1
|
Jiao C, Qiu J, Gong C, Li X, Liang H, He C, Cen S, Xie Y. Ganoderma lucidum extract reverses multidrug resistance in breast cancer cells through inhibiting ATPase activity of the P-glycoprotein via MAPK/ERK signaling pathway. Exp Cell Res 2025; 444:114355. [PMID: 39613022 DOI: 10.1016/j.yexcr.2024.114355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
Breast cancer represents a persistent global health challenge, with multidrug resistance (MDR) posing a significant obstacle to effective treatment. In this study, we investigate the potential of Ganoderma lucidum extract (GLE) in reversing MDR in breast cancer and delve into the underlying mechanisms. We establish a robust in vitro 3D model of breast cancer with acquired MDR induced by paclitaxel. Utilizing the CCK-8 method, we assess the impact of GLE on cytotoxic drug sensitivity to determine its in vitro MDR reversal activity. Our results reveal that GLE enhances the toxicity of paclitaxel in breast cancer cells by inhibiting the ATPase activity of P-glycoprotein (P-gp) and increasing the intracellular and extracellular excretion of P-gp substrates, all without significantly altering P-gp protein expression. Additionally, GLE inhibits the phosphorylation of ERK1/2, suggesting that the enhanced sensitivity of breast cancer cells to paclitaxel by GLE is associated with the MAPK pathway. These findings indicate that GLE may inhibit P-gp-mediated drug efflux via the MAPK pathway, thus effectively overcoming paclitaxel resistance in breast cancer. This study provides valuable insights into the potential clinical applications of GLE in reversing multidrug resistance, offering hope for improved breast cancer treatment strategies.
Collapse
Affiliation(s)
- Chunwei Jiao
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, 510663, PR China; Guangdong Yuewei Bioscience Co., Ltd., Zhaoqing, 526000, PR China
| | - Jinshou Qiu
- Zhangzhou Hospital Affiliated to Fujian Medical University, Zhangzhou, Fujian, 363000, PR China
| | - Congcong Gong
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, 510663, PR China; South China University of Technology, PR China
| | - Xiaoyi Li
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, 510663, PR China
| | - Huijia Liang
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, 510663, PR China
| | - Chunyan He
- Guangdong Yuewei Bioscience Co., Ltd., Zhaoqing, 526000, PR China
| | - Sien Cen
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, 510663, PR China
| | - Yizhen Xie
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, 510663, PR China; Guangdong Yuewei Bioscience Co., Ltd., Zhaoqing, 526000, PR China.
| |
Collapse
|
2
|
Zhang L, Ye B, Chen Z, Chen ZS. Progress in the studies on the molecular mechanisms associated with multidrug resistance in cancers. Acta Pharm Sin B 2022; 13:982-997. [PMID: 36970215 PMCID: PMC10031261 DOI: 10.1016/j.apsb.2022.10.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/28/2022] [Accepted: 08/18/2022] [Indexed: 11/01/2022] Open
Abstract
Chemotherapy is one of the important methods to treat cancer, and the emergence of multidrug resistance (MDR) is one major cause for the failure of cancer chemotherapy. Almost all anti-tumor drugs develop drug resistance over a period of time of application in cancer patients, reducing their effects on killing cancer cells. Chemoresistance can lead to a rapid recurrence of cancers and ultimately patient death. MDR may be induced by multiple mechanisms, which are associated with a complex process of multiple genes, factors, pathways, and multiple steps, and today the MDR-associated mechanisms are largely unknown. In this paper, from the aspects of protein-protein interactions, alternative splicing (AS) in pre-mRNA, non-coding RNA (ncRNA) mediation, genome mutations, variance in cell functions, and influence from the tumor microenvironment, we summarize the molecular mechanisms associated with MDR in cancers. In the end, prospects for the exploration of antitumor drugs that can reverse MDR are briefly discussed from the angle of drug systems with improved targeting properties, biocompatibility, availability, and other advantages.
Collapse
|
3
|
Abd-Ellatef GEF, Gazzano E, El-Desoky AH, Hamed AR, Kopecka J, Belisario DC, Costamagna C, S Marie MA, Fahmy SR, Abdel-Hamid AHZ, Riganti C. Glabratephrin reverses doxorubicin resistance in triple negative breast cancer by inhibiting P-glycoprotein. Pharmacol Res 2022; 175:105975. [PMID: 34785319 DOI: 10.1016/j.phrs.2021.105975] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/27/2021] [Accepted: 11/06/2021] [Indexed: 11/28/2022]
Abstract
Triple-negative breast cancer is one of the most aggressive breast cancer. The first therapeutic option is chemotherapy, often based on anthracycline as doxorubicin. However, chemotherapy efficacy is limited in by the presence of P-glycoprotein (Pgp), a membrane transporter protein that effluxes doxorubicin, reducing its cellular accumulation and toxicity. Inhibiting Pgp activity with effective and non-toxic products is still an open challenge. In this work, we demonstrated that the natural product Glabratephrin (Glab), a prenylated flavonoid from Tephrosia purpurea with a unique chemical structure, increased doxorubicin accumulation and cytotoxicity in triple negative breast cancer cells with high levels of Pgp, characterized by both acquired or intrinsic resistance to doxorubicin. Glab also reduced the growth of Pgp-expressing tumors, without adding significant extra-toxicities to doxorubicin treatment. Interestingly, Glab did not change the expression of Pgp, but it reduced the affinity for Pgp and the efflux of doxorubicin, as suggested by the increased Km and the reduced Vmax. In silico molecular docking predicted that Glab binds two residues (phenylalanine 322, glutamine 721) localized in the transmembrane domains of Pgp, facing the extracellular environment. Moreover, site-directed mutagenesis identified glycine 185 as a critical residue mediating the reduced catalytic efficacy of Pgp elicited by Glab. We propose Glab as an effective and safe compound able to reverse doxorubicin resistance mediated by Pgp in triple negative breast cancers, opening the way to a new combinatorial approach that may improve chemotherapy efficacy in the most refractory and aggressive breast cancer.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Antibiotics, Antineoplastic/pharmacology
- Antibiotics, Antineoplastic/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Cell Line, Tumor
- Doxorubicin/pharmacology
- Doxorubicin/therapeutic use
- Drug Resistance, Neoplasm/drug effects
- Female
- Flavonoids/pharmacology
- Flavonoids/therapeutic use
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Mice, Inbred BALB C
- Triple Negative Breast Neoplasms/drug therapy
- Triple Negative Breast Neoplasms/genetics
- Triple Negative Breast Neoplasms/metabolism
- Mice
Collapse
Affiliation(s)
- Gamal Eldein Fathy Abd-Ellatef
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy; Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, 33 El Bohouth St., 12622 Dokki, Giza, Egypt
| | - Elena Gazzano
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy
| | - Ahmed H El-Desoky
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, 33 El Bohouth St., 12622 Dokki, Giza, Egypt
| | - Ahmed R Hamed
- Chemistry of Medicinal Plants Department & Biology Unit of Central Laboratory, Pharmaceutical and Drug Industries Research Division, National Research Centre, 33 El Bohouth St., 12622 Dokki, Giza, Egypt
| | - Joanna Kopecka
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy
| | | | - Costanzo Costamagna
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy
| | | | - Sohair R Fahmy
- Zoology Department, Faculty of Science, Cairo University, Gamaa Street, Giza, Egypt
| | - Abdel-Hamid Z Abdel-Hamid
- Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, 33 El Bohouth St., 12622 Dokki, Giza, Egypt
| | - Chiara Riganti
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy.
| |
Collapse
|
4
|
Rybalkina EY, Moiseeva NI, Karamysheva AF, Eroshenko DV, Konysheva AV, Nazarov AV, Grishko VV. Triterpenoids with modified A-ring as modulators of P-gp-dependent drug-resistance in cancer cells. Chem Biol Interact 2021; 348:109645. [PMID: 34516973 DOI: 10.1016/j.cbi.2021.109645] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/13/2021] [Accepted: 09/06/2021] [Indexed: 12/29/2022]
Abstract
Semi-synthetic A-cycle modified triterpenic derivatives with A-cycle condensed with a heterocyclic fragment (compound 1) and fragmented A-ring (compound 2) were tested for cytotoxicity against several tumor cell cultures and doxorubicin (Dox)-resistant cell lines. The equal cytotoxicity of the tested compounds to the parental tumor cell lines (HBL-100, K562) and their resistant subclones (HBL-100/Dox, K562/i-S9) was revealed. The overexpression of ABCB1 (MDR1) gene and P-glycoprotein (P-gp) was confirmed for both resistant subclones of tumor cells. Compounds 1 and 2 were shown to inhibit the ABC-transporter gene expression (MDR1, MRP, MVP, and BCRP) and the transport of well-known P-gp substrate Rhodamine 123 from resistant cells. The docking of triterpenoids 1 and 2 into the drug binding site of P-gp revealed a similarity between the conformation of the tested triterpenoids and that of classical inhibitor verapamil, thus assuming these compounds to be more likely the inhibitors than the substrates of P-gp. Any tested triterpenic derivatives, when combined at non-toxic concentrations with doxorubicin, improved cytotoxic effect of the therapeutic drug against resistant subclones of tumor cells.
Collapse
Affiliation(s)
- Ekaterina Yu Rybalkina
- "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoye shosse 24, 115478, Moscow, Russia
| | - Natalia I Moiseeva
- "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoye shosse 24, 115478, Moscow, Russia
| | - Aida F Karamysheva
- "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoye shosse 24, 115478, Moscow, Russia
| | - Daria V Eroshenko
- Institute of Technical Chemistry of Ural Branch of the Russian Academy of Sciences, Acad. Korolev St. 3, 614013, Perm, Russia
| | - Anastasia V Konysheva
- Institute of Technical Chemistry of Ural Branch of the Russian Academy of Sciences, Acad. Korolev St. 3, 614013, Perm, Russia
| | - Alexei V Nazarov
- Institute of Technical Chemistry of Ural Branch of the Russian Academy of Sciences, Acad. Korolev St. 3, 614013, Perm, Russia
| | - Victoria V Grishko
- Institute of Technical Chemistry of Ural Branch of the Russian Academy of Sciences, Acad. Korolev St. 3, 614013, Perm, Russia.
| |
Collapse
|
6
|
Morrish E, Copeland A, Moujalled DM, Powell JA, Silke N, Lin A, Jarman KE, Sandow JJ, Ebert G, Mackiewicz L, Beach JA, Christie EL, Lewis AC, Pomilio G, Fischer KC, MacPherson L, Bowtell DDL, Webb AI, Pellegrini M, Dawson MA, Pitson SM, Wei AH, Silke J, Brumatti G. Clinical MDR1 inhibitors enhance Smac-mimetic bioavailability to kill murine LSCs and improve survival in AML models. Blood Adv 2020; 4:5062-5077. [PMID: 33080008 PMCID: PMC7594394 DOI: 10.1182/bloodadvances.2020001576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/21/2020] [Indexed: 01/02/2023] Open
Abstract
The specific targeting of inhibitor of apoptosis (IAP) proteins by Smac-mimetic (SM) drugs, such as birinapant, has been tested in clinical trials of acute myeloid leukemia (AML) and certain solid cancers. Despite their promising safety profile, SMs have had variable and limited success. Using a library of more than 5700 bioactive compounds, we screened for approaches that could sensitize AML cells to birinapant and identified multidrug resistance protein 1 inhibitors (MDR1i) as a class of clinically approved drugs that can enhance the efficacy of SM therapy. Genetic or pharmacological inhibition of MDR1 increased intracellular levels of birinapant and sensitized AML cells from leukemia murine models, human leukemia cell lines, and primary AML samples to killing by birinapant. The combination of clinical MDR1 and IAP inhibitors was well tolerated in vivo and more effective against leukemic cells, compared with normal hematopoietic progenitors. Importantly, birinapant combined with third-generation MDR1i effectively killed murine leukemic stem cells (LSCs) and prolonged survival of AML-burdened mice, suggesting a therapeutic opportunity for AML. This study identified a drug combination strategy that, by efficiently killing LSCs, may have the potential to improve outcomes in patients with AML.
Collapse
Affiliation(s)
- Emma Morrish
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Anthony Copeland
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Donia M Moujalled
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
- Department of Clinical Haematology, The Alfred Hospital, Melbourne, VIC, Australia
| | - Jason A Powell
- Molecular Signalling Laboratory, Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide SA, Australia
| | - Natasha Silke
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Ann Lin
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Kate E Jarman
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Jarrod J Sandow
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Gregor Ebert
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Liana Mackiewicz
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Jessica A Beach
- Peter MacCallum Cancer Centre, Melbourne, VIC Australia; and
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Elizabeth L Christie
- Peter MacCallum Cancer Centre, Melbourne, VIC Australia; and
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Alexander C Lewis
- Molecular Signalling Laboratory, Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Giovanna Pomilio
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
- Department of Clinical Haematology, The Alfred Hospital, Melbourne, VIC, Australia
| | - Karla C Fischer
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Laura MacPherson
- Peter MacCallum Cancer Centre, Melbourne, VIC Australia; and
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - David D L Bowtell
- Peter MacCallum Cancer Centre, Melbourne, VIC Australia; and
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Andrew I Webb
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Marc Pellegrini
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Mark A Dawson
- Peter MacCallum Cancer Centre, Melbourne, VIC Australia; and
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Stuart M Pitson
- Molecular Signalling Laboratory, Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide SA, Australia
| | - Andrew H Wei
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
- Department of Clinical Haematology, The Alfred Hospital, Melbourne, VIC, Australia
| | - John Silke
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Gabriela Brumatti
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|