, and upregulation of LncRNA ADAMTS9-AS2 triggered pyroptotic cell death in cisplatin treated CR-GC cells by activating NLRP3 inflammasome through downregulating miR-223-3p. Finally, the promoting effects of LncRNA ADAMTS9-AS2 overexpression on CR-GC cell death were abrogated by pyroptosis inhibitor Necrosulfonamide (NSA). Collectively, LncRNA ADAMTS9-AS2 acted as a tumor suppressor and enhanced cisplatin sensitivity in GC cells by activating NLRP3 mediated pyroptotic cell death through sponging miR-223-3p.
Collapse
Affiliation(s)
- Niansheng Ren
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Tao Jiang
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Chengbo Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Shilin Xie
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Yanwei Xing
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Daxun Piao
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Tiemin Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Yuekun Zhu
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| |
Collapse
|
46
|
Li XT, Jing M, Cai FY, Yao XM, Kong L, Wang XB. Enhanced antitumour efficiency of R 8GD-modified epirubicin plus tetrandrine liposomes in treatment of gastric cancer via inhibiting tumour metastasis. J Liposome Res 2020; 31:145-157. [PMID: 32223361 DOI: 10.1080/08982104.2020.1748647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Tumour metastasis is a major cause of cancer treatment failure and death, and chemotherapy efficiency for gastric cancer patients is usually unsatisfactory due to tumour cell metastasis, poor targeting and serious adverse reactions. In this study, a kind of R8GD-modified epirubicin plus tetrandrine liposomes was prepared to enhance the antitumor efficiency via killing tumour cells, destroying tumour metastasis and inhibiting energy supply for tumour cells. In order to investigate the antitumour efficiency of the targeting liposomes, morphology observation, intracellular uptake, cytotoxic effects, and inhibition on tumour metastasis and energy supply were carried out in vitro, and tumour-bearing mice models were established to investigate the antitumour efficiency in vivo. In vitro results showed that R8GD-modified epirubicin plus tetrandrine liposomes with ideal physicochemical properties could kill the most tumour cells, inhibit tumour metastasis and cut-off energy supply for tumour cells. In vivo results exhibited that R8GD-modified epirubicin plus tetrandrine liposomes could enhance the accumulation in tumour site and display an obvious antitumor efficiency. Therefore, R8GD-modified epirubicin plus tetrandrine liposomes could be used as a potential therapy for treatment of gastric cancer.
Collapse
Affiliation(s)
- Xue-Tao Li
- Department of Pharmacy, Chinese People's Liberation Army Logistics Support Force No. 967 Hospital, Dalian, China.,School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Ming Jing
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Fu-Yi Cai
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xue-Min Yao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xiao-Bo Wang
- Department of Pharmacy, Chinese People's Liberation Army Logistics Support Force No. 967 Hospital, Dalian, China
| |
Collapse
|
47
|
Ma R, Ma L, Weng W, Wang Y, Liu H, Guo R, Gao Y, Tu J, Xu TL, Cheng J, Zhu MX, Zhou A, Li Y. DUSP6 SUMOylation protects cells from oxidative damage via direct regulation of Drp1 dephosphorylation. SCIENCE ADVANCES 2020; 6:eaaz0361. [PMID: 32232156 PMCID: PMC7096176 DOI: 10.1126/sciadv.aaz0361] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/06/2020] [Indexed: 05/05/2023]
Abstract
Imbalanced mitochondrial fission/fusion, a major cause of apoptotic cell death, often results from dysregulation of Drp1 phosphorylation of two serines, S616 and S637. Whereas kinases for Drp1-S616 phosphorylation are well-described, phosphatase(s) for its dephosphorylation remains unclear. Here, we show that dual-specificity phosphatase 6 (DUSP6) dephosphorylates Drp1-S616 independently of its known substrates ERK1/2. DUSP6 keeps Drp1-S616 phosphorylation levels low under normal conditions. The stability and catalytic function of DUSP6 are maintained through conjugation of small ubiquitin-like modifier-1 (SUMO1) and SUMO2/3 at lysine-234 (K234), which is disrupted during oxidation through transcriptional up-regulation of SUMO-deconjugating enzyme, SENP1, causing DUSP6 degradation by ubiquitin-proteasome. deSUMOylation underlies DUSP6 degradation, Drp1-S616 hyperphosphorylation, mitochondrial fragmentation, and apoptosis induced by H2O2 in cultured cells or brain ischemia/reperfusion in mice. Overexpression of DUSP6, but not the SUMOylation-deficient DUSP6K234R mutant, protected cells from apoptosis. Thus, DUSP6 exerts a cytoprotective role by directly dephosphorylating Drp1-S616, which is disrupted by deSUMOylation under oxidation.
Collapse
Affiliation(s)
- Ruining Ma
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lina Ma
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Weiji Weng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yingping Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Huiqing Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rongjun Guo
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yingwei Gao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jun Tu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tian-Le Xu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jinke Cheng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Michael X. Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Aiwu Zhou
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Corresponding author. (Y.L.); (A.Z.)
| | - Yong Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Corresponding author. (Y.L.); (A.Z.)
| |
Collapse
|
48
|
TP53/miR-34a-associated signaling targets SERPINE1 expression in human pancreatic cancer. Aging (Albany NY) 2020; 12:2777-2797. [PMID: 31986125 PMCID: PMC7041729 DOI: 10.18632/aging.102776] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/12/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a disease of aging. The TP53 gene product regulates cell growth, aging, and cancer. To determine the important targets of TP53 in PDAC, we examined the expression of 440 proteins on a reverse phase protein array (RPPA) in PDAC-derived MIA-PaCa-2 cells which either had WT-TP53 or lacked WT-TP53. MIA-PaCa-2 cells have a TP53 mutation as well as mutant KRAS and represent a good in vitro model to study PDAC. RPPA analysis demonstrated expression of tumor promoting proteins in cells that lacked WT-TP53; and this feature could be reversed significantly when the cells were transfected with vector encoding WT-TP53 or treated with berberine or a modified berberine (BBR). Expression of miR-34a-associated signaling was elevated in cells expressing WT-TP53 compared to cells expressing mTP53. Results from in vivo studies using human PDAC specimens confirmed the in vitro results as the expression of miR-34a and associated signaling was significantly decreased in PDAC specimens compared to non-cancerous tissues. This study determined SERPINE1 as a miR-34a target with relevance to the biology of PDAC. Thus, we have identified a key target (SERPINE1) of the TP53/miR-34a axis that may serve as a potential biomarker for early detection of pancreatic cancer.
Collapse
|
49
|
Wang Y, Lu JH, Wang F, Wang YN, He MM, Wu QN, Lu YX, Yu HE, Chen ZH, Zhao Q, Liu J, Chen YX, Wang DS, Sheng H, Liu ZX, Zeng ZL, Xu RH, Ju HQ. Inhibition of fatty acid catabolism augments the efficacy of oxaliplatin-based chemotherapy in gastrointestinal cancers. Cancer Lett 2020; 473:74-89. [PMID: 31904482 DOI: 10.1016/j.canlet.2019.12.036] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/30/2019] [Accepted: 12/28/2019] [Indexed: 12/21/2022]
Abstract
Gastrointestinal cancer causes countless deaths every year due to therapeutic resistance. However, whether metabolic alterations contribute to chemoresistance is not well understood. In this study, we report that fatty acid (FA) catabolism was activated in gastrointestinal cancer cells treated with oxaliplatin, which exhibited higher expression of the rate-limiting enzymes carnitine palmitoyltransferase 1B (CPT1B) and CPT2. The clinical analysis also showed that high expression of these enzymes was associated with poor oxaliplatin-based chemotherapy outcomes in patients. Furthermore, genetic or pharmacological inhibition of CPT2 with perhexiline disturbed NADPH and redox homeostasis and increased reactive oxygen species (ROS) generation and cell apoptosis in gastrointestinal cancer cells following oxaliplatin treatment. Specifically, the combination of oxaliplatin and perhexiline significantly suppressed the progression of gastrointestinal cancer in cell-based xenograft and patient-derived xenograft (PDX) models. Mechanistically, CPT2 was transcriptionally upregulated by nuclear factor of activated T cells 3 (NFATc3), which translocated to the nucleus in response to oxaliplatin treatment. In summary, our study suggests that the inhibition of CPT-mediated FA catabolism combined with conventional chemotherapy is a promising therapeutic strategy for patients with gastrointestinal cancers.
Collapse
Affiliation(s)
- Yun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jia-Huan Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Feng Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Ying-Nan Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Ming-Ming He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Qi-Nian Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yun-Xin Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Hong-En Yu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhan-Hong Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Qi Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jia Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yan-Xing Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - De-Shen Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Hui Sheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Ze-Xian Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhao-Lei Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Rui-Hua Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, China.
| | - Huai-Qiang Ju
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, China.
| |
Collapse
|
50
|
Dusp6 inhibits epithelial-mesenchymal transition in endometrial adenocarcinoma via ERK signaling pathway. Radiol Oncol 2019; 53:307-315. [PMID: 31553703 PMCID: PMC6765161 DOI: 10.2478/raon-2019-0034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022] Open
Abstract
Background Endometrial adenocarcinoma (EAC) is one of the most commonly diagnosed gynaecological malignancies among female population of the developed countries. DUSP6 is a negative regulator of ERK signaling, which is a molecular switch involved in MAPK signaling during the progress of malignancies. DUSP6 was previously found to inhibit tumorigenesis and EMT-associated properties in several cancers, however, its exact role in EAC remains unclear Methods The level of DUSP6, (E-cad) and (N-cad) in EAC cancerous tissues and respective adjacent non-cancerous tissues were examined by western-blot or immunohistochemistry. The cell growth, invasion and migration abilities were measured in Ishikawa 3H12 endometrial cancer cell lines with overexpressed or knock down DUSP6. Protein levels of EMT-associated markers E-cadherin, N-cadherin and Vimentin were also determined. The impacts of DUSP6 on ERK signaling was assessed by detection of ERK and p-ERK. Results Down-regulation of DUSP6 was observed in EAC compared with the normal controls. The overexpression of DUSP6 significantly attenuated tumor cell growth, invasion, migration abilities and inhibited EMT-associated markers, while knock down of DUSP6 showed opposite trends. Overexpression of DUSP6 also down-regulated p-ERK and the knock down of DUSP6 inversely up-regulated p-ERK level. Conclusions DUSP6 inhibited cell growth, invasion and migration abilities in Ishikawa 3H12 cells as well as attenuating EMT-associated properties. This tumor suppressive effect of DUSP6 in EAC is achieved by inhibiting ERK signaling pathway.
Collapse
|