1
|
Kang MH, Bae YS. IL-33 and IL-33-derived DC-based tumor immunotherapy. Exp Mol Med 2024; 56:1340-1347. [PMID: 38825642 PMCID: PMC11263671 DOI: 10.1038/s12276-024-01249-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/20/2024] [Accepted: 03/14/2024] [Indexed: 06/04/2024] Open
Abstract
Interleukin-33 (IL-33), a member of the IL-1 family, is a cytokine released in response to tissue damage and is recognized as an alarmin. The multifaceted roles of IL-33 in tumor progression have sparked controversy within the scientific community. However, most findings generally indicate that endogenous IL-33 has a protumor effect, while exogenous IL-33 often has an antitumor effect in most cases. This review covers the general characteristics of IL-33 and its effects on tumor growth, with detailed information on the immunological mechanisms associated with dendritic cells (DCs). Notably, DCs possess the capability to uptake, process, and present antigens to CD8+ T cells, positioning them as professional antigen-presenting cells. Recent findings from our research highlight the direct association between the tumor-suppressive effects of exogenous IL-33 and a novel subset of highly immunogenic cDC1s. Exogenous IL-33 induces the development of these highly immunogenic cDC1s through the activation of other ST2+ immune cells both in vivo and in vitro. Recognizing the pivotal role of the immunogenicity of DC vaccines in DC-based tumor immunotherapy, we propose compelling methods to enhance this immunogenicity through the addition of IL-33 and the promotion of highly immunogenic DC generation.
Collapse
Affiliation(s)
- Myeong-Ho Kang
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Suwon, Gyeonggi-do, 16419, Republic of Korea
- Center for Immune Research on Non-Lymphoid Organs, Sungkyunkwan University, 2066 Seobu-ro, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Yong-Soo Bae
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Suwon, Gyeonggi-do, 16419, Republic of Korea.
- Center for Immune Research on Non-Lymphoid Organs, Sungkyunkwan University, 2066 Seobu-ro, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
2
|
Cheng S, Li M, Li C, Dai Y, Zhuo J, Wang J, Qian J, Hao Z. JAML inhibits colorectal carcinogenesis by modulating the tumor immune microenvironment. In Vitro Cell Dev Biol Anim 2024; 60:382-396. [PMID: 38625487 DOI: 10.1007/s11626-024-00881-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/09/2024] [Indexed: 04/17/2024]
Abstract
It is necessary to explore new targets for the treatment of colon adenocarcinoma (COAD) according to the tumor microenvironment. The expression levels of JAML and CXADR were analyzed by bioinformatics analysis and validation of clinical samples. JAML over-expression CD8+ T cell line was constructed, and the proliferation activity was detected by MTT. The production of inflammatory factors was detected by ELISA. The expression of immune checkpoint PD-1 and TIM-3 was detected by Western blot. The apoptosis level was detected by flow cytometry and apoptosis markers. The AOM/DSS mouse model of colorectal cancer was constructed. The expression levels of JAML, CXADR and PD-1 were detected by PCR and Western blot, and the proportion of CD8+ T cells and exhausted T cells were detected by flow cytometry. The expression levels of JAML and CXADR were significantly decreased in colon cancer tissues. Overexpression of JAML can promote the proliferation of T cells, secrete a variety of inflammatory factors. Overexpression of CXADR can reduce the proliferation of colorectal cancer cells, promote apoptosis, and down-regulate the migration and invasion ability of tumor cells. Both JAML agonists and PD-L1 inhibitors can effectively treat colorectal cancer, and the combined use of JAML agonists and PD-L1 inhibitors can enhance the effect. JAML can promote the proliferation and toxicity of CD8+ T cells and down-regulate the expression of immune checkpoints in colon cancer. CXADR can inhibit the proliferation of cancer cells and promote the apoptosis. JAML agonist can effectively treat colorectal cancer by regulating CD8+ T cells.
Collapse
Affiliation(s)
- Shiliang Cheng
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Shandong University, 250031, Jinan, People's Republic of China.
| | - Meng Li
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Shandong University, 250031, Jinan, People's Republic of China
| | - Chunguang Li
- Emergency Medicine Department, Shandong Provincial Third Hospital, Shandong University, Jinan, People's Republic of China
| | - Yonggang Dai
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Shandong University, 250031, Jinan, People's Republic of China
| | - Jinhua Zhuo
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Shandong University, 250031, Jinan, People's Republic of China
| | - Jue Wang
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Shandong University, 250031, Jinan, People's Republic of China
| | - Jingrong Qian
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Shandong University, 250031, Jinan, People's Republic of China
| | - Zhihao Hao
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Shandong University, 250031, Jinan, People's Republic of China
| |
Collapse
|
3
|
Wang J, Liu H. The Roles of Junctional Adhesion Molecules (JAMs) in Cell Migration. Front Cell Dev Biol 2022; 10:843671. [PMID: 35356274 PMCID: PMC8959349 DOI: 10.3389/fcell.2022.843671] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/10/2022] [Indexed: 01/15/2023] Open
Abstract
The review briefly summarizes the role of the family of adhesion molecules, JAMs (junctional adhesion molecules), in various cell migration, covering germ cells, epithelial cells, endothelial cells, several leukocytes, and different cancer cells. These functions affect multiple diseases, including reproductive diseases, inflammation-related diseases, cardiovascular diseases, and cancers. JAMs bind to both similar and dissimilar proteins and take both similar and dissimilar effects on different cells. Concluding relevant results provides a reference to further research.
Collapse
Affiliation(s)
- Junqi Wang
- Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Han Liu
- Department of Pharmacy, People’s Hospital of Longhua, Shenzhen, China
- *Correspondence: Han Liu,
| |
Collapse
|
4
|
Fang L, Yu W, Yu G, Zhong F, Ye B. Junctional Adhesion Molecule-Like Protein (JAML) Is Correlated with Prognosis and Immune Infiltrates in Lung Adenocarcinoma. MEDICAL SCIENCE MONITOR : INTERNATIONAL MEDICAL JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2022; 28:e933503. [PMID: 35034089 PMCID: PMC8772237 DOI: 10.12659/msm.933503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Junctional adhesion molecule-like protein (JAML) is a member of the junctional adhesion molecule family and mediates migration of immune cells, but its function in cancers remains unclear. This study aimed to evaluate the role of JAML in the prognosis and immune infiltrates of lung adenocarcinoma (LUAD). MATERIAL AND METHODS JAML expressions in LUAD tissues and normal tissues were compared using The Cancer Genome Atlas (TCGA) database and datasets from the Gene Expression Omnibus (GEO) database. The influence of JAML expression on prognosis was analyzed by Kaplan-Meier curve and Cox regression model. Interactive and functional analyses of JAML were performed by LinkedOmics and GeneMANIA databases. TIMER2.0, TISIDB, and GEPIA2 databases were used to investigate the correlation between JAML expression and immune infiltrates. RESULTS JAML expression was decreased in LUAD (P<0.001), and lower JAML expression was associated with worse outcomes of LUAD patients. High JAML expression was the protective factor for overall survival (OS) (HR 0.706, 95% CI 0.500-0.997, P=0.048). Interactive and functional analyses suggested that co-expressed genes with JAML have an obvious link to immune-related pathways. In addition, JAML expression was positively associated with infiltrating levels of CD8+ T cells, CD4+ T cells, B cells, dendritic cells, macrophages, and neutrophils, and had significant correlations with diverse immune marker sets in LUAD. CONCLUSIONS JAML expression was significantly correlated with prognosis and immune infiltrates. These preliminary findings suggested JAML could be considered as a potential prognostic biomarker and therapeutic target for LUAD.
Collapse
Affiliation(s)
- Likui Fang
- Department of Thoracic Surgery, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Wenfeng Yu
- Department of Thoracic Surgery, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Guocan Yu
- Department of Thoracic Surgery, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Fangming Zhong
- Department of Thoracic Surgery, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Bo Ye
- Department of Thoracic Surgery, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
5
|
Bioinformatic profiling of prognosis-related genes in the breast cancer immune microenvironment. Aging (Albany NY) 2019; 11:9328-9347. [PMID: 31715586 PMCID: PMC6874454 DOI: 10.18632/aging.102373] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/12/2019] [Indexed: 02/07/2023]
Abstract
In the microenvironment of breast cancer, immune cell infiltration is associated with an improved prognosis. To identify immune-related prognostic markers and therapeutic targets, we determined the lymphocyte-specific kinase (LCK) metagene scores of samples from breast cancer patients in The Cancer Genome Atlas. The LCK metagene score correlated highly with other immune-related scores, as well as with the clinical stage, prognosis and tumor suppressor gene mutation status (BRCA2, TP53, PTEN) of patients in the four breast cancer subtypes. A weighted gene co-expression network analysis was performed to detect representative genes from LCK metagene-related gene modules. In two of these modules, the levels of the co-expressed genes correlated highly with LCK metagene levels, so we conducted an enrichment analysis to discover their functions. We also identified differentially expressed genes in samples with high and low LCK metagene scores. By examining the overlapping results from these analyses, we obtained 115 genes, and found that 22 of them were independent predictors of overall survival in breast cancer patients. These genes were validated for their prognostic and diagnostic value with external data sets and paired tumor and non-tumor tissues. The genes identified herein could serve as diagnostic/prognostic markers and immune-related therapeutic targets in breast cancer.
Collapse
|
6
|
Ashraf MU, Jeong Y, Roh SE, Bae YS. Transendothelial migration (TEM) of in vitro generated dendritic cell vaccine in cancer immunotherapy. Arch Pharm Res 2019; 42:582-590. [PMID: 30937843 DOI: 10.1007/s12272-019-01145-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/12/2019] [Indexed: 12/18/2022]
Abstract
Many efforts have been made to improve the efficacy of dendritic cell (DC) vaccines in DC-based cancer immunotherapy. One of these efforts is to deliver a DC vaccine more efficiently to the regional lymph nodes (rLNs) to induce stronger anti-tumor immunity. Together with chemotaxis, transendothelial migration (TEM) is believed to be a critical and indispensable step for DC vaccine migration to the rLNs after administration. However, the mechanism underlying the in vitro-generated DC TEM in DC-based cancer immunotherapy has been largely unknown. Currently, junctional adhesion molecules (JAMs) were found to play an important role in the TEM of in vitro generated DC vaccines. This paper reviews the TEM of DC vaccines and TEM-associated JAM molecules.
Collapse
Affiliation(s)
- Muhammad Umer Ashraf
- Department of Biological Sciences, Science Research Center (SRC) for Immune Research on Non-lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do, 16419, South Korea
| | - Yideul Jeong
- Department of Biological Sciences, Science Research Center (SRC) for Immune Research on Non-lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do, 16419, South Korea
| | - Seung-Eon Roh
- Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe St, Baltimore, MD, 21205, USA
| | - Yong-Soo Bae
- Department of Biological Sciences, Science Research Center (SRC) for Immune Research on Non-lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do, 16419, South Korea. .,Department of Biological Science, Research Complex Bldg 1, Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do, 16419, South Korea.
| |
Collapse
|