1
|
Gołąbek K, Hudy D, Gaździcka J, Miśkiewicz-Orczyk K, Nowak-Chmura M, Asman M, Komosińska-Vassev K, Ścierski W, Golusiński W, Misiołek M, Strzelczyk JK. The Analysis of Selected miRNAs and Target MDM2 Gene Expression in Oral Squamous Cell Carcinoma. Biomedicines 2023; 11:3053. [PMID: 38002053 PMCID: PMC10668942 DOI: 10.3390/biomedicines11113053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
MiRNAs could play an important role in tumorigenesis and progression. The oncoprotein MDM2 (murine double minute 2) was identified as a negative regulator of the tumour suppressor p53. This study aims to analyse the expression of the MDM2 target miRNA candidates (miR-3613-3p, miR-371b-5p and miR-3658) and the MDM2 gene in oral squamous cell carcinoma tumour and margin samples and their association with the selected socio-demographic and clinicopathological characteristics. The study group consisted of 50 patients. The miRNAs and MDM2 gene expression levels were assessed by qPCR. The expression analysis of the miRNAs showed the expression of only one of them, i.e., miR-3613-3p. We found no statistically significant differences in the miR-3613-3p expression in tumour samples compared to the margin samples. When analysing the effect of smoking on miR-3613-3p expression, we demonstrated a statistically significant difference between smokers and non-smokers. In addition, we showed an association between the miR-3613-3p expression level and some clinical parameters in tumour samples (T, N and G). Our study demonstrates that miR-3613-3p overexpression is involved in the tumour progression of OSCC. This indicates that miR-3613-3p possesses potential prognostic values.
Collapse
Affiliation(s)
- Karolina Gołąbek
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Dorota Hudy
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Jadwiga Gaździcka
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Katarzyna Miśkiewicz-Orczyk
- Department of Otorhinolaryngology and Oncological Laryngology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 10 C Skłodowska St., 41-800 Zabrze, Poland
| | - Magdalena Nowak-Chmura
- Department of Invertebrate Zoology and Parasitology, Institute of Biology, Pedagogical University of Cracov, Podbrzezie 3 St., 31-054 Kraków, Poland
| | - Marek Asman
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Katarzyna Komosińska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 8 Jedności St., 41-200 Sosnowiec, Poland
| | - Wojciech Ścierski
- Department of Otorhinolaryngology and Oncological Laryngology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 10 C Skłodowska St., 41-800 Zabrze, Poland
| | - Wojciech Golusiński
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| | - Maciej Misiołek
- Department of Otorhinolaryngology and Oncological Laryngology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 10 C Skłodowska St., 41-800 Zabrze, Poland
| | - Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| |
Collapse
|
2
|
Gao G, Li X, Wu H, Huang LL, Lin YX, Huo Z, Xiang ZY, Zhou X. LncRNA SNHG6 Upregulates KPNA5 to Overcome Gemcitabine Resistance in Pancreatic Cancer via Sponging miR-944. Pharmaceuticals (Basel) 2023; 16:184. [PMID: 37259332 PMCID: PMC9961296 DOI: 10.3390/ph16020184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 08/27/2023] Open
Abstract
Gemcitabine (GEM) is the gold-standard therapeutic regimen for patients with pancreatic cancer (PC); however, patients may receive limited benefits due to the drug resistance of GEM. LncRNA SNHG6 is reported to play key roles in drug resistance, but its role and molecular mechanism in PC remain incompletely understood. We found that LncRNA SNHG6 is drastically downregulated in GEM-resistant PC and is positively correlated with the survival of PC patients. With the help of bioinformatic analysis and molecular approaches, we show that LncRNA SNHG6 can sponge miR-944, therefore causing the upregulation of the target gene KPNA5. In vitro experiments showed that LncRNA SNHG6 and KPNA5 suppress PC cell proliferation and colony formation. The Upregulation of LncRNA SNHG6 and KPNA5 increases the response of GEM-resistant PANC-1 cells to GEM. We also show that the expression of KPNA5 is higher in patients without GEM resistance than in those who developed GEM resistance. In summary, our findings indicate that the LncRNA SNHG6/miR944/KPNA5 axis plays a pivotal role in overcoming GEM resistance, and targeting this axis may contribute to an increasing of the benefits of PC patients from GEM treatment.
Collapse
Affiliation(s)
- Ge Gao
- Department of Clinical Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Xin Li
- Department of Clinical Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Hui Wu
- Department of Clinical Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Ling-li Huang
- Department of Clinical Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yu-xin Lin
- Department of Clinical Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Zhi Huo
- School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Zhong-yuan Xiang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xiao Zhou
- Department of Clinical Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| |
Collapse
|
3
|
Shaker OG, Ayeldeen G, Abdelhamid AM. Circulating microRNA-944 and its target gene EPHA7 as a potential biomarker for colorectal cancer. Arch Physiol Biochem 2022; 128:1181-1187. [PMID: 32421395 DOI: 10.1080/13813455.2020.1762658] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
MicroRNAs (miRNAs) have critical roles in colorectal cancer (CRC) tumorigenesis and development. It has been reported that Eph receptor A7 (EphA7) was a potential target of miR-944 which is transcriptionally activated in cancer. The aim of this study was to explore the expression profile of miR-944 and its target gene EPHA7 in the serum of Egyptian CRC patients. 150 CRC patients, 50 adenomatous polyps (AP) patients, and 100 healthy controls were included. Serum miR-944 was downregulated (0.304 ± 0.0512) while serum EPHA7 was upregulated (3.163 ± 0.610) in CRC and AP patients versus controls and discriminated aganst these groups by Receiver operating characteristic curve (ROC) analysis. miR-944 presented the highest diagnostic accuracy for CRC patients from control (AUC = 0.90). Moreover obvious prognostic power in distinguishing AP from CRC (AUC = 0.87). In conclusion, miR-944 and EPHA7 are potential genetic markers of CRC predisposition and novel potential non-invasive diagnostic biomarkers for CRC.
Collapse
Affiliation(s)
- Olfat G Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ghada Ayeldeen
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Amr M Abdelhamid
- Department of Biochemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October City, Egypt
| |
Collapse
|
4
|
Novel Insights into miR-944 in Cancer. Cancers (Basel) 2022; 14:cancers14174232. [PMID: 36077769 PMCID: PMC9454979 DOI: 10.3390/cancers14174232] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary miR-944 is localized in intron 4 of TP63. ΔNp63 in intron 3 of TP63 recruits the transcription factor AP-2 to promote miR-944 gene expression, which mediates epidermal differentiation induction by ΔNp63. miR-944 is dysregulated in various cancers. In squamous cell carcinoma. miR-944 can target and inhibit 27 protein-coding genes, thereby regulating cell cycle, proliferation, apoptosis, epithelial mesenchymal transition, cancer cell invasion and migration, and other cell behaviors. The genes targeted by miR-944 are involved in three signaling pathways, including the Wnt/β-catenin pathway, Jak/STAT3 pathway, and PI3K/AKT pathway. miR-944 was regulated by a total of 11 competing endogenous RNAs, including 6 circular RNAs and 5 long non-coding RNAs. Abnormally expressed miR-944 can act as an independent prognostic factor and is closely related to tumor invasion, lymph node metastasis, TNM staging, and drug resistance. miR-944 is expected to become a critical biomarker with great clinical application value in cancer. Abstract miRNA is a class of endogenous short-chain non-coding RNAs consisting of about 22 nucleotides. miR-944 is located in the fourth intron of the TP63 gene in the 3q28 region. miR-944 is abnormally expressed in cancers in multiple systems including neural, endocrine, respiratory, reproductive, and digestive systems. miR-944 can target at least 27 protein-coding genes. miR-944 can regulate a series of cell behaviors, such as cell cycle, proliferation, invasion and migration, EMT, apoptosis, etc. miR-944 participates in the networks of 11 ceRNAs, including six circRNAs and five lncRNAs. miR-944 is involved in three signaling pathways. The abnormal expression of miR-944 is closely related to the clinicopathological conditions of various cancer patients. Deregulated expression of miR-944 is significantly associated with clinicopathology and prognosis in cancer patients. In addition, miR-944 is also associated with the development of DDP, RAPA, DOX, and PTX resistance in cancer cells. miR-944 is involved in the anticancer molecular mechanisms of matrine and Rhenium-liposome drugs. In conclusion, this work systematically summarizes the related findings of miR-944, which will provide potential hints for follow-up research on miR-944.
Collapse
|
5
|
Lu S, Ding X, Wang Y, Hu X, Sun T, Wei M, Wang X, Wu H. The Relationship Between the Network of Non-coding RNAs-Molecular Targets and N6-Methyladenosine Modification in Colorectal Cancer. Front Cell Dev Biol 2021; 9:772542. [PMID: 34938735 PMCID: PMC8685436 DOI: 10.3389/fcell.2021.772542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/11/2021] [Indexed: 12/11/2022] Open
Abstract
Recent accumulating researches implicate that non-coding RNAs (ncRNAs) including microRNA (miRNA), circular RNA (circRNA), and long non-coding RNA (lncRNAs) play crucial roles in colorectal cancer (CRC) initiation and development. Notably, N6-methyladenosine (m6A) methylation, the critical posttranscriptional modulators, exerts various functions in ncRNA metabolism such as stability and degradation. However, the interaction regulation network among ncRNAs and the interplay with m6A-related regulators has not been well documented, particularly in CRC. Here, we summarize the interaction networks and sub-networks of ncRNAs in CRC based on a data-driven approach from the publications (IF > 6) in the last quinquennium (2016–2021). Further, we extend the regulatory pattern between the core m6A regulators and m6A-related ncRNAs in the context of CRC metastasis and progression. Thus, our review will highlight the clinical potential of ncRNAs and m6A modifiers as promising biomarkers and therapeutic targets for improving the diagnostic precision and treatment of CRC.
Collapse
Affiliation(s)
- Senxu Lu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Xiangyu Ding
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Yuanhe Wang
- Department of Medical Oncology, Cancer Hospital of China Medical University, Shenyang, China
| | - Xiaoyun Hu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Tong Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China.,Shenyang Kangwei Medical Laboratory Analysis Co. Ltd., Liaoning, China
| | - Xiaobin Wang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
6
|
Ma S, Gu X, Shen L, Chen Y, Qian C, Shen X, Ju S. CircHAS2 promotes the proliferation, migration, and invasion of gastric cancer cells by regulating PPM1E mediated by hsa-miR-944. Cell Death Dis 2021; 12:863. [PMID: 34556632 PMCID: PMC8460735 DOI: 10.1038/s41419-021-04158-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/19/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022]
Abstract
Gastric cancer (GC) is considered one of the most common gastrointestinal malignancies worldwide. Circular RNAs (circRNAs) are a new class of endogenous noncoding RNAs, which can be used as biomarkers and therapeutic targets for many tumors. However, the role and potential regulatory mechanisms of circRNAs in GC remain unclear. In this study, we demonstrated that a specific circRNA, circHAS2, was upregulated in GC tissues and cells and was positively correlated with tumor metastasis. In vitro experiments demonstrated that circHAS2 knockdown or the addition of hsa-miR-944 mimics inhibited the proliferation, migration, and invasion ability of GC cells and affected the epithelial-mesenchymal transition. In addition, hsa-miR-944 interacted with protein phosphatase, Mg2+/Mn2+-dependent 1E (PPM1E), and was found to be a target gene of circHAS2. The upregulation of PPM1E reversed the effects of circHAS2 knockout on GC cells. The circHAS2/hsa-miR-944/PPM1E axis may be involved in the progression of GC; thus, circHAS2 may be a potential biomarker and therapeutic target for GC.
Collapse
Affiliation(s)
- Shuo Ma
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
- Medical School of Nantong University, Nantong University, Nantong, 226001, Jiangsu, China
| | - Xinliang Gu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
- Medical School of Nantong University, Nantong University, Nantong, 226001, Jiangsu, China
| | - Lei Shen
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
- Medical School of Nantong University, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yinhao Chen
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Chen Qian
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Xianjuan Shen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
7
|
Splice and Dice: Intronic microRNAs, Splicing and Cancer. Biomedicines 2021; 9:biomedicines9091268. [PMID: 34572454 PMCID: PMC8465124 DOI: 10.3390/biomedicines9091268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/17/2022] Open
Abstract
Introns span only a quarter of the human genome, yet they host around 60% of all known microRNAs. Emerging evidence indicates the adaptive advantage of microRNAs residing within introns is attributed to their complex co-regulation with transcription and alternative splicing of their host genes. Intronic microRNAs are often co-expressed with their host genes, thereby providing functional synergism or antagonism that is exploited or decoupled in cancer. Additionally, intronic microRNA biogenesis and the alternative splicing of host transcript are co-regulated and intertwined. The importance of intronic microRNAs is under-recognized in relation to the pathogenesis of cancer.
Collapse
|
8
|
Saffari-Chaleshtori J, Asadi-Samani M, Rasouli M, Shafiee SM. Autophagy and Ubiquitination as Two Major Players in Colorectal Cancer: A Review on Recent Patents. Recent Pat Anticancer Drug Discov 2021; 15:143-153. [PMID: 32603286 DOI: 10.2174/1574892815666200630103626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND As one of the most commonly diagnosed cancers among men and women, Colorectal Cancer (CRC) leads to high rates of morbidity and mortality across the globe. Recent anti- CRC therapies are now targeting specific signaling pathways involved in colorectal carcinogenesis. Ubiquitin Proteasome System (UPS) and autophagy are two main protein quality control systems, which play major roles in the carcinogenesis of colorectal cancer. A balanced function of these two pathways is necessary for the regulation of cell proliferation and cell death. OBJECTIVE In this systematic review, we discuss the available evidence regarding the roles of autophagy and ubiquitination in progression and inhibition of CRC. METHODS The search terms "colorectal cancer" or "colon cancer" or "colorectal carcinoma" or "colon carcinoma" in combination with "ubiquitin proteasome" and "autophagy" were searched in PubMed, Web of Science, and Scopus databases, and also Google Patents (https://patents.google .com) from January 2000 to Feb 2020. RESULTS The most important factors involved in UPS and autophagy have been investigated. There are many important factors involved in UPS and autophagy but this systematic review shows the studies that have mostly focused on the role of ATG, 20s proteasome and mTOR in CRC, and the more important factors such as ATG8, FIP200, and TIGAR factors that are effective in the regulation of autophagy in CRC cells have not been yet investigated. CONCLUSION The most important factors involved in UPS and autophagy such as ATG, 20s proteasome and mTOR, ATG8, FIP200, and TIGAR can be considered in drug therapy for controlling or activating autophagy.
Collapse
Affiliation(s)
- Javad Saffari-Chaleshtori
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Majid Asadi-Samani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Maryam Rasouli
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sayed Mohammad Shafiee
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Liu C, Zhang W, Xing W, Li H, Si T, Mu H. RETRACTED: MicroRNA-498 disturbs the occurrence and aggression of colon cancer through targeting MDM2 to mediate PPARγ ubiquitination. Life Sci 2021; 277:119225. [PMID: 33617858 DOI: 10.1016/j.lfs.2021.119225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/30/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Concern was raised about the reliability of this article that shares several characteristics with other articles in the eyebrow family of publications, tabulated here (https://docs.google.com/spreadsheets/d/149EjFXVxpwkBXYJOnOHb6RhAqT4a2llhj9LM60MBffM/edit#gid=0). In addition, Fig. 5A appears to show a digital composition of xenografted tumors. The journal requested the corresponding author comment on these concerns and provide the raw data. However the authors were not able to satisfactorily fulfil this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Changfu Liu
- Department of Interventional Treatment, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Weihao Zhang
- Department of Interventional Treatment, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Wenge Xing
- Department of Interventional Treatment, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Huikai Li
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Department of Hepatobiliary Surgery, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Tongguo Si
- Department of Interventional Treatment, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Han Mu
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Department of Hepatobiliary Surgery, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; National Clinical Research Center for Cancer, Tianjin 300060, China.
| |
Collapse
|
10
|
Liebl MC, Hofmann TG. The Role of p53 Signaling in Colorectal Cancer. Cancers (Basel) 2021; 13:2125. [PMID: 33924934 PMCID: PMC8125348 DOI: 10.3390/cancers13092125] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/24/2022] Open
Abstract
The transcription factor p53 functions as a critical tumor suppressor by orchestrating a plethora of cellular responses such as DNA repair, cell cycle arrest, cellular senescence, cell death, cell differentiation, and metabolism. In unstressed cells, p53 levels are kept low due to its polyubiquitination by the E3 ubiquitin ligase MDM2. In response to various stress signals, including DNA damage and aberrant growth signals, the interaction between p53 and MDM2 is blocked and p53 becomes stabilized, allowing p53 to regulate a diverse set of cellular responses mainly through the transactivation of its target genes. The outcome of p53 activation is controlled by its dynamics, its interactions with other proteins, and post-translational modifications. Due to its involvement in several tumor-suppressing pathways, p53 function is frequently impaired in human cancers. In colorectal cancer (CRC), the TP53 gene is mutated in 43% of tumors, and the remaining tumors often have compromised p53 functioning because of alterations in the genes encoding proteins involved in p53 regulation, such as ATM (13%) or DNA-PKcs (11%). TP53 mutations in CRC are usually missense mutations that impair wild-type p53 function (loss-of-function) and that even might provide neo-morphic (gain-of-function) activities such as promoting cancer cell stemness, cell proliferation, invasion, and metastasis, thereby promoting cancer progression. Although the first compounds targeting p53 are in clinical trials, a better understanding of wild-type and mutant p53 functions will likely pave the way for novel CRC therapies.
Collapse
Affiliation(s)
- Magdalena C. Liebl
- Institute of Toxicology, University Medical Center Mainz, Johannes Gutenberg University, 55131 Mainz, Germany;
| | | |
Collapse
|
11
|
Zhu H, Lu Q, Lu Q, Shen X, Yu L. Matrine Regulates Proliferation, Apoptosis, Cell Cycle, Migration, and Invasion of Non-Small Cell Lung Cancer Cells Through the circFUT8/miR-944/YES1 Axis. Cancer Manag Res 2021; 13:3429-3442. [PMID: 33907466 PMCID: PMC8065209 DOI: 10.2147/cmar.s290966] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/25/2021] [Indexed: 01/20/2023] Open
Abstract
Background Non-small cell lung carcinoma (NSCLC) is the major histological subtype of cancer cases. In the present study, we investigated the association between Matrine, an active component of Chinese medicine, and circFUT8 in NSCLC cells. Methods The proliferation ability of NSCLC cells was assessed by MTT and colony-forming assays. Flow cytometry assay was performed to show the apoptosis and cell cycle distribution in NSCLC cells. The protein expression levels of Bcl-2, Cleaved Caspase-3 (C-Caspase3), and YES proto-oncogene 1 (YES1) were measured by Western blot assay. Migration and invasion of NSCLC cells were determined by transwell assay. The expression levels of circFUT8, miR-944 and YES1 were quantified by real-time quantitative polymerase chain reaction (RT-qPCR) assay. The interaction relationship between miR-944 and circFUT8 or YES1 was confirmed by dual-luciferase reporter assay. The anti-tumor role of Matrine in vivo was explored by a xenograft experiment. Results Matrine functioned as a carcinoma inhibitor by repressing proliferation, cell cycle process, migration, and invasion while inducing apoptosis in NSCLC cells. Importantly, overexpression of circFUT8 counteracted Matrine-induced effects on NSCLC cells. MiR-944, interacted with YES1, was a target of circFUT8. Under Matrine condition, overexpression of circFUT8 increased proliferation, migration, and invasion while inhibited apoptosis, which was abolished by the upregulation of miR-944. Whereas the silencing of YES1 counteracted miR-944 inhibitor-induced effects on NSCLC cells. Eventually, we also confirmed that Matrine impeded NSCLC tumor growth in vivo. Conclusion Matrine regulated proliferation, apoptosis, cell cycle, migration, and invasion of NSCLC cells through the circFUT8/miR-944/YES1 axis, which provided novel information for Matrine in NSCLC.
Collapse
Affiliation(s)
- Hailing Zhu
- Department of Emergency, Jingmen No. 1 People's Hospital, Jingmen, Hubei, People's Republic of China
| | - Quan Lu
- Department of Neurology, Jingmen No. 1 People's Hospital, Jingmen, Hubei, People's Republic of China
| | - Qing Lu
- Department of Respiratory, Jingmen No. 1 People's Hospital, Jingmen, Hubei, People's Republic of China
| | - Xuemin Shen
- Department of Oncology, Jingmen No. 1 People's Hospital, Jingmen, Hubei, People's Republic of China
| | - Liuyang Yu
- Department of Oncology, Jingmen No. 2 People's Hospital, Jingmen, Hubei, People's Republic of China
| |
Collapse
|
12
|
Tang J, Gao W, Liu G, Sheng W, Zhou J, Dong Q, Dong M. miR-944 Suppresses EGF-Induced EMT in Colorectal Cancer Cells by Directly Targeting GATA6. Onco Targets Ther 2021; 14:2311-2325. [PMID: 33833529 PMCID: PMC8020141 DOI: 10.2147/ott.s290567] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/14/2021] [Indexed: 12/14/2022] Open
Abstract
Background miR-944 belongs to the MicroRNAs family, as shown in our previous study, and is essential in the colorectal cancer (CRC) progression. It is negatively associated with invasion depth and lymph node status. Epithelial-mesenchymal transition (EMT) is essential in tumor invasion and metastasis. However, the relationship between miR-944 and EMT in CRC is unknown and should be further investigated. Methods Epithelial–mesenchymal transition (EMT) progression in CRC cell lines was detected with Cell morphology and Western blotting. CRC cell migration and invasion were examined using Transwell assays. Transcriptome and clinical data were obtained from The Cancer Genome Atlas (TCGA) database. The potential pathway of miR-944 and GATA6 were predicted using KEGG analysis. Colocalization was validated using immunofluorescence and Immunohistochemistry. Nuclear and Cytoplasmic Protein Extraction assays were conducted to determine the effects of miR-944 on Wnt/β-catenin signaling. Results We found that miR‑944 influences EGF-induced EMT malignant phenotype in vitro. KEGG analyses showed that miR-944 and GATA6 are associated with EMT related pathways, wnt signaling pathways. On the other hand, Western Blot analyses showed that miR-944 can regulate EMT and wnt-β-catenin pathway-related protein, including β-catenin, ZEB1, snail1 via GATA6 regulation. miR-944 also abrogates E-ca after EGF induction. Immunohistochemistry (IHC) and Immunofluorescence (IF) co-expression showed that GATA6 expression is positively associated with β-catenin and ZEB1. GATA6 silencing can reverse EMT malignant phenotype and alterations of related protein induced by miR-944. Quantitative polymerase chain reaction analysis results showed that miR-944 is negatively associated with the UICC stage (P= 0.02), lymph nodes (p=0.04), and liver metastasis (p=0.03). Moreover, patients with high miR-944 expression have better survival (p=0.045). We finally combined miR-944 and GATA6 and found that miR-944/GATA6 ratio could be a novel prognostic biomarker in the TCGA dataset and it is an independent risk prognosis factor (p=0.045). Conclusion Our results suggest that miR-944 suppresses the aggressive biological processes by directly repressing GATA6 expression and could be a potential candidate for therapeutic applications in CRC.
Collapse
Affiliation(s)
- JingTong Tang
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall Surgery, The First Hospital, China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
| | - Wei Gao
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall Surgery, The First Hospital, China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
| | - Gang Liu
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall Surgery, The First Hospital, China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
| | - WeiWei Sheng
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall Surgery, The First Hospital, China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
| | - JianPing Zhou
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall Surgery, The First Hospital, China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
| | - Qi Dong
- Department of General Surgery, The People's Hospital of China Medical University, Shenyang, People's Republic of China
| | - Ming Dong
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall Surgery, The First Hospital, China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
| |
Collapse
|
13
|
Xi L, Liu Q, Zhang W, Luo L, Song J, Liu R, Wei S, Wang Y. Circular RNA circCSPP1 knockdown attenuates doxorubicin resistance and suppresses tumor progression of colorectal cancer via miR-944/FZD7 axis. Cancer Cell Int 2021; 21:153. [PMID: 33663510 PMCID: PMC7934234 DOI: 10.1186/s12935-021-01855-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have been reported to play vital roles in colorectal cancer (CRC). However, only a few circRNAs have been experimentally validated and functionally described. In this research, we aimed to reveal the functional mechanism of circCSPP1 in CRC. METHODS 36 DOX sensitive and 36 resistant CRC cases participated in this study. The expression of circCSPP1, miR-944 and FZD7 were detected by quantitative real time polymerase chain reaction (qRT-PCR) and the protein levels of FZD7, MRP1, P-gp and LRP were detected by western blot. Cell proliferation, migration, invasion, and apoptosis were assessed by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay, transwell assay, or flow cytometry analysis, respectively. The interaction between miR-944 and circCSPP1 or frizzled-7 (FZD7) was predicted by Starbase 3.0 and verified by the dual luciferase reporter assay, RNA immunoprecipitation (RIP) assay and RNA pull down assay. Xenograft tumor assay was performed to examine the effect of circCSPP1 on tumor growth in vivo. RESULTS The expression of circCSPP1 and FZD7 was upregulated while miR-944 expression was downregulated in doxorubicin (DOX)-resistant CRC tissues and cells. CircCSPP1 knockdown significantly downregulated enhanced doxorubicin sensitivity, suppressed proliferation, migration, invasion, and induced apoptosis in DOX-resistant CRC cells. Interestingly, we found that circCSPP1 directly downregulated miR-944 expression and miR-944 decreased FZD7 level through targeting to 3' untranslated region (UTR) of FZD7. Furthermore, circCSPP1 mediated DOX-resistant CRC cell progression and doxorubicin sensitivity by regulating miR-944/FZD7 axis. Besides, circCSPP1 downregulation dramatically repressed CRC tumor growth in vivo. CONCLUSION Our data indicated that circCSPP1 knockdown inhibited DOX-resistant CRC cell growth and enhanced doxorubicin sensitivity by miR-944/FZD7 axis, providing a potential target for CRC therapy.
Collapse
Affiliation(s)
- Lanlan Xi
- Department of Surgery of Traditional Chinese Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Quanlin Liu
- Department of Colorectal Surgery, Zhengzhou Anorectal Hospital, No. 51, Longhai East Road, Zhengzhou, 450004, China.
| | - Wei Zhang
- Department of Colorectal Surgery, Zhengzhou Anorectal Hospital, No. 51, Longhai East Road, Zhengzhou, 450004, China
| | - Linshan Luo
- Department of Colorectal Surgery, Zhengzhou Anorectal Hospital, No. 51, Longhai East Road, Zhengzhou, 450004, China
| | - Jingfeng Song
- Department of Colorectal Surgery, Zhengzhou Anorectal Hospital, No. 51, Longhai East Road, Zhengzhou, 450004, China
| | - Ruitao Liu
- Department of Large Intestine, Zhengzhou Anorectal Hospital, Zhengzhou, China
| | - Shue Wei
- Department of Large Intestine, Zhengzhou Anorectal Hospital, Zhengzhou, China
| | - Yong Wang
- Department of Colorectal Surgery, Zhengzhou Anorectal Hospital, No. 51, Longhai East Road, Zhengzhou, 450004, China
| |
Collapse
|
14
|
Xu Z, Wu W, Yan H, Hu Y, He Q, Luo P. Regulation of p53 stability as a therapeutic strategy for cancer. Biochem Pharmacol 2021; 185:114407. [PMID: 33421376 DOI: 10.1016/j.bcp.2021.114407] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022]
Abstract
The tumor suppressor protein p53 participates in the control of key biological functions such as cell death, metabolic homeostasis and immune function, which are closely related to various diseases such as tumors, metabolic disorders, infection and neurodegeneration. The p53 gene is also mutated in approximately 50% of human cancer cells. Mutant p53 proteins escape from the ubiquitination-dependent degradation, gain oncogenic function and promote the carcinogenesis, malignant progression, metastasis and chemoresistance. Therefore, the stability of both wild type and mutant p53 needs to be precisely regulated to maintain normal functions and targeting the p53 stability is one of the therapeutic strategies against cancer. Here, we focus on compound-induced degradation of p53 by both the ubiquitination-dependent proteasome and autophagy-lysosome degradation pathways. We also review other posttranslational modifications which control the stability of p53 and the biological functions involved in these processes. This review provides the current theoretical basis for the regulation of p53 abundance and its possible applications in different diseases.
Collapse
Affiliation(s)
- Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Wentong Wu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuhuai Hu
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
15
|
Song Y, Liu Y, Pan S, Xie S, Wang ZW, Zhu X. Role of the COP1 protein in cancer development and therapy. Semin Cancer Biol 2020; 67:43-52. [PMID: 32027978 DOI: 10.1016/j.semcancer.2020.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/29/2020] [Accepted: 02/01/2020] [Indexed: 12/31/2022]
Abstract
COP1, an E3 ubiquitin ligase, has been demonstrated to play a vital role in the regulation of cell proliferation, apoptosis and DNA repair. Accumulated evidence has revealed that COP1 is involved in carcinogenesis via targeting its substrates, including p53, c-Jun, ETS, β-catenin, STAT3, MTA1, p27, 14-3-3σ, and C/EBPα, for ubiquitination and degradation. COP1 can play tumor suppressive and oncogenic roles in human malignancies, urging us to summarize the functions of COP1 in tumorigenesis. In this review, we describe the structure of COP1 and its known substrates. Moreover, we dissect the function of COP1 by physiological (mouse models), pathological (human tumor specimens) and biochemical (ubiquitin substrates) Evidence. Furthermore, we discuss COP1 as a potential therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Yizuo Song
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Shuya Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Shangdan Xie
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Zhi-Wei Wang
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
16
|
A circular RNA derived from DAB1 promotes cell proliferation and osteogenic differentiation of BMSCs via RBPJ/DAB1 axis. Cell Death Dis 2020; 11:372. [PMID: 32415085 PMCID: PMC7229165 DOI: 10.1038/s41419-020-2572-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023]
Abstract
Osteogenesis (OS) is a type of differentiation that is of great importance for bone homeostasis. Increasing studies suggest circular RNAs (circRNAs) as pivotal regulators in OS. This study proposed to investigate mechanism mediated by circRNAs in OS. Based on GEO data and qRT-PCR assay, we found that circ-DAB1 (has_circ_0113689) was significantly up-regulated during osteogenic differentiation in human BMSCs. Overexpressing circ-DAB1 proliferation and osteogenic differentiation of BMSCs, whereas silencing circ-DAB1 elicited opposite functions. Subsequently, recombination signal-binding protein for immunoglobulin kappa J region (RBPJ), an important transcription factor in NOTCH pathway, was found to interact with DAB1 promoter while not to combine with circ-DAB1. Interestingly, circ-DAB1 overexpression could result in the increasing binding between RBPJ and DAB adaptor protein 1 (DAB1) promoter. Overexpressing circ-DAB1 upregulated RBPJ in BMSCs to induce DAB1 level. Further, we uncovered that circ-DAB1 upregulated RBPJ through sequestering miR-1270 and miR-944. Restoration experiments demonstrated that knocking down either RBPJ or DAB1 partially recovered BMSC proliferation and osteogenic differentiation that was suppressed by circ-DAB1 overexpression. Conclusively, circ-DAB1 promotes cell proliferation and osteogenic differentiation of BMSCs via NOTCH/RBPJ pathway.
Collapse
|
17
|
Noorolyai S, Baghbani E, Aghebati Maleki L, Baghbanzadeh Kojabad A, Shanehbansdi D, Khaze Shahgoli V, Mokhtarzadeh A, Baradaran B. Restoration of miR-193a-5p and miR-146 a-5p Expression Induces G1 Arrest in Colorectal Cancer through Targeting of MDM2/p53. Adv Pharm Bull 2019; 10:130-134. [PMID: 32002372 PMCID: PMC6983996 DOI: 10.15171/apb.2020.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/04/2019] [Accepted: 08/13/2019] [Indexed: 12/18/2022] Open
Abstract
Purpose: Colorectal cancer (CRC) remains a universal and lethal cancer owing to metastatic and relapsing disease. Currently, the role of microRNAs has been checked in tumorigeneses. Numerous studies have revealed that between the tumor suppressor miRNAs, the reduced expression of miR-146a-5p and -193a-5p in several cancers including CRC tissues are related with tumor progression and poor prognosis of patients. The purpose of this study is to examine the role of miR-146 a-5p and -193 a-5p in CRC cell cycle progression.
Methods: The miR-193a-5p and -146 a-5p mimics were transfected into HT-29 CRC cells via jetPEI transfection reagent and their impact was assessed on p53, cyclin B, and NF-kB gene expression. The inhibitory effect of these miRNAs on cell cycle was assessed by flow cytometry. The consequence of miR-193a-5p and miR-146 a-5p on the protein expression level of Murine double minute 2 (MDM2) was assessed by western blotting.
Results: miR193a-5p and -146a-5p regulated the expression of MDM2 protein and p53, cyclin B, and NF-kB gene expression in CRC cells. Treatment of HT-29 cells with miRNA-146a-5p and -193a-5p induced G1 cell cycle arrest.
Conclusion: The findings of our study suggest that miR146a-5p and -193a-5p may act as a potential tumor suppressor by their influence on cell cycle progression in CRC cells. Thus, miRNA-146a-5p and -193a-5p restoration may be recommended as a potential therapeutic goal in the treatment of CRC patients.
Collapse
Affiliation(s)
- Saeed Noorolyai
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran. Introduction
| | | | | | | | | | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Zhao S, Li P, Wang P, Yang J, Song P, Zhang D, Zhou G. Nurr1 Promotes Lung Cancer Apoptosis Via Enhancing Mitochondrial Stress and p53-Drp1 Pathway. Open Life Sci 2019; 14:262-274. [PMID: 33817160 PMCID: PMC7874811 DOI: 10.1515/biol-2019-0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Mitochondrial homeostasis is vital for the progression of lung cancer. Nurr1 has been identified as a novel mediator of mitochondrial homeostasis in several types of cancers. The aim of our study was to investigate whether Nurr1 modulates the viability of A549 lung cancer cells by inducing mitochondrial dysfunction, with a focus on the p53-Drp1 signaling pathway. METHODS western blotting, ELISA and immunofluorescence assay was used to verify the alterations of cell death. siRNA was used to determine the role of p53-Drp1 pathway in lung cancer death. RESULTS Nurr1 was downregulated in A549 lung cancer cells compared to normal pulmonary epithelial cells. Interestingly, overexpression of Nurr1 reduced the viability of A549 lung cancer cells by activating apoptosis and mitochondrial stress. At the molecular level, we provide data to support the regulatory effects of Nurr1 on the p53-Drp1 signaling pathway. Blockade of the p53-Drp1 signaling pathway abolished the proapoptotic action of Nurr1 on A549 cells and sustained mitochondrial homeostasis. CONCLUSION Taken together, our results depict the tumor-suppressive role played by Nurr1 in A549 lung cancer in vitro and show that the anticancer effects of Nurr1 are executed via triggering of mitochondrial dysfunction and activation of the p53-Drp1 signaling pathway.
Collapse
Affiliation(s)
- Shu Zhao
- Department of Oncology, the Second Medical Center, Chinese PLA (People’s Liberation Army)General Hospital, Beijing, 100853,China
| | - Peng Li
- Department of Oncology, the Second Medical Center, Chinese PLA (People’s Liberation Army)General Hospital, Beijing, 100853,China
| | - Peng Wang
- Department of Oncology, the Second Medical Center, Chinese PLA (People’s Liberation Army)General Hospital, Beijing, 100853,China
| | - Jing Yang
- Department of Oncology, the Second Medical Center, Chinese PLA (People’s Liberation Army)General Hospital, Beijing, 100853,China
| | - Peng Song
- Department of Oncology, the Second Medical Center, Chinese PLA (People’s Liberation Army)General Hospital, Beijing, 100853,China
| | - Dong Zhang
- Department of Oncology, the Second Medical Center, Chinese PLA (People’s Liberation Army)General Hospital, Beijing, 100853,China
| | - Gang Zhou
- Department of Oncology, the Second Medical Center, Chinese PLA (People’s Liberation Army)General Hospital, Beijing, 100853,China
| |
Collapse
|