1
|
Fernandes Q. Precision meets repurposing: Innovative approaches in human papillomavirus and Epstein-Barr virus-driven cancer therapy. Cancer Lett 2024; 607:217318. [PMID: 39522710 DOI: 10.1016/j.canlet.2024.217318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Viral malignancies represent a distinct entity among cancers. Oncoviruses like the Human Papilloma Virus (HPV) and the Epstein Barr Virus (EBV) are highly potent inducers of oncogenic transformation leading to tumor development. HPV and EBV are known to be increasingly involved in the pathogenesis of various classes of cancers like cervical, head and neck, colorectal, breast, oral and anogenitial. Therapeutic vaccines directed at such oncoviruses, often fail to unleash the desired immune response against the tumor. This is largely due to the immunosuppressive microenvironment of the virus-induced tumors. Consequently, metronomic chemotherapies administered in conjunction with therapeutic viral vaccines have considerably enhanced the antitumor activity of these vaccines. Moreover, given the unique attributes of HPV and EBV-associated cancers, therapeutic agents directly targeting the oncoproteins of these viruses are still obscure. In this light, an increasing number of reports have evidenced the repurposing of drugs for therapeutic benefits in such cancers. This work delineates the significance and implications of metronomic chemotherapy and drug repurposing in HPV and EBV-associated cancers.
Collapse
Affiliation(s)
- Queenie Fernandes
- Translational Cancer Research Facility, National Centre for Cancer Care and Research, Hamad Medical Corporation P.O. Box 3050, Doha, Qatar; College of Medicine, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
2
|
Yuan J, Yang L, Li Z, Zhang H, Wang Q, Wang B, Chinnathambi A, Govindasamy C, Basappa S, Nagaraja O, Madegowda M, Beeraka NM, Nikolenko VN, Wang M, Wang G, Rangappa KS, Basappa B. Pyrimidine-triazole-tethered tert-butyl-piperazine-carboxylate suppresses breast cancer by targeting estrogen receptor signaling and β-catenin activation. IUBMB Life 2024; 76:1309-1324. [PMID: 39275910 DOI: 10.1002/iub.2913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/10/2024] [Indexed: 09/16/2024]
Abstract
Several chemotherapeutics against breast cancer are constrained by their adverse effects and chemoresistance. The development of novel chemotherapeutics to target metastatic breast cancer can bring effective clinical outcomes. Many breast cancer patients present with tumors that are positive for estrogen receptors (ERs), highlighting the importance of targeting the ER pathway in this particular subtype. Although selective estrogen receptor modulators (SERMs) are commonly used, their side effects and resistance issues necessitate the development of new ER-targeting agents. In this study, we report that a newly synthesized compound, TTP-5, a hybrid of pyrimidine, triazole, and tert-butyl-piperazine-carboxylate, effectively binds to estrogen receptor alpha (ERα) and suppresses breast cancer cell growth. We assessed the impact of TTP-5 on cell proliferation using MTT and colony formation assays and evaluated its effect on cell motility through wound healing and invasion assays. We further explored the mechanism of action of this novel compound by detecting protein expression changes using Western blotting. Molecular docking was used to confirm the interaction of TTP-5 with ERα. The results indicated that TTP-5 significantly reduced the proliferation of MCF-7 cells by blocking the ERα signaling pathway. Conversely, although it did not influence the growth of MDA-MB-231 cells, TTP-5 hindered their motility by modulating the expression of proteins associated with epithelial-mesenchymal transition (EMT), possibly via the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Jie Yuan
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Li Yang
- Department of Clinical Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhi Li
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Hua Zhang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Qun Wang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Bei Wang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Chandramohan Govindasamy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Shreeja Basappa
- Department of Chemistry, BITS-Pilani, Hyderabad Campus, Medchal, India
| | | | | | - Narasimha M Beeraka
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, India
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Vladimir N Nikolenko
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Minghua Wang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Geng Wang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | | | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore, India
| |
Collapse
|
3
|
Shi C, Bopp T, Lo HW, Tkaczuk K, Lin J. Bazedoxifene as a Potential Cancer Therapeutic Agent Targeting IL-6/GP130 Signaling. Curr Oncol 2024; 31:5737-5751. [PMID: 39451730 PMCID: PMC11505662 DOI: 10.3390/curroncol31100426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024] Open
Abstract
Targeting the interleukin-6 (IL-6)/glycoprotein 130 (GP130) signaling pathway holds significant promise for cancer therapy given its essential role in the survival and progression of various cancer types. We have identified that bazedoxifene (BZA), a Food and Drug Administration (FDA)-approved drug used for the prevention of postmenopausal osteoporosis, when combined with conjugated estrogens in Duavee, also has a novel function as an inhibitor of IL-6/GP130 interaction. BZA is currently under investigation for its potential anticancer therapeutic function through the inhibition of the IL-6/GP130 pathway. Numerous studies have highlighted the efficacy of BZA (monotherapy or combined with other chemotherapy drugs) in impeding progression across multiple cancers. In this review, we mainly focus on the anticancer activity of BZA and the underlying anticancer mechanism through inhibition of the IL-6/GP130 pathway, aiming to provide valuable insights for the design and execution of further research and the potential repositioning of BZA in oncological clinical trials.
Collapse
Affiliation(s)
- Changyou Shi
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (C.S.); (T.B.)
| | - Taylor Bopp
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (C.S.); (T.B.)
| | - Hui-Wen Lo
- Department of Neurosurgery, McGovern Medical School, University of Texas Health, Houston, TX 77030, USA;
| | - Katherine Tkaczuk
- Marlene and Stewart Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201, USA;
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (C.S.); (T.B.)
| |
Collapse
|
4
|
Huang Y, Lin J, Fu X, Li L, Fu S. Bazedoxifene Inhibits Cell Viability, Colony-Forming Activity, and Cell Migration in Human Non-Small Cell Lung Cancer Cells and Improves the Treatment Efficacy of Paclitaxel and Gemcitabine. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e13822. [PMID: 39152779 PMCID: PMC11329873 DOI: 10.1111/crj.13822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Bazedoxifene is a third-generation selective estrogen receptor modulator that inhibits the IL6/IL6R/GP130 signaling pathway by inhibiting IL6-induced homodimerization of GP130. Considering that the IL6/IL6R/GP130 signaling pathway is important in tumorigenesis and metastasis, bazedoxifene is thought to have an antitumor effect, which has been proven preliminarily in breast cancer and pancreatic cancer but has not yet been studied in non-small cell lung cancer (NSCLC). This study is aimed at evaluating the antitumor effect of bazedoxifene in NSCLC. METHODS A549 and H1299 NSCLC cell lines were employed and exposed to various concentrations of bazedoxifene, paclitaxel, gemcitabine, and their combinations for cell viability, colony formation, and wound healing assays to demonstrate the antitumor effect of bazedoxifene with or without paclitaxel or gemcitabine. RESULTS MTT cell viability, colony formation, and wound healing assays showed that bazedoxifene was capable of inhibiting cell viability, colony formation, and cell migration in a dose-dependent manner. In addition, bazedoxifene was capable of working with paclitaxel or gemcitabine synergistically to inhibit cell viability, colony formation, and cell migration. CONCLUSION This study demonstrated the potential antitumor effect of bazedoxifene and its ability to improve the treatment efficacy of paclitaxel and gemcitabine.
Collapse
Affiliation(s)
- Yaochen Huang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, School of MedicineUniversity of MarylandBaltimoreUSA
| | - Xiangning Fu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Lequn Li
- Laboratory of Thoracic Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Shenging Fu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
5
|
Kaur K, Verma H, Gangwar P, Jangid K, Dhiman M, Kumar V, Jaitak V. Design, synthesis, in silico and biological evaluation of new indole based oxadiazole derivatives targeting estrogen receptor alpha. Bioorg Chem 2024; 147:107341. [PMID: 38593531 DOI: 10.1016/j.bioorg.2024.107341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
A series of new indole-oxadiazole derivatives was designed and synthesized to develop potential anti-breast cancer agents. The compounds exhibited significant inhibitory activity with IC50 values ranging from 1.78 to 19.74 μM against ER-positive human breast cancer (BC) cell lines T-47D and MCF-7. Among them, compounds (5a, 5c, 5e-5h, 5j-5o) displayed superior activity against ER-α dominant (ratio of ER-α/ER-β is 9/1) T-47D cells compared to the standard drug bazedoxifene (IC50 = 12.78 ± 0.92 μM). Compounds 5c and 5o exhibited remarkable anti-proliferative activity with IC50 values of 3.24 ± 0.46 and 1.72 ± 1.67 μM against T-47D cells, respectively. Further, compound 5o manifested 1589-fold higher ER-α binding affinity (213.4 pM) relative to bazedoxifene (339.2 nM) in a competitive ER-α binding assay, while compound 5c showed a binding affinity of 446.6 nM. The Western blot analysis proved that both compounds influenced the ER-α protein's expression, impeding its subsequent transactivation and signalling pathway within T-47D cells. Additionally, a molecular docking study suggests that compounds 5c and 5o bind in such a fashion that induces conformational changes in the protein, culminating in their antagonistic effect. Also, pharmacokinetic profiles showed that all compounds have drug-like properties. Further, molecular dynamic (MD) simulations and density functional theory (DFT) analysis confirmed the stability, conformational behaviour, reactivity, and biological feasibility of compounds 5c and 5o. In conclusion, based on our findings, compounds 5c and 5o, which exhibit significant ER-α antagonistic activity, can act as potential lead compounds for developing anti-breast cancer agents.
Collapse
Affiliation(s)
- Kamalpreet Kaur
- Department of Pharmaceutical Sciences and Natural Products. Central University of Punjab, Ghudda, Bathinda (Pb) 151401, India
| | - Harkomal Verma
- Department of Zoology, Central University of Punjab, Ghudda, Bathinda (Pb) 151401, India
| | - Prabhakar Gangwar
- Department of Zoology, Central University of Punjab, Ghudda, Bathinda (Pb) 151401, India
| | - Kailash Jangid
- Department of Chemistry, Central University of Punjab, Ghudda, Bathinda (Pb) 151401, India
| | - Monisha Dhiman
- Department of Microbiology, Central University of Punjab, Ghudda, Bathinda (Pb) 151401, India
| | - Vinod Kumar
- Department of Chemistry, Central University of Punjab, Ghudda, Bathinda (Pb) 151401, India
| | - Vikas Jaitak
- Department of Pharmaceutical Sciences and Natural Products. Central University of Punjab, Ghudda, Bathinda (Pb) 151401, India.
| |
Collapse
|
6
|
Kaur K, Verma H, Gangwar P, Dhiman M, Jaitak V. Design, synthesis, in vitro and in silico evaluation of indole-based tetrazole derivatives as putative anti-breast cancer agents. RSC Med Chem 2024; 15:1329-1347. [PMID: 38665833 PMCID: PMC11042173 DOI: 10.1039/d3md00730h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/16/2024] [Indexed: 04/28/2024] Open
Abstract
A series of new indole-tetrazole derivatives were designed and synthesized to develop potential anti-breast cancer agents. The compounds exhibited in vitro anti-proliferative activity against ER-α positive T-47D (IC50 = 3.82-24.43 μM), MCF-7 (IC50 = 3.08-22.65 μM), and ER-α negative MDA-MB-231 (IC50 = 7.69-19.4 μM) human breast cancer cell lines. Compounds 5d and 5f displayed significant anti-proliferative activity compared to bazedoxifene (IC50 = 14.23 ± 0.68 μM), with IC50 values of 10.00 ± 0.59 and 3.83 ± 0.74 μM, respectively, against the ER-α dominant T-47D cell line. Also, both compounds showed non-significant cytotoxicity against normal cells HEK-293. Further, the ER-α binding affinity of 5d and 5f was assessed through a fluorescence polarization-based competitive binding assay, where 5d and 5f have shown significant binding with IC50 = 5.826 and 110.6 nM, respectively, as compared to the standard drug bazedoxifene (IC50 = 339.2 nM). Western blot analysis confirmed that compound 5d reduced ER-α protein expression in T-47D cells, hindering its transactivation and signalling pathways. Additionally, a molecular docking study suggests that compounds 5d and 5f bind in such a fashion that induces conformational changes in the protein, culminating in their antagonistic effect. Pharmacokinetic profiles showed that the compounds possessed drug-like properties. Furthermore, molecular dynamics simulation studies establish the dynamic stability and conformational behaviour of the ER-α protein and ligand complex of both compounds. Additionally, 5d and 5f ensure biological feasibility as per their DFT analysis through HOMO-LUMO energy gap analysis. In conclusion, compounds 5d and 5f, exhibiting significant ER-α antagonistic activity, can act as potential lead compounds for anti-breast cancer therapies.
Collapse
Affiliation(s)
- Kamalpreet Kaur
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda (Pb) 151401 India
| | - Harkomal Verma
- Department of Zoology, Central University of Punjab Ghudda Bathinda (Pb) 151401 India
| | - Prabhakar Gangwar
- Department of Zoology, Central University of Punjab Ghudda Bathinda (Pb) 151401 India
| | - Monisha Dhiman
- Department of Microbiology, Central University of Punjab Ghudda Bathinda (Pb) 151401 India
| | - Vikas Jaitak
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda (Pb) 151401 India
| |
Collapse
|
7
|
Xiang T, Liu Y, Xu S, Zhong W, Sha Z, Zhang J, Chen L, Li Y, Li W, Yan Z, Chen Z, Xu L. Construction of a novel amphiphilic peptide paclitaxel rod micelle: Demonstrating that the nano-delivery system shape can affect the cellular uptake efficiency of paclitaxel and improve the therapeutic efficacy for breast cancer. BIOMATERIALS ADVANCES 2023; 155:213673. [PMID: 39491929 DOI: 10.1016/j.bioadv.2023.213673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2024]
Abstract
Recent studies have shown that the morphology of nano-delivery systems has become a key factor affecting their anti-tumor effects. Although it has been demonstrated that rod-like nanoparticles are more easily absorbed by tumor cells, the application of rod-like nanoparticles is still limited by the lack of safe vector in vivo. In this study, a biocompatible amphiphilic peptide (IIQQQQ, I2Q4), was designed to form rod-like micelles. The key forces of the self-assembly mechanism were investigated. Driven by hydrogen bonds, the hydrophilic segment of the peptide formed a β-sheet structure, and the molecules accumulated and extended along the side chain direction to form a rod-like structure. Using paclitaxel (PTX) as the model drug, a PTX rod-like nano-drug delivery system, PTX@I2Q4, was constructed. PTX exists in a randomly coiled state in the hydrophobic cavity formed by the peptide. Compared to PTX and spherical PTX albumin nanoparticles, PTX@I2Q4 showed higher entry efficiency and better antitumor effects in vivo and in vitro. This was mainly because PTX@I2Q4 not only allowed more efficient entry into cells via macro-pinocytosis, but also significantly prolonged the t1/2 of PTX. The results confirmed the feasibility of regulating the morphology of nanoparticles to improve the efficacy of PTX and provide a reference for further research on the influence of the morphology of the nano-drug delivery system on the efficacy of antitumor effects.
Collapse
Affiliation(s)
- Tangyong Xiang
- College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210023, PR China
| | - Yu Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210023, PR China
| | - Shan Xu
- College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210023, PR China
| | - Weixi Zhong
- College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210023, PR China
| | - Zhengzhou Sha
- College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210023, PR China
| | - Jian Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210023, PR China
| | - Linwei Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210023, PR China
| | - Yarong Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210023, PR China
| | - Weidong Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210023, PR China
| | - Zheng Yan
- Jiangyin Hospital of Traditional Chinese Medicine, Jiangsu, Jiangyin, 214400, PR China.
| | - Zhipeng Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210023, PR China.
| | - Liu Xu
- College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210023, PR China.
| |
Collapse
|
8
|
Rasoolnezhad M, Safaralizadeh R, Hosseinpour Feizi MA, Banan-Khojasteh SM, Roshani Asl E, Lotfinejad P, Baradaran B. MiR-138-5p improves the chemosensitivity of MDA-MB-231 breast cancer cell line to paclitaxel. Mol Biol Rep 2023; 50:8407-8420. [PMID: 37620737 DOI: 10.1007/s11033-023-08711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Chemotherapy is a predominant strategy for breast cancer (BC) treatment and paclitaxel (PTX) has been known as a conventional chemotherapeutic drug. However, insensitivity of BC cells to PTX limits the anti-tumor effects of this agent. MicroRNAs are closely related to BC which are suggested as therapeutic factors in the combination therapy of BC. We examined the possible efficacy of miR-138-5p restoration in combination with PTX to impove BC treatment. METHODS The human breast cancer cell line MDA-MB-231 was transfected with miR-138-5p mimics and treated with PTX, in a combined or separate manner. The MTT assay was accomplished to determine inhibitory doses of PTX. Annexin V/PI assay and DAPI staining were applied to evaluate apoptosis. Flow cytometry was applied to determine cells arrested in different phases of the cell-cycle. Expression levels of molecular factors involved in cell migration, proliferation, apoptosis, and cell cycle were determined via western blotting and qRT-PCR. RESULTS MiR-138-5p combined with PTX suppressed cell migration via modulating MMP2, E-cadherin, and vimentin and sustained colony formation and proliferation by downregulation of the PI3K/AKT pathway. qRT-PCR showed that miR-138-5p increases BC chemosensitivity to PTX by regulating the apoptosis factors, including Bcl-2, Bax, Caspase 3, and Caspase 9. Moreover, miR-138-5p restoration and paclitaxel therapy combined arrest the cells in the sub-G1 and G1 phases of cell cycle by regulating p21, CCND1, and CDK4. CONCLUSIONS Restored miR-138-5p intensified the chemosensitivity of MDA-MB-231 cell line to PTX, and the combination of miR-138-5p with PTX might represent a novel approach in BC treatment.
Collapse
Affiliation(s)
- Mina Rasoolnezhad
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | | | | | - Elmira Roshani Asl
- Social Determinants of Health Research Center, Saveh University of Medical Sciences, Saveh, Iran
| | - Parisa Lotfinejad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Amiri Souri E, Chenoweth A, Karagiannis SN, Tsoka S. Drug repurposing and prediction of multiple interaction types via graph embedding. BMC Bioinformatics 2023; 24:202. [PMID: 37193964 DOI: 10.1186/s12859-023-05317-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/30/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Finding drugs that can interact with a specific target to induce a desired therapeutic outcome is key deliverable in drug discovery for targeted treatment. Therefore, both identifying new drug-target links, as well as delineating the type of drug interaction, are important in drug repurposing studies. RESULTS A computational drug repurposing approach was proposed to predict novel drug-target interactions (DTIs), as well as to predict the type of interaction induced. The methodology is based on mining a heterogeneous graph that integrates drug-drug and protein-protein similarity networks, together with verified drug-disease and protein-disease associations. In order to extract appropriate features, the three-layer heterogeneous graph was mapped to low dimensional vectors using node embedding principles. The DTI prediction problem was formulated as a multi-label, multi-class classification task, aiming to determine drug modes of action. DTIs were defined by concatenating pairs of drug and target vectors extracted from graph embedding, which were used as input to classification via gradient boosted trees, where a model is trained to predict the type of interaction. After validating the prediction ability of DT2Vec+, a comprehensive analysis of all unknown DTIs was conducted to predict the degree and type of interaction. Finally, the model was applied to propose potential approved drugs to target cancer-specific biomarkers. CONCLUSION DT2Vec+ showed promising results in predicting type of DTI, which was achieved via integrating and mapping triplet drug-target-disease association graphs into low-dimensional dense vectors. To our knowledge, this is the first approach that addresses prediction between drugs and targets across six interaction types.
Collapse
Affiliation(s)
- E Amiri Souri
- Department of Informatics, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, Bush House, London, WC2B 4BG, UK
| | - A Chenoweth
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, Guy's Hospital, King's College London, London, SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, Guy's Cancer Centre, King's College London, London, SE1 9RT, UK
| | - S N Karagiannis
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, Guy's Hospital, King's College London, London, SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, Guy's Cancer Centre, King's College London, London, SE1 9RT, UK
| | - S Tsoka
- Department of Informatics, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, Bush House, London, WC2B 4BG, UK.
| |
Collapse
|
10
|
Peng C, Ye H, li Z, Duan X, Yang W, Yi Z. Multi-omics characterization of a scoring system to quantify hypoxia patterns in patients with head and neck squamous cell carcinoma. J Transl Med 2023; 21:15. [PMID: 36627705 PMCID: PMC9830846 DOI: 10.1186/s12967-022-03869-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The 5-year survival rate of patients with head and neck squamous cell carcinoma (HNSCC) remains < 50%. Hypoxia patterns are a hallmark of HNSCC that are associated with its occurrence and progression. However, the precise role of hypoxia during HNSCC, such as the relationship between hypoxia, tumor immune landscape and cell communication orchestration remains largely unknown. The current study integrated data from bulk and single-cell RNA sequencing analyses to define the relationship between hypoxia and HNSCC. METHODS A scoring system named the hypoxia score (HS) was constructed based on hypoxia-related genes (HRGs) expression. The predictive value of HS response for patient outcomes and different treatments was evaluated. Single-cell datasets and cell communication were utilized to rule out cell populations which hypoxia targeted on. RESULTS The survival outcomes, immune/Estimate scores, responses to targeted inhibitors, and chemotherapeutic, and immunotherapy responses were distinct between a high HS group and a low HS group (all P < 0.05). Single-cell datasets showed different distributions of HS in immune cell populations (P < 0.05). Furthermore, HLA-DPA1/CD4 axis was identified as a unique interaction between CD4 + T Conv and pDC cells. CONCLUSIONS Altogether, the quantification for hypoxia patterns is a potential biomarker for prognosis, individualized chemotherapeutic and immunotherapy strategies. The portrait of cell communication characteristics over the HNSCC ecosystem enhances the understanding of hypoxia patterns in HNSCC.
Collapse
Affiliation(s)
- Cong Peng
- grid.459540.90000 0004 1791 4503Department of Otolaryngology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Huiping Ye
- grid.459540.90000 0004 1791 4503Department of Otolaryngology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Zhengyang li
- grid.459540.90000 0004 1791 4503Department of Otolaryngology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Xiaofeng Duan
- grid.459540.90000 0004 1791 4503Department of Oral and Maxillofacial Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Wen Yang
- grid.452244.1Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhuguang Yi
- grid.459540.90000 0004 1791 4503Department of Otolaryngology, Guizhou Provincial People’s Hospital, Guiyang, China
| |
Collapse
|
11
|
Beeraka NM, Zhang J, Zhao D, Liu J, A U C, Vikram Pr H, Shivaprakash P, Bannimath N, Manogaran P, Sinelnikov MY, Bannimath G, Fan R. Combinatorial Implications of Nrf2 Inhibitors with FN3K Inhibitor: In vitro Breast Cancer Study. Curr Pharm Des 2023; 29:2408-2425. [PMID: 37861038 DOI: 10.2174/0113816128261466231011114600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Platinum derivatives are chemotherapeutic agents preferred for the treatment of cancers including breast cancer. Oxaliplatin is an anticancer drug that is in phase II studies to treat metastatic breast cancer. However, its usage is constrained by chemoresistance and dose-related side effects. OBJECTIVE The objective of this study is to examine the combinatorial efficacy of brusatol, an Nrf2 blocker, with oxaliplatin (a proven FN3K blocker in our study) in mitigating breast cancer growth in vitro. METHODS We performed cytotoxicity assays, combination index (CI) analysis, colony formation assays, apoptosis assays, and Western blotting. RESULTS Results of our study described the chemosensitizing efficacy of brusatol in combination with lowdose oxaliplatin against breast cancer through synergistic effects in both BT-474 and T47D cells. A significant mitigation in the migration rate of these cancer cells was observed with the combination regimen, which is equivalent to the IC-50 dose of oxaliplatin (125 μM). Furthermore, ROS-mediated and apoptotic modes of cell death were observed with a combinatorial regimen. Colony formation of breast cancer cell lines was mitigated with a combinatorial regimen of bursatol and oxaliplatin than the individual treatment regimen. FN3K expression downregulated with oxaliplatin in T47D cells. The mitigation of FN3K protein expression with a combination regimen was not observed but the Nrf2 downstream antioxidant signaling proteins were significantly downregulated with a combination regimen similar to individual drug regimens. CONCLUSION Our study concluded the combination efficacy of phytochemicals like brusatol in combination with low-dose oxaliplatin (FN3K blocker), which could enhance the chemosensitizing effect in breast cancer and minimize the overall dose requirement of oxaliplatin.
Collapse
Affiliation(s)
- Narasimha M Beeraka
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou 450052, China
- Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., Moscow 119991, Russia
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Jin Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | - Di Zhao
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Junqi Liu
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou 450052, China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou 450052, China
| | - Chinnappa A U
- Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Hemanth Vikram Pr
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
- Xenone Healthcare Pvt. Ltd, #318, Third Floor, US Complex, Jasola, New Delhi 110076, India
| | - Priyanka Shivaprakash
- Faculty of Life Sciences, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Namitha Bannimath
- Department of Pharmacology and Toxicology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Prasath Manogaran
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Mikhail Y Sinelnikov
- Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., Moscow 119991, Russia
- Sinelab Biomedical Research Center, Minnesota 55905, USA
| | - Gurupadayya Bannimath
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Ruitai Fan
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou 450052, China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou 450052, China
| |
Collapse
|
12
|
Wang G, Tian X, Liu L, Dong J. Astaxanthin Induces Apoptosis in Human Osteosarcoma MG-63 Cells. Folia Biol (Praha) 2023; 69:186-193. [PMID: 38583180 DOI: 10.14712/fb2023069050186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
We explored the mechanism of human osteosarcoma MG-63 cell apoptosis induced by asta-xanthin. The MTT assay was used to detect the effect of astaxanthin on cell viability. Morphological changes associated with apoptosis were observed after DAPI staining. Early and late stages of apoptosis were detected by flow cytometry with annexin V-FITC/PI staining. Activation of caspases-8, -9 and -3 was detected by enzyme activity in vitro. Changes in the mitochondrial membrane potential were detected by MitoCapture staining. Western blot was used to detect the cleavage of PARP, which is a caspase-3 substrate, the release of cytochrome c and Smac into the cytosol, the translocation of pro-apoptotic proteins Bax and Bak, and the expression of mitochondrial pathway-related proteins. The translocation of Bax was also detected by immunofluorescence assay. Astaxanthin significantly inhibited the viability of human osteosarcoma MG-63 cells with an IC50 value of 12.36 μg/ml. The DAPI-stained cells showed characteristic apoptotic morphological changes - cell shrinkage, cell membrane blebbing, nuclear condensation, and apoptotic body formation. Cytochrome c and Smac were released from mitochondria to the cytosol. Pro-apoptotic proteins Bax and Bak were rapidly translocated to mitochondria after six hours of astaxanthin action. Caspases-9 and -3 were activated and PARP was cleaved. The expression of anti-apoptotic proteins Bcl-2, Bcl-xL and XIAP was significantly decreased. Astaxanthin induced human osteosarcoma MG-63 cell apoptosis through the mitochondria-mediated endogenous apoptosis pathway.
Collapse
Affiliation(s)
- Guangyu Wang
- Tianjin Hospital, Trauma Upper Limb 2 Department, Tianjin, China
| | - Xu Tian
- Tianjin Hospital, Trauma Upper Limb 2 Department, Tianjin, China
| | - Lintao Liu
- Tianjin Hospital, Trauma Upper Limb 2 Department, Tianjin, China
| | - Jingming Dong
- Tianjin Hospital, Trauma Upper Limb 2 Department, Tianjin, China.
| |
Collapse
|
13
|
Gong P, Zhao K, Liu X, Li C, Liu B, Hu L, Shen D, Wang D, Liu Z. Fluorescent COFs with a Highly Conjugated Structure for Combined Starvation and Gas Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46201-46211. [PMID: 36208197 DOI: 10.1021/acsami.2c11423] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Covalent organic frameworks (COFs) show great potential in biomedicine, but the synthesis of fluorescent ones with a highly conjugated structure in mild conditions remains a challenge. Herein, we reported a facile method to synthesize a nanosized, highly conjugated, and N-enriched COF material with bright fluorescence and further integrated it as a novel nanoplatform for efficient cancer starvation/gas therapy. High surface area and a porous structure endowed COFs with large loading capacity for both glucose oxidase and l-arginine, while conjugated monomer and N-doping guaranteed bright fluorescence and relatively strong interactions between loaded cargos. Well-designed size allowed easy cell uptake of drug-loaded COFs, which finally resulted in a highly efficient starvation therapy by consuming large amounts of glucose in cancer cells. H2O2, the byproduct during glucose consumption, was made full use of oxidizing l-arginine to generate toxic NO. This constructed combined starvation and gas therapy and exhibited emerging antimigration performance. Both in vitro and in vivo experiments confirmed an excellent cancer therapeutic effect than a single therapy, and the novel therapeutic platform showed good biocompatibility. Detailed mechanism study demonstrated that cell apoptosis and lysosomal damage contributed most to the synergistic treatment. Our study developed a new strategy to synthesize highly conjugated COFs with fluorescence and reported the potential applications in cancer therapy.
Collapse
Affiliation(s)
- Peiwei Gong
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Kai Zhao
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Xicheng Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Cheng Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Bei Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Liyun Hu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Duyi Shen
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Dandan Wang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Zhe Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| |
Collapse
|
14
|
Epimedokoreanin B inhibits the growth of lung cancer cells through endoplasmic reticulum stress-mediated paraptosis accompanied by autophagosome accumulation. Chem Biol Interact 2022; 366:110125. [PMID: 36027945 DOI: 10.1016/j.cbi.2022.110125] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022]
Abstract
Epimedokoreanin B (EKB) is a prenylated flavonoid isolated from Epimedium koreanum. In this article, we described the anti-cancerous effects of EKB and its underlying mechanism in human non-small cell lung cancer (NSCLC) A549 and NCI-H292 cells. EKB treatment inhibited cell proliferation and migration accompanied by cytoplasmic vacuolation in both cell lines. The cell death induced by EKB lacked the features of apoptosis like chromatin condensation, phosphatidyl serine exposure and caspase cleavage. The vacuoles stimulated by EKB predominantly derived from endoplasmic reticulum (ER) and mitochondria dilation, which are the characteristics of paraptosis. Down-regulation of Alix and up-regulation of ER stress-related proteins after EKB treatment further supported the occurrence of paraptosis. ER stress inhibitor 4-phenylbutyric acid (4-PBA) and protein synthesis inhibitor cycloheximide (CHX) treatment antagonized the vacuoles formation as well as cell death induced by EKB, indicating that ER stress was involved in EKB induced paraptosis. In addition, autophagosome accumulation accompanied with autophagy flux blocking was observed in EKB treated cells, this was consistent with the occurrence of ER stress. Collectively, EKB was demonstrated as a paraptosis-like cell death inducer in A549 and NCI-H292 cells. The inhibitory effect of EKB on lung cancer cell proliferation was further demonstrated in a zebrafish xenograft model. These findings raise the possibility that paraptosis inducers may be considered as alternative choices for lung cancer therapy.
Collapse
|
15
|
Gp130-Mediated STAT3 Activation Contributes to the Aggressiveness of Pancreatic Cancer through H19 Long Non-Coding RNA Expression. Cancers (Basel) 2022; 14:cancers14092055. [PMID: 35565185 PMCID: PMC9100112 DOI: 10.3390/cancers14092055] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The signal transducer and activator of transcription 3 (STAT3) activation correlate with the aggressiveness of pancreatic ductal adenocarcinoma (PDAC). We demonstrated that the autocrine/paracrine interleukin-6 (IL-6) or leukemia inhibitory factor (LIF)/glycoprotein 130 (gp130)/STAT3 pathway contributes to the maintenance of stemness features and membrane-type 1 matrix metalloproteinase (MT1-MMP) expression, and modulates transforming growth factor (TGF)-β1/Smad signaling-mediated epithelial-mesenchymal transition (EMT) and invasion through regulation of TGFβ-RII expression in PDAC cancer stem cell (CSC)-like cells. Furthermore, we demonstrated that p-STAT3 acts through the IL-6 or LIF/gp130/STAT3 pathway to access the active promoter region of metastasis-related long non-coding RNA H19 and contribute to its transcription in CSC-like cells. Therefore, the autocrine/paracrine IL-6 or LIF/gp130/STAT3 pathway in PDAC CSC-like cells exhibiting H19 expression is considered to be involved in the aggressiveness of PDAC, and inhibition of the gp130/STAT3 pathway is a promising strategy to target CSCs for the elimination of PDAC (146/150). Abstract Signaling pathways involving signal transducer and activator of transcription 3 (STAT3) play key roles in the aggressiveness of pancreatic ductal adenocarcinoma (PDAC), including their tumorigenesis, invasion, and metastasis. Cancer stem cells (CSCs) have been correlated with PDAC aggressiveness, and activation of STAT3 is involved in the regulation of CSC properties. Here, we investigated the involvement of interleukin-6 (IL-6) or the leukemia inhibitory factor (LIF)/glycoprotein 130 (gp130)/STAT3 pathway and their role in pancreatic CSCs. In PDAC CSC-like cells formed by culturing on a low attachment plate, autocrine/paracrine IL-6 or LIF contributes to gp130/STAT3 pathway activation. Using a gp130 inhibitor, we determined that the gp130/STAT3 pathway contributes to the maintenance of stemness features, the expression of membrane-type 1 matrix metalloproteinase (MT1-MMP), and the invasion of PDAC CSC-like cells. The gp130/STAT3 pathway also modulates the transforming growth factor (TGF)-β1/Smad pathway required for epithelial-mesenchymal transition induction through regulation of TGFβ-RII expression in PDAC CSC-like cells. Furthermore, chromatin immunoprecipitation assays revealed that p-STAT3 can access the active promoter region of H19 to influence this metastasis-related long non-coding RNA and contribute to its transcription in PDAC CSC-like cells. Therefore, the autocrine/paracrine IL-6 or LIF/gp130/STAT3 pathway in PDAC CSC-like cells may eventually facilitate invasion and metastasis, two hallmarks of malignancy. We propose that inhibition of the gp130/STAT3 pathway provides a promising strategy for targeting CSCs for the treatment of PDAC.
Collapse
|
16
|
Park SA, Kim LK, Park HM, Kim HJ, Heo TH. Inhibition of GP130/STAT3 and EMT by combined bazedoxifene and paclitaxel treatment in ovarian cancer. Oncol Rep 2022; 47:52. [PMID: 35029286 PMCID: PMC8771159 DOI: 10.3892/or.2022.8263] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023] Open
Abstract
The interleukin 6 (IL‑6)/glycoprotein 130 (GP130)/signal transducer and activator of transcription 3 (STAT3) signalling pathway, with GP130 as an intermediate membrane receptor, is involved in the survival, metastasis, and resistance of ovarian cancer. Bazedoxifene, an FDA‑approved drug, is an inhibitor of GP130 and a selective estrogen modulator (SERM). We studied the mechanism of the combination therapy of bazedoxifene and paclitaxel in inhibiting the IL‑6‑mediated GP130/STAT3 signaling pathway in ovarian cancer. Surface plasmon resonance (SPR) was used to assess the binding of bazedoxifene to GP130. Migration, invasion, and apoptosis of ovarian cancer cells were assessed using bazedoxifene and paclitaxel. In addition, we determined the effects of bazedoxifene and paclitaxel alone or in combination on the GP130/STAT3 pathway and epithelial‑mesenchymal transition (EMT). The results revealed that the combination of bazedoxifene and paclitaxel suppressed cell viability, migration, and invasion in the ovarian cancer cells. In addition, the combination treatment increased apoptosis. Furthermore, bazedoxifene combined with paclitaxel inhibited the growth of ovarian cancer cells in a xenograft tumour model. This combination reduced STAT3 phosphorylation and suppressed gene expression and EMT. In conclusion, inhibition of GP130/STAT3 signalling and EMT via a combination of bazedoxifene and paclitaxel could be used as a therapeutic strategy by which to overcome ovarian cancer.
Collapse
Affiliation(s)
- Sun-Ae Park
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences and BK21 FOUR Team for Advanced Program for Smart Pharma Leaders, College of Pharmacy, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Lee Kyung Kim
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences and BK21 FOUR Team for Advanced Program for Smart Pharma Leaders, College of Pharmacy, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Hye Min Park
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences and BK21 FOUR Team for Advanced Program for Smart Pharma Leaders, College of Pharmacy, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Hee Jung Kim
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences and BK21 FOUR Team for Advanced Program for Smart Pharma Leaders, College of Pharmacy, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Tae-Hwe Heo
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences and BK21 FOUR Team for Advanced Program for Smart Pharma Leaders, College of Pharmacy, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| |
Collapse
|
17
|
He SF, Liao JX, Huang MY, Zhang YQ, Zou YM, Wu CL, Lin WY, Chen JX, Sun J. Rhenium-guanidine complex as photosensitizer: trigger HeLa cell apoptosis through death receptor-mediated, mitochondria-mediated and cell cycle arrest pathways. Metallomics 2022; 14:6527583. [PMID: 35150263 DOI: 10.1093/mtomcs/mfac008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/27/2022] [Indexed: 11/12/2022]
Abstract
During the last decades, growing evidence indicates that the photodynamic antitumor activity of transition metal complexes, and Re(I) compounds are potential candidates for photodynamic therapy (PDT). This study reports the synthesis, characterization, and anti-tumor activity of three new Re(I)-guadinium complexes. Cytotoxicity tests reveal that complex Re1 increased cytotoxicity by 145-fold from IC50 > 180 μM in the dark to 1.3 ± 0.7 μM following 10 min of light irradiation (425 nm) in HeLa cells. Further, the mechanism by which Re1 induces apoptosis in the presence or absence of light irradiation was investigated, and results indicate that cell death was caused through different pathways. Upon irradiation, Re1 first accumulates on the cell membrane and interacts with death receptors to activate the extrinsic death receptor-mediated signaling pathway, then is transported into the cell cytoplasm. Most of the intracellular Re1 locates within mitochondria, improving the ROS level, and decreasing MMP and ATP levels, and inducing the activation of caspase-9 and, thus, apoptosis. Subsequently, the residual Re1 can translocate into the cell nucleus, and activates the p53 pathway, causing cell-cycle arrest and eventually cell death.
Collapse
Affiliation(s)
- Shu-Fen He
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China.,Department of Pharmacy, Dongguan Peaple's Hospital, Dongguan, 523059, China
| | - Jia-Xin Liao
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Min-Ying Huang
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Yu-Qing Zhang
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Yi-Min Zou
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Ci-Ling Wu
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Wen-Yuan Lin
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Jia-Xi Chen
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Jing Sun
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| |
Collapse
|
18
|
STAT3 Signaling in Breast Cancer: Multicellular Actions and Therapeutic Potential. Cancers (Basel) 2022; 14:cancers14020429. [PMID: 35053592 PMCID: PMC8773745 DOI: 10.3390/cancers14020429] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Many signaling pathways are overactive in breast cancer, and among them is the STAT3 signaling pathway. STAT3 is activated by secreted factors within the breast tumor, many of which are elevated and correlate to advanced disease and poor survival outcomes. This review examines how STAT3 signaling is activated in breast cancer by the proinflammatory, gp130 cytokines, interleukins 6 and 11. We evaluate how this signaling cascade functions in the various cells of the tumor microenvironment to drive disease progression and metastasis. We discuss how our understanding of these processes may lead to the development of novel therapeutics to tackle advanced disease. Abstract Interleukin (IL)-6 family cytokines, such as IL-6 and IL-11, are defined by the shared use of the gp130 receptor for the downstream activation of STAT3 signaling and the activation of genes which contribute to the “hallmarks of cancer”, including proliferation, survival, invasion and metastasis. Increased expression of these cytokines, or the ligand-specific receptors IL-6R and IL-11RA, in breast tumors positively correlate to disease progression and poorer patient outcome. In this review, we examine evidence from pre-clinical studies that correlate enhanced IL-6 and IL-11 mediated gp130/STAT3 signaling to the progression of breast cancer. Key processes by which the IL-6 family cytokines contribute to the heterogeneous nature of breast cancer, immune evasion and metastatic potential, are discussed. We examine the latest research into the therapeutic targeting of IL-6 family cytokines that inhibit STAT3 transcriptional activity as a potential breast cancer treatment, including current clinical trials. The importance of the IL-6 family of cytokines in cellular processes that promote the development and progression of breast cancer warrants further understanding of the molecular basis for its actions to help guide the development of future therapeutic targets.
Collapse
|
19
|
Gao C, Si X, Chi L, Wang H, Dai H, Liu L, Wang Z, Zhang Y, Wang T, Zhou Y, Zheng J, Ke Y, Liu H, Zhang Q. Synthesis and Antiproliferative Activity of 2,4,5,6-Tetrasubstituted Pyrimidine Derivatives Containing Anisole. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202201048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Chao G, Yutong Z, Lingling C, Hao W, Jiajie M, Mengxin B, Honglin D, Xiaojie S, Limin L, Yang Z, Jiaxin Z, Yu K, Hongmin L, Qiurong Z. Synthesis and Antiproliferative Activity Evaluation of Novel 2,4,6-Trisubstituted Pyrimidine Derivatives. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202205048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Xu J, Zhang S, Wu T, Fang X, Zhao L. Discovery of TGFBR1 (ALK5) as a potential drug target of quercetin glycoside derivatives (QGDs) by reverse molecular docking and molecular dynamics simulation. Biophys Chem 2021; 281:106731. [PMID: 34864228 DOI: 10.1016/j.bpc.2021.106731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/25/2022]
Abstract
Quercetin glycoside derivatives (QGDs) are a class of common compounds with a wide range of biological activities, such as antitumor activities. However, their molecular targets associated with biological activities have not been investigated. In this study, four common QGDs with mutual bioconversion were selected, and studied in the large-scale reverse docking experiments. Network pharmacology analysis showed that most of the four QGDs can bind several potential protein targets that were closely related to breast cancer disease. Among them, a druggable protein, transforming growth factor beta receptor I (TGFBR1/ALK5) was screened via high docking scores for the four QGDs. This protein has been proven to be an important target for the treatment of breast cancer by regulating the proliferation and migration of cancer cells in the past. Subsequently, the molecular dynamics (MD) simulation and MM/GBSA calculation demonstrated that all QGDs could thermodynamically bind with TGFBR1, indicating that TGFBR1 might be one of the potential protein targets of QGDs. Finally, the cytotoxicity test and wound-healing migration assay displayed that isoquercetin, which can perform best in MD experiment, might be a promising agent in the treatment of breast cancer metastasis.
Collapse
Affiliation(s)
- Jiahui Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Shanshan Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Tao Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Xianying Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Linguo Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China.
| |
Collapse
|
22
|
Das A, Agarwal P, Jain GK, Aggarwal G, Lather V, Pandita D. Repurposing drugs as novel triple negative breast cancer therapeutics. Anticancer Agents Med Chem 2021; 22:515-550. [PMID: 34674627 DOI: 10.2174/1871520621666211021143255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/23/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Among all the types of breast cancer (BC), triple negative breast cancer (TNBC) is the most aggressive form having high metastasis and recurrence rate with limited treatment options. Conventional treatments such as chemotherapy and radiotherapy have lots of toxic side effects and also no FDA approved therapies are available till now. Repurposing of old clinically approved drugs towards various targets of TNBC is the new approach with lesser side effects and also leads to successful inexpensive drug development with less time consuming. Medicinal plants containg various phytoconstituents (flavonoids, alkaloids, phenols, essential oils, tanins, glycosides, lactones) plays very crucial role in combating various types of diseases and used in drug development process because of having lesser side effects. OBJECTIVE The present review focuses in summarization of various categories of repurposed drugs against multitarget of TNBC and also summarizes the phytochemical categories that targets TNBC singly or in combination with synthetic old drugs. METHODS Literature information was collected from various databases such as Pubmed, Web of Science, Scopus and Medline to understand and clarify the role and mechanism of repurposed synthetic drugs and phytoconstituents aginst TNBC by using keywords like "breast cancer", "repurposed drugs", "TNBC" and "phytoconstituents". RESULTS Various repurposed drugs and phytochemicals targeting different signaling pathways that exerts their cytotoxic activities on TNBC cells ultimately leads to apoptosis of cells and also lowers the recurrence rate and stops the metastasis process. CONCLUSION Inhibitory effects seen in different levels, which provides information and evidences to researchers towards drug developments process and thus further more investigations and researches need to be taken to get the better therapeutic treatment options against TNBC.
Collapse
Affiliation(s)
- Amiya Das
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, 201313. India
| | - Pallavi Agarwal
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, 201313. India
| | - Gaurav Kumar Jain
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences & Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, Govt. of NCT of Delhi, New Delhi, 110017. India
| | - Geeta Aggarwal
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences & Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, Govt. of NCT of Delhi, New Delhi, 110017. India
| | - Viney Lather
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sector-125, Noida, 201313. India
| | - Deepti Pandita
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences & Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, Govt. of NCT of Delhi, New Delhi, 110017. India
| |
Collapse
|
23
|
7-Epitaxol Induces Apoptosis and Autophagy in Head and Neck Squamous Cell Carcinoma through Inhibition of the ERK Pathway. Cells 2021; 10:cells10102633. [PMID: 34685613 PMCID: PMC8534141 DOI: 10.3390/cells10102633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 01/10/2023] Open
Abstract
As the main derivative of paclitaxel, 7-Epitaxol is known to a have higher stability and cytotoxicity. However, the anticancer effect of 7-Epitaxol is still unclear. The purpose of this study was to explore the anticancer effects of 7-Epitaxol in squamous cell carcinoma of the head and neck (HNSCC). Our study findings revealed that 7-Epitaxol potently suppressed cell viability in SCC-9 and SCC-47 cells by inducing cell cycle arrest. Flow cytometry and DAPI staining demonstrated that 7-Epitaxol treatment induced cell death, mitochondrial membrane potential and chromatin condensation in OSCC cell lines. The compound regulated the proteins of extrinsic and intrinsic pathways at the highest concentration, and also increased the activation of caspases 3, 8, 9, and PARP in OSCC cell lines. Interestingly, a 7-Epitaxol-mediated induction of LC3-I/II expression and suppression of p62 expression were observed in OSCC cells lines. Furthermore, the MAPK inhibitors indicated that 7-Epitaxol induces apoptosis and autophagy marker proteins (cleaved-PARP and LC3-I/II) by reducing the phosphorylation of ERK1/2. In conclusion, these findings indicate the involvement of 7-Epitaxol in inducing apoptosis and autophagy through ERK1/2 signaling pathway, which identify 7-Epitaxol as a potent cytotoxic agent in HNSCC.
Collapse
|
24
|
Tian L, Zhang Y, Zhang H, Zhou Y, Li W, Yuan Y, Hao J, Yang L, Liu Y. Synthesis and evaluation of iridium(III) complexes on antineoplastic activity against human gastric carcinoma SGC-7901 cells. J Biol Inorg Chem 2021; 26:705-714. [PMID: 34448071 DOI: 10.1007/s00775-021-01895-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022]
Abstract
The study was intended to determine the antineoplastic effects of two new iridium(III) complexes [Ir(ppy)2(PTTP)](PF6) (1) (ppy = 2-phenylpyridine) and [Ir(piq)2(PTTP)](PF6) (2) (piq = 1-phenylisoquinoline, PTTP = 2-phenoxy-1,4,8,9-tetraazatriphenylene). In MTT assay, the ligand PTTP displayed ineffective inhibition on cell growth in SGC-7901, BEL-7402, HepG2 as well as NIH3T3 cell lines, while complexes 1 and 2 showed high cytotoxic activity on SGC-7901 cells with an IC50 value of 0.5 ± 0.1 µM and 4.4 ± 0.6 µM, respectively. Cellular uptake, cell cloning experiments, wound healing assay and cell cycle arrest indicated that the two complexes can inhibit the cell proliferation in SGC-7901 and induce cell cycle arrest at G0/G1 phase. Additionally, reactive oxygen species (ROS) and mitochondrial membrane potential suggested that the two complexes induced cell apoptosis through disrupting mitochondrial functions. Further, western blot analysis illustrated that the two complexes caused apoptosis via regulating expression levels of Bcl-2 family proteins. Moreover, complex 1 could suppress tumor growth in vivo with an inhibitory rate of 49.41%. Altogether, these results demonstrated that complexes 1 and 2 exert a potent anticancer effect against SGC-7901 cells via mitochondrial apoptotic pathway and have a potential to be developed as antineoplastic drug candidates for human gastric cancer.
Collapse
Affiliation(s)
- Li Tian
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Yuanyuan Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Huiwen Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Yi Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Wenlong Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Yuhan Yuan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Jing Hao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Linlin Yang
- Department of Pediatrics, Guangdong Women and Children Hospital, Guangzhou, 510010, People's Republic of China.
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
25
|
Kim L, Park SA, Park H, Kim H, Heo TH. Bazedoxifene, a GP130 Inhibitor, Modulates EMT Signaling and Exhibits Antitumor Effects in HPV-Positive Cervical Cancer. Int J Mol Sci 2021; 22:ijms22168693. [PMID: 34445405 PMCID: PMC8395523 DOI: 10.3390/ijms22168693] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
Persistent HPV (Human Papillomavirus) infection is the primary cause of cervical cancer. Despite the development of the HPV vaccine to prevent infections, cervical cancer is still a fatal malignant tumor and metastatic disease, and it is often difficult to treat, so a new treatment strategy is needed. The FDA-approved drug Bazedoxifene is a novel inhibitor of protein–protein interactions between IL-6 and GP130. Multiple ligand simultaneous docking and drug repositioning approaches have demonstrated that an IL-6/GP130 inhibitor can act as a selective estrogen modulator. However, the molecular basis for GP130 activation in cervical cancer remains unclear. In this study, we investigated the anticancer properties of Bazedoxifene in HPV-positive cervical cancer cells. In vitro and in vivo experiments showed that Bazedoxifene inhibited cell invasion, migration, colony formation, and tumor growth in cervical cancer cells. We also confirmed that Bazedoxifene inhibits the GP130/STAT3 pathway and suppresses the EMT (Epithelial-mesenchymal transition) sub-signal. Thus, these data not only suggest a molecular mechanism by which the GP130/STAT3 pathway may promote cancer, but also may provide a basis for cervical cancer replacement therapy.
Collapse
Affiliation(s)
| | | | | | - Heejung Kim
- Correspondence: (H.K.); (T.-H.H.); Tel.: +82-2-2164-4088 (T.-H.H. & H.K.)
| | - Tae-Hwe Heo
- Correspondence: (H.K.); (T.-H.H.); Tel.: +82-2-2164-4088 (T.-H.H. & H.K.)
| |
Collapse
|
26
|
Qayoom H, Wani NA, Alshehri B, Mir MA. An insight into the cancer stem cell survival pathways involved in chemoresistance in triple-negative breast cancer. Future Oncol 2021; 17:4185-4206. [PMID: 34342489 DOI: 10.2217/fon-2021-0172] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most complex, aggressive and fatal subtype of breast cancer. Owing to the lack of targeted therapy and heterogenic nature of TNBC, chemotherapy remains the sole treatment option for TNBC, with taxanes and anthracyclines representing the general chemotherapeutic regimen in TNBC therapy. But unfortunately, patients develop resistance to the existing chemotherapeutic regimen, resulting in approximately 90% treatment failure. Breast cancer stem cells (BCSCs) are one of the major causes for the development of chemoresistance in TNBC patients. After surviving the chemotherapy damage, the presence of BCSCs results in relapse and recurrence of TNBC. Several pathways are known to regulate BCSCs' survival, such as the Wnt/β-catenin, Hedgehog, JAK/STAT and HIPPO pathways. Therefore it is imperative to target these pathways in the context of eliminating chemoresistance. In this review we will discuss the novel strategies and various preclinical and clinical studies to give an insight into overcoming TNBC chemoresistance. We present a detailed account of recent studies carried out that open an exciting perspective in relation to the mechanisms of chemoresistance.
Collapse
Affiliation(s)
- Hina Qayoom
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, J&K, India
| | - Nissar A Wani
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir Nunar Ganderbal 191201, J&K, India
| | - Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, KSA
| | - Manzoor A Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, J&K, India
| |
Collapse
|
27
|
Ashrafizadeh M, Mirzaei S, Hashemi F, Zarrabi A, Zabolian A, Saleki H, Sharifzadeh SO, Soleymani L, Daneshi S, Hushmandi K, Khan H, Kumar AP, Aref AR, Samarghandian S. New insight towards development of paclitaxel and docetaxel resistance in cancer cells: EMT as a novel molecular mechanism and therapeutic possibilities. Biomed Pharmacother 2021; 141:111824. [PMID: 34175815 DOI: 10.1016/j.biopha.2021.111824] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) mechanism is responsible for metastasis and migration of cancer cells to neighboring cells and tissues. Morphologically, epithelial cells are transformed to mesenchymal cells, and at molecular level, E-cadherin undergoes down-regulation, while an increase occurs in N-cadherin and vimentin levels. Increasing evidence demonstrates role of EMT in mediating drug resistance of cancer cells. On the other hand, paclitaxel (PTX) and docetaxel (DTX) are two chemotherapeutic agents belonging to taxene family, capable of inducing cell cycle arrest in cancer cells via preventing microtubule depolymerization. Aggressive behavior of cancer cells resulted from EMT-mediated metastasis can lead to PTX and DTX resistance. Upstream mediators of EMT such as ZEB1/2, TGF-β, microRNAs, and so on are involved in regulating response of cancer cells to PTX and DTX. Tumor-suppressing factors inhibit EMT to promote PTX and DTX sensitivity of cancer cells. Furthermore, three different strategies including using anti-tumor compounds, gene therapy and delivery systems have been developed for suppressing EMT, and enhancing cytotoxicity of PTX and DTX against cancer cells that are mechanistically discussed in the current review.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyed Omid Sharifzadeh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Leyla Soleymani
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Vice President at Translational Sciences, Xsphera Biosciences Inc. 6 Tide Street, Boston, MA 02210, USA
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
28
|
Zafar E, Maqbool MF, Iqbal A, Maryam A, Shakir HA, Irfan M, Khan M, Li Y, Ma T. A comprehensive review on anticancer mechanism of bazedoxifene. Biotechnol Appl Biochem 2021; 69:767-782. [PMID: 33759222 DOI: 10.1002/bab.2150] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/08/2021] [Indexed: 12/24/2022]
Abstract
Cancer is counted as a second leading cause of death among nontransmissible diseases. Identification of novel anticancer drugs is therefore necessary for the effective treatment of cancer. Conventional drug discovery is time consuming and expensive process. Unlike conventional drug discovery, drug repositioning offers a novel strategy for urgent drug discovery since it is a cost-effective and faster process. Bazedoxifene (BZA) is a synthetic selective estrogen receptor modulator, approved by the United States Food and Drug Administration for the treatment of osteoporosis in postmenopausal women. BZA is now being studied for its anticancer activity in various cancers including breast cancer, liver cancer, pancreatic cancer, colon cancer, head and neck cancer, medulloblastoma, brain cancer, and gastrointestinal cancer. Studies have reported that BZA is effective in reducing cancer progression through multiple mechanisms. BZA could effectively inhibit STAT3, PI3K/AKT, and MAPK signaling pathways and induce apoptosis. In addition to its anticancer activity as monotherapy, BZA has been shown to enhance the chemotherapeutic efficacy of clinical drugs such as paclitaxel, cisplatin, palbociclib, and oxaliplatin in multiple neoplasms. This review mainly focused on the anticancer activity, cellular targets, and anticancer mechanism of BZA, which may help the further design and conduct of research and repositioning it for oncological clinic trials.
Collapse
Affiliation(s)
- Erum Zafar
- Department of Zoology, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
| | | | - Asia Iqbal
- Department of Wild Life and Ecology, University of Veternary and Animal Sciences, Ravi Campus, Patoki, Pakistan
| | - Amara Maryam
- Department of Zoology, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
| | - Hafiz Abdullah Shakir
- Department of Zoology, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
| | - Muhammad Irfan
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Khan
- Department of Zoology, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
| | - Yongming Li
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Tonghui Ma
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| |
Collapse
|
29
|
Liao M, Zhang J, Wang G, Wang L, Liu J, Ouyang L, Liu B. Small-Molecule Drug Discovery in Triple Negative Breast Cancer: Current Situation and Future Directions. J Med Chem 2021; 64:2382-2418. [PMID: 33650861 DOI: 10.1021/acs.jmedchem.0c01180] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Triple negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, but an effective targeted therapy has not been well-established so far. Considering the lack of effective targets, where do we go next in the current TNBC drug development? A promising intervention for TNBC might lie in de novo small-molecule drugs that precisely target different molecular characteristics of TNBC. However, an ideal single-target drug discovery still faces a huge challenge. Alternatively, other new emerging strategies, such as dual-target drug, drug repurposing, and combination strategies, may provide new insight into the improvement of TNBC therapeutics. In this review, we focus on summarizing the current situation of a series of candidate small-molecule drugs in TNBC therapy, including single-target drugs, dual-target drugs, as well as drug repurposing and combination strategies that will together shed new light on the future directions targeting TNBC vulnerabilities with small-molecule drugs for future therapeutic purposes.
Collapse
Affiliation(s)
- Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Leiming Wang
- The Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Jie Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
30
|
Zhou X, Zou L, Chen W, Yang T, Luo J, Wu K, Shu F, Tan X, Yang Y, Cen S, Li C, Mao X. Flubendazole, FDA-approved anthelmintic, elicits valid antitumor effects by targeting P53 and promoting ferroptosis in castration-resistant prostate cancer. Pharmacol Res 2021; 164:105305. [PMID: 33197601 DOI: 10.1016/j.phrs.2020.105305] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/20/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
On account of incurable castration-resistant prostate cancer (CRPC) inevitably developing after treating with androgen deprivation therapy, it is an urgent need to find new therapeutic strategies. Flubendazole is a well-known anti-malarial drug that is recently reported to be a potential anti-tumor agent in various types of human cancer cells. However, whether flubendazole could inhibit the castration-resistant prostate cancer has not been well charified. Thus, the aim of the present study was to characterize the precise mechanism of action of flubendazole on the CRPC. In this study, we investigated the potential effect of flubendazole on cell proliferation, cell cycle and cell death in CRPC cells (PC3 and DU145). We found that flubendazole inhibited cell proliferation, caused cell cycle arrest in G2/M phase and promoted cell death in vitro, and suppressed growth of CRPC tumor in xenograft models. In addition, we reported that flubendazole induced the expression of P53, which partly accounted for the G2/M phase arrest and led to inhibition of the transcription of SLC7A11, and then downregulated the GPX4, which is a major ferroptosis-related gene. Furthermore, flubendazole exhibited synergistic effect with 5-fluorouracil (5-Fu) in chemotherapy of CRPC. This study provides biological evidence that flubendazole is a novel P53 inducer which exerts anti-proliferation and pro-apoptosis effects in CRPC through hindering the cell cycle and activating the ferroptosis, and indicates that a novel utilization of flubendazole in neoadjuvant chemotherapy of CRPC.
Collapse
Affiliation(s)
- Xumin Zhou
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, PR China; Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Libin Zou
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, PR China
| | - Wenbin Chen
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, PR China
| | - Taowei Yang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, PR China
| | - Junqi Luo
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, PR China
| | - Kaihui Wu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, PR China
| | - Fangpeng Shu
- Department of Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, PR China
| | - Xiao Tan
- Department of Urology, The First Affiliated Hospital, Southwest Medical University, Luzhou 646000, PR China
| | - Yu Yang
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen 518036, PR China
| | - Shengren Cen
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, PR China
| | - Chuanyin Li
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, PR China.
| | - Xiangming Mao
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, PR China.
| |
Collapse
|
31
|
Yang L, Yao Y, Bai Y, Zheng D, Zhou F, Chen L, Hu W, Xiang Y, Zhao H, Liu Z, Wang L, Huang X, Zhao C. Effect of the isoflavone corylin from cullen corylifolium on colorectal cancer growth, by targeting the STAT3 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 80:153366. [PMID: 33080566 DOI: 10.1016/j.phymed.2020.153366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 09/24/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common cancers worldwide. Corylin is an isoflavone extracted from Cullen corylifolium (L.) Medik., which is widely used anti-inflammatory and anticancer in Asian countries. Signal transducer and activator of transcription 3 (STAT3) plays an important role in the occurrence and development of CRC. PURPOSE To analyze the antitumor activity of corylin in CRC and to elucidate its molecular mechanisms of action. METHODS The human CRC cell lines HCT116, RKO, and SW480 and immunodeficient mice were used as models to study the antitumor effect of corylin. The potent anti-proliferative, anti-migration and proapoptotic effects of corylin were observed by cell viability, colony formation assays, wound-healing migration assay, and cell apoptosis assay. Immunostaining analysis and western blot analysis revealed inhibition of the STAT3 signaling axis. RESULTS We found that corylin could significantly reduce the viability and stimulate apoptosis in human CRC cells in a dose-dependent manner. Corylin decreased the expression levels of P-STAT3 and STAT3 target proteins, such as myeloid cell leukemia-1(MCL-1), Survivin, VEGF and B-cell lymphoma 2 (BCL-2). It also upregulated the expression levels of the proapoptotic proteins BCL-2-associated X protein (BAX) and Cl-caspase 3. Moreover, corylin reduced the nuclear localization of STAT3. Furthermore, corylin inhibited the growth of the tumor in CRC mouse models. CONCLUSIONS Our findings provide convincing results that could support the role of corylin in the treatment of CRC through inhibiting the STAT3 pathway. It is conceivable that corylin should be further explored as a unique STAT3 inhibitor in antitumor therapy.
Collapse
Affiliation(s)
- Lehe Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yulei Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Ying Bai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; The Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Dandan Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Feng Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Luye Chen
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
| | - Wanle Hu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Youqun Xiang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Haiyang Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; The Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Zhiguo Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Liangxing Wang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Xiaoying Huang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Chengguang Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; The Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
32
|
Breast Cancer and Microcalcifications: An Osteoimmunological Disorder? Int J Mol Sci 2020; 21:ijms21228613. [PMID: 33203195 PMCID: PMC7696282 DOI: 10.3390/ijms21228613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
The presence of microcalcifications in the breast microenvironment, combined with the growing evidences of the possible presence of osteoblast-like or osteoclast-like cells in the breast, suggest the existence of active processes of calcification in the breast tissue during a woman’s life. Furthermore, much evidence that osteoimmunological disorders, such as osteoarthritis, rheumatoid arthritis, or periodontitis influence the risk of developing breast cancer in women exists and vice versa. Antiresorptive drugs benefits on breast cancer incidence and progression have been reported in the past decades. More recently, biological agents targeting pro-inflammatory cytokines used against rheumatoid arthritis also demonstrated benefits against breast cancer cell lines proliferation, viability, and migratory abilities, both in vitro and in vivo in xenografted mice. Hence, it is tempting to hypothesize that breast carcinogenesis should be considered as a potential osteoimmunological disorder. In this review, we compare microenvironments and molecular characteristics in the most frequent osteoimmunological disorders with major events occurring in a woman’s breast during her lifetime. We also highlight what the use of bone anabolic drugs, antiresorptive, and biological agents targeting pro-inflammatory cytokines against breast cancer can teach us.
Collapse
|
33
|
Ávalos-Moreno M, López-Tejada A, Blaya-Cánovas JL, Cara-Lupiañez FE, González-González A, Lorente JA, Sánchez-Rovira P, Granados-Principal S. Drug Repurposing for Triple-Negative Breast Cancer. J Pers Med 2020; 10:E200. [PMID: 33138097 PMCID: PMC7711505 DOI: 10.3390/jpm10040200] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive type of breast cancer which presents a high rate of relapse, metastasis, and mortality. Nowadays, the absence of approved specific targeted therapies to eradicate TNBC remains one of the main challenges in clinical practice. Drug discovery is a long and costly process that can be dramatically improved by drug repurposing, which identifies new uses for existing drugs, both approved and investigational. Drug repositioning benefits from improvements in computational methods related to chemoinformatics, genomics, and systems biology. To the best of our knowledge, we propose a novel and inclusive classification of those approaches whereby drug repurposing can be achieved in silico: structure-based, transcriptional signatures-based, biological networks-based, and data-mining-based drug repositioning. This review specially emphasizes the most relevant research, both at preclinical and clinical settings, aimed at repurposing pre-existing drugs to treat TNBC on the basis of molecular mechanisms and signaling pathways such as androgen receptor, adrenergic receptor, STAT3, nitric oxide synthase, or AXL. Finally, because of the ability and relevance of cancer stem cells (CSCs) to drive tumor aggressiveness and poor clinical outcome, we also focus on those molecules repurposed to specifically target this cell population to tackle recurrence and metastases associated with the progression of TNBC.
Collapse
Affiliation(s)
- Marta Ávalos-Moreno
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
| | - Araceli López-Tejada
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Jose L. Blaya-Cánovas
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Francisca E. Cara-Lupiañez
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Adrián González-González
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Jose A. Lorente
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- Department of Legal Medicine, School of Medicine—PTS—University of Granada, 18016 Granada, Spain
| | | | - Sergio Granados-Principal
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| |
Collapse
|
34
|
Ozfiliz Kilbas P, Sonmez O, Uysal-Onganer P, Coker Gurkan A, Obakan Yerlikaya P, Arisan ED. Specific c-Jun N-Terminal Kinase Inhibitor, JNK-IN-8 Suppresses Mesenchymal Profile of PTX-Resistant MCF-7 Cells through Modulating PI3K/Akt, MAPK and Wnt Signaling Pathways. BIOLOGY 2020; 9:E320. [PMID: 33019717 PMCID: PMC7599514 DOI: 10.3390/biology9100320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/23/2020] [Accepted: 09/29/2020] [Indexed: 01/10/2023]
Abstract
Paclitaxel (PTX) is a widely used chemotherapeutic agent in the treatment of breast cancer, and resistance to PTX is a common failure of breast cancer therapy. Therefore, understanding the effective molecular targets in PTX-resistance gains importance in identifying novel strategies in successful breast cancer therapy approaches. The aim of the study was to investigate the functional role of PTX resistance on MCF-7 cell survival and proliferation related to PI3K/Akt and MAPK pathways. The generated PTX-resistant (PTX-res) MCF-7 cells showed enhanced cell survival, proliferation, and colony formation potential with decreased cell death compared to wt MCF-7 cells. PTX-res MCF-7 cells exhibited increased motility profile with EMT, PI3K/Akt, and MAPK pathway induction. According to the significant SAPK/JNK activation in PTX-res MCF-7 cells, specific c-Jun N-terminal kinase inhibitor, JNK-IN-8 is shown to suppress the migration potential of cells. Treatment of JNK inhibitor suppressed the p38 and SAPK/JNK and Vimentin expression. However, the JNK inhibitor further downregulated Wnt signaling members in PTX-res MCF-7 cells. Therefore, the JNK inhibitor JNK-IN-8 might be used as a potential therapy model to reverse PTX-resistance related to Wnt signaling.
Collapse
Affiliation(s)
- Pelin Ozfiliz Kilbas
- Department of Molecular Biology and Genetics, Istanbul Kultur University, 34158 Istanbul, Turkey; (P.O.K.); (O.S.); (A.C.G.); (P.O.Y.)
| | - Ozlem Sonmez
- Department of Molecular Biology and Genetics, Istanbul Kultur University, 34158 Istanbul, Turkey; (P.O.K.); (O.S.); (A.C.G.); (P.O.Y.)
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK;
| | - Ajda Coker Gurkan
- Department of Molecular Biology and Genetics, Istanbul Kultur University, 34158 Istanbul, Turkey; (P.O.K.); (O.S.); (A.C.G.); (P.O.Y.)
| | - Pinar Obakan Yerlikaya
- Department of Molecular Biology and Genetics, Istanbul Kultur University, 34158 Istanbul, Turkey; (P.O.K.); (O.S.); (A.C.G.); (P.O.Y.)
| | - Elif Damla Arisan
- Institute of Biotechnology, Gebze Technical University, 41400 Kocaeli, Turkey
| |
Collapse
|
35
|
Xu L, Hu G, Xing P, Zhou M, Wang D. Paclitaxel alleviates the sepsis-induced acute kidney injury via lnc-MALAT1/miR-370-3p/HMGB1 axis. Life Sci 2020; 262:118505. [PMID: 32998017 DOI: 10.1016/j.lfs.2020.118505] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022]
Abstract
AIMS To investigate the effects of paclitaxel on lipopolysaccharide (LPS)-induced acute kidney injury (AKI) and its related mechanisms. MAIN METHODS The sepsis-associated AKI was induced by LPS using HK-2 cells. Then the mRNA and protein expression levels of relevant genes in the serum of sepsis patients and HK-2 cells with LPS-induced AKI were detected by qRT-PCR and western blot analyses before and after paclitaxel treatment, respectively. Subsequently, the cell counting kit-8 (CCK-8) and flow cytometry assays were performed to estimate the effects of paclitaxel, lnc-MALAT1, miR-370-3p and HMGB1 on the proliferation and apoptosis of HK-2 cells injured by LPS. KEY FINDINGS Lnc-MALAT1 was increased both in the serum of sepsis patients and cells injured by LPS, which could inhibit the cell proliferation, promote the cell apoptosis and increase the expression of TNF-α, IL-6 and IL-1β caused by paclitaxel. Moreover, lnc-MALAT1 was sponged with miR-370-3p which had the inverse effects with lnc-MALAT1 in LPS induced HK-2 cells. What's more, miR-370-3p targeted HMGB1 which was induced in serum and cells of sepsis. Knockdown of miR-370-3p inhibited the expression of HMGB1 and suppressed the proliferation but promoted the apoptosis of HK-2 cells injured by LPS as well as the expression of TNF-α, IL-6 and IL-1β. Besides, paclitaxel restrained the expression of HMGB1 via regulating lnc-MALAT1/miR-370-3p axis. SIGNIFICANCE Paclitaxel could protect against LPS-induced AKI via the regulation of lnc-MALAT1/miR-370-3p/HMGB1 axis and the expression of TNF-α, IL-6 and IL-1β, revealing that paclitaxel might act as a therapy drug in reducing sepsis-associated AKI.
Collapse
Affiliation(s)
- Lina Xu
- Department of Infectious Diseases, Shanghai University of Medicine & Health Sciences Affiliated Shanghai Sixth People's Hospital East, No. 222, West Three Road Around Lake, Pudong District, Shanghai 201306, PR China
| | - Guyong Hu
- Department of Emergency, Shanghai University of Medicine & Health Sciences Affiliated Shanghai Sixth People's Hospital East, No. 222, West Three Road Around Lake, Pudong District, Shanghai 201306, PR China
| | - Pengcheng Xing
- Department of Emergency, Shanghai University of Medicine & Health Sciences Affiliated Shanghai Sixth People's Hospital East, No. 222, West Three Road Around Lake, Pudong District, Shanghai 201306, PR China.
| | - Minjie Zhou
- Department of Emergency, Shanghai University of Medicine & Health Sciences Affiliated Shanghai Sixth People's Hospital East, No. 222, West Three Road Around Lake, Pudong District, Shanghai 201306, PR China
| | - Donglian Wang
- Department of Emergency, Shanghai University of Medicine & Health Sciences Affiliated Shanghai Sixth People's Hospital East, No. 222, West Three Road Around Lake, Pudong District, Shanghai 201306, PR China
| |
Collapse
|
36
|
Yu-Wei D, Li ZS, Xiong SM, Huang G, Luo YF, Huo TY, Zhou MH, Zheng YW. Paclitaxel induces apoptosis through the TAK1-JNK activation pathway. FEBS Open Bio 2020; 10:1655-1667. [PMID: 32594651 PMCID: PMC7396445 DOI: 10.1002/2211-5463.12917] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/30/2020] [Accepted: 06/22/2020] [Indexed: 12/23/2022] Open
Abstract
Paclitaxel (PTX) has previously been used to treat tumours of various tissue origins, such as lung, breast, ovarian, prostate cancers and leukemia. PTX‐induced apoptosis is associated with p38 mitogen‐activated protein kinase (p38 MAPK), extracellular signal‐regulated kinase (ERK), nuclear factor‐kappa B (NF‐κB) and c‐Jun N‐terminal kinase or stress‐activated protein kinase (JNK/ SAPK) pathways. Transforming growth factor‐beta‐activated kinase 1 (TAK1) and TAK1‐binding protein 1 (TAB1) play an important role in cell apoptosis through the p38, ERK, NF‐κB and JNK signal transduction pathways. To investigate the role of TAK1 in PTX‐induced cell apoptosis, we treated HEK293 and 8305C cells with 0–20 µm PTX for 6, 12 or 24 h. To investigate whether TAK1 can cooperate with PTX for cancer treatment, we transfected cells with TAK1, TAB1 or control plasmid and treated them with PTX (3–10 µm) for 9–24 h. Apoptosis rates were analysed by flow cytometry (Annexin V/PI). Endogenous TAK1 and TAB1, caspase‐7 cleavage, poly ADP‐ribose polymerase (PARP) cleavage, Bcl‐xL level, phospho‐p44/42, phospho‐JNK and phospho‐p38 were detected by western blot. We show that in HEK293 and 8305C cells, PTX enhanced the endogenous TAK1/TAB1 level and induced cell apoptosis in a dose‐ and time‐dependent manner. Upon TAK1 overexpression in HEK293 cells treated with PTX, apoptosis rate, JNK phosphorylation and PARP cleavage increased contrary to heat‐shocked or untreated cells. CRISPR editing of the tak1 gene upon PTX treatment resulted in lower phospho‐JNK and PARP cleavage levels than in cells transfected with the control or the TAK1‐ or TAB1 + TAK1‐containing plasmids. TAK1‐K63A could not induce JNK phosphorylation or PARP cleavage. We conclude that PTX induces HEK293 and 8305C cell apoptosis through the TAK1–JNK activation pathway, potentially highlighting TAK1’s role in chemosensitivity.
Collapse
Affiliation(s)
- Di Yu-Wei
- Division of Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhuo-Sheng Li
- Division of Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shu-Min Xiong
- Division of Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ge Huang
- Division of Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yan-Fei Luo
- Division of Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Tie-Ying Huo
- Division of Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Mao-Hua Zhou
- Division of Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - You-Wei Zheng
- Division of Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
37
|
Costa B, Amorim I, Gärtner F, Vale N. Understanding Breast cancer: from conventional therapies to repurposed drugs. Eur J Pharm Sci 2020; 151:105401. [PMID: 32504806 DOI: 10.1016/j.ejps.2020.105401] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/22/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
Breast cancer is the most common cancer among women and is considered a developed country disease. Moreover, is a heterogenous disease, existing different types and stages of breast cancer development, therefore, better understanding of cancer biology, helps to improve the development of therapies. The conventional treatments accessible after diagnosis, have the main goal of controlling the disease, by improving survival. In more advance stages the aim is to prolong life and symptom palliation care. Surgery, radiation therapy and chemotherapy are the main options available, which must be adapted to each person individually. However, patients are developing resistance to the conventional therapies. This resistance is due to alterations in important regulatory pathways such as PI3K/AKt/mTOR, this pathway contributes to trastuzumab resistance, a reference drug to treat breast cancer. Therefore, is proposed the repurposing of drugs, instead of developing drugs de novo, for example, to seek new medical treatments within the drugs available, to be used in breast cancer treatment. Providing safe and tolerable treatments to patients, and new insights to efficacy and efficiency of breast cancer treatments. The economic and social burden of cancer is enormous so it must be taken measures to relieve this burden and to ensure continued access to therapies to all patients. In this review we focus on how conventional therapies against breast cancer are leading to resistance, by reviewing those mechanisms and discussing the efficacy of repurposed drugs to fight breast cancer.
Collapse
Affiliation(s)
- Bárbara Costa
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo 228, 4050-313 Porto, Portugal
| | - Irina Amorim
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo 228, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal; i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Fátima Gärtner
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo 228, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal; i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Nuno Vale
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo 228, 4050-313 Porto, Portugal; Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo 228, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal; i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal.
| |
Collapse
|
38
|
Zhou J, Jiang YY, Wang HP, Chen H, Wu YC, Wang L, Pu X, Yue G, Zhang L. Natural compound Tan-I enhances the efficacy of Paclitaxel chemotherapy in ovarian cancer. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:752. [PMID: 32647677 PMCID: PMC7333144 DOI: 10.21037/atm-20-4072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background Paclitaxel is a widely used clinical first line chemotherapy drug for ovarian carcinoma. Tanshinone I (Tan-I) is one of the vital fat-soluble components, which derived from Chinese herbal medicine, Salvia miltiorrhiza Bunge. Herein, we evaluated whether Tan-I could enhance the efficacy of ovarian cancer to chemotherapy of Paclitaxel. Methods Ovarian cancer cells A2780 and ID-8 were exposed with Tan-I (4.8 µg/mL), Paclitaxel (0.1 µg/mL), or Tan-I combination with Paclitaxel for 24 hours. The cell proliferation was analyzed by CCK8 and EdU staining. Cell apoptosis was analyzed by the TUNEL assay and flow cytometry. The protein levels were determined by western blot. Cell migration was analyzed by Transwell and wound healing. Cell senescence was analyzed by senescence-associated b-galactosidase staining. Antitumor activity was analyzed by a subcutaneous tumor xenograft model of human ovarian cancer in nude mice. The protein expression and apoptosis level of tumor tissues were analyzed by immunohistochemistry and TUNEL staining. Results Tan-I treatment significantly elevated the Paclitaxel-cause reduction of A2780 and ID-8 cell proliferation and cell migration. Tan-I combination with Paclitaxel promotes apoptosis of cancer cells by promoting Bax expression and Bcl-2 expression. Besides, Tan-I treatment can notably increase Paclitaxel-inducing cell senescence by promoting DNA damage and senescence-associated proteins such as p21 and p16. Furthermore, the result of the transplanted tumor model indicated that Tan-I combination with Paclitaxel could inhibit tumor growth in vivo by inhibiting cell proliferation and inducing cell apoptosis. Conclusions Natural compound Tan-I enhances the efficacy of ovarian cancer to Paclitaxel chemotherapy. The results will help to supply the potential clinical use of ovarian carcinoma cells.
Collapse
Affiliation(s)
- Jin Zhou
- College of Science, Sichuan Agricultural University, Ya'an, China
| | - Yuan-Yuan Jiang
- College of Science, Sichuan Agricultural University, Ya'an, China
| | - Hai-Ping Wang
- College of Science, Sichuan Agricultural University, Ya'an, China
| | - Huan Chen
- College of Science, Sichuan Agricultural University, Ya'an, China
| | - Yi-Chao Wu
- College of Life Science, China West Normal University, Nanchong, China
| | - Long Wang
- College of Science, Sichuan Agricultural University, Ya'an, China
| | - Xiang Pu
- College of Science, Sichuan Agricultural University, Ya'an, China
| | - Guizhou Yue
- College of Science, Sichuan Agricultural University, Ya'an, China
| | - Li Zhang
- College of Science, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
39
|
Nikkhoo A, Rostami N, Farhadi S, Esmaily M, Moghadaszadeh Ardebili S, Atyabi F, Baghaei M, Haghnavaz N, Yousefi M, Aliparasti MR, Ghalamfarsa G, Mohammadi H, Sojoodi M, Jadidi-Niaragh F. Codelivery of STAT3 siRNA and BV6 by carboxymethyl dextran trimethyl chitosan nanoparticles suppresses cancer cell progression. Int J Pharm 2020; 581:119236. [PMID: 32240809 DOI: 10.1016/j.ijpharm.2020.119236] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 12/24/2022]
Abstract
High expression of inhibitor of apoptosis (IAP) molecules in cancer cells promotes cancer cell chemoresistance. Use of BV6, a well-known IAP inhibitor, along with inhibition of signal transducer and activator of transcription 3 (STAT3), which is an important factor in the survival of tumor cells, and NIK as a mediator of BV6 unpredicted side effects, can induce effective apoptosis in tumor cells. The present study has investigated the combination therapy of cancer cells using Carboxymethyl Dextran-conjugated trimethyl chitosan (TMC-CMD) nanoparticles (NPs) loaded with NIK/STAT3-specific siRNA and BV6 to synergistically induce apoptosis in the breast, colorectal and melanoma cancer cell lines. Our results showed that in addition to enhanced pro-apoptotic effects, this combination therapy reduced proliferation, cell migration, colony formation, and angiogenesis, along with expression of factors including IL-10 and HIF in tumor cells. The results indicate the potential of this combination therapy for further investigation in animal models of cancer.
Collapse
Affiliation(s)
- Afshin Nikkhoo
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Rostami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shohreh Farhadi
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Esmaily
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Atyabi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Baghaei
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Navideh Haghnavaz
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ghasem Ghalamfarsa
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mozhdeh Sojoodi
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, USA.
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
40
|
Han B, Yang Y, Chen J, Tang H, Sun Y, Zhang Z, Wang Z, Li Y, Li Y, Luan X, Li Q, Ren Z, Zhou X, Cong D, Liu Z, Meng Q, Sun F, Pei J. Preparation, Characterization, and Pharmacokinetic Study of a Novel Long-Acting Targeted Paclitaxel Liposome with Antitumor Activity. Int J Nanomedicine 2020; 15:553-571. [PMID: 32158208 PMCID: PMC6986409 DOI: 10.2147/ijn.s228715] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/15/2019] [Indexed: 12/16/2022] Open
Abstract
Background Breast cancer is the leading cause of cancer death in women. Chemotherapy to inhibit the proliferation of cancer cells is considered to be the most important therapeutic strategy. The development of long-circulating PEG and targeting liposomes is a major advance in drug delivery. However, the techniques used in liposome preparation mainly involve conventional liposomes, which have a short half-life, high concentrations in the liver and spleen reticuloendothelial system, and no active targeting. Methods Four kinds of paclitaxel liposomes were prepared and characterized by various analytical techniques. The long-term targeting effect of liposomes was verified by fluorescence detection methods in vivo and in vitro. Pharmacokinetic and acute toxicity tests were conducted in ICR mice to evaluate the safety of different paclitaxel preparations. The antitumor activity of ES-SSL-PTX was investigated in detail using in vitro and in vivo human breast cancer MCF-7 cell models. Results ER-targeting liposomes had a particle size of 137.93±1.22 nm and an acceptable encapsulation efficiency of 88.07±1.25%. The liposome preparation is best stored at 4°C, and is stable for up to 48 hrs. Cytotoxicity test on MCF-7 cells demonstrated the stronger cytotoxic activity of liposomes in comparison to free paclitaxel. We used the near-infrared fluorescence imaging technique to confirm that ES-SSL-PTX was effectively targeted and could quickly and specifically identify the tumor site. Pharmacokinetics and acute toxicity in vivo experiments were carried out. The results showed that ES-SSL-PTX could significantly prolong the half-life of the drug, increase its circulation time in vivo, improve its bioavailability and reduce its toxicity and side effects. ES-SSL-PTX can significantly improve the pharmacokinetic properties of paclitaxel, avoid allergic reaction of the original solvent, increase antitumor efficacy and reduce drug toxicity and side effects. Conclusion ES-SSL-PTX has great potential for improving the treatment of breast cancer, thereby improving patient prognosis and quality of life.
Collapse
Affiliation(s)
- Bing Han
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Yue Yang
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China.,Department of Pharmacy, Ministry of Health Service, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Jinglin Chen
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Huan Tang
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Yuxin Sun
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Zheng Zhang
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Zeng Wang
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Yan Li
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Yao Li
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Xue Luan
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Qianwen Li
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Zhihui Ren
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Xiaowei Zhou
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Dengli Cong
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Zhiyi Liu
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Qin Meng
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Fei Sun
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Jin Pei
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| |
Collapse
|
41
|
Liu Y, Fan D. The Preparation of Ginsenoside Rg5, Its Antitumor Activity against Breast Cancer Cells and Its Targeting of PI3K. Nutrients 2020; 12:nu12010246. [PMID: 31963684 PMCID: PMC7019936 DOI: 10.3390/nu12010246] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 02/06/2023] Open
Abstract
Ginsenosides have been reported to possess various pharmacological effects, including anticancer effects. Nevertheless, there are few reports about the antitumor activity and mechanisms of ginsenoside Rg5 against breast cancer cells. In the present study, the major ginsenoside Rb1 was transformed into the rare ginsenoside Rg5 through enzymatic bioconversion and successive acid-assisted high temperature and pressure processing. Ginsenosides Rb1, Rg3, and Rg5 were investigated for their antitumor effects against five human cancer cell lines via the MTT assay. Among them, Rg5 exhibited the greatest cytotoxicity against breast cancer. Moreover, Rg5 remarkably suppressed breast cancer cell proliferation through mitochondria-mediated apoptosis and autophagic cell death. LC3B-GFP/Lysotracker and mRFP-EGFP-LC3B were utilized to show that Rg5 induced autophagosome-lysosome fusion. Western blot assays further illustrated that Rg5 decreased the phosphorylation levels of PI3K, Akt, mTOR, and Bad and suppressed the PI3K/Akt signaling pathway in breast cancer. Moreover, Rg5-induced apoptosis and autophagy could be dramatically strengthened by the PI3K/Akt inhibitor LY294002. Finally, a molecular docking study demonstrated that Rg5 could bind to the active pocket of PI3K. Collectively, our results revealed that Rg5 could be a potential therapeutic agent for breast cancer treatment.
Collapse
Affiliation(s)
- Yannan Liu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi’an 710069, Shaanxi, China;
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi’an 710069, Shaanxi, China
- Biotech. & Biomed. Reserch Institute, Northwest University, Taibai North Road 229, Xi’an 710069, Shaanxi, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi’an 710069, Shaanxi, China;
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi’an 710069, Shaanxi, China
- Biotech. & Biomed. Reserch Institute, Northwest University, Taibai North Road 229, Xi’an 710069, Shaanxi, China
- Correspondence:
| |
Collapse
|
42
|
Fu W, Zhao P, Li H, Fu H, Liu X, Liu Y, Wu J, Fu W. Bazedoxifene enhances paclitaxel efficacy to suppress glioblastoma via altering Hippo/YAP pathway. J Cancer 2020; 11:657-667. [PMID: 31942189 PMCID: PMC6959043 DOI: 10.7150/jca.38350] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/13/2019] [Indexed: 01/10/2023] Open
Abstract
Glioblastoma multiform (GBM) is an aggressive type of brain tumor originated from astrocytes. Owing to the limited therapeutic options, intensive efforts are still being made to find novel treatments for GBM. In this study, we first identified that bazedoxifene bore the ability to reduce cell survival and cell invasion of glioblastoma cells. Furthermore, our results also revealed that bazedoxifene combining with paclitaxel had better efficacy to suppress glioblastoma progression by promoting apoptosis and reducing EMT. Combination of bazedoxifene and paclitaxel also accelerated YAP phosphorylation and inactivation. Importantly, preclinical animal model also verified our in vitro findings. Together, our data not only define the underlying mechanism responsible for action of bazedoxifene on glioblastoma cells but also build strong rational to develop bazedoxifene for the treatment of GBM patients.
Collapse
Affiliation(s)
- Weiwei Fu
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P. R. China
| | - Peng Zhao
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P. R. China
| | - Hong Li
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P. R. China
| | - Haiyang Fu
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P. R. China
| | - Xuejun Liu
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P. R. China
| | - Yingchao Liu
- Department of Neurosurgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250006, P. R. China
| | - Jie Wu
- Department of Neurosurgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250006, P. R. China
| | - Weiwei Fu
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P. R. China
| |
Collapse
|
43
|
Dong Y, Liao H, Yu J, Fu H, Zhao D, Gong K, Wang Q, Duan Y. Incorporation of drug efflux inhibitor and chemotherapeutic agent into an inorganic/organic platform for the effective treatment of multidrug resistant breast cancer. J Nanobiotechnology 2019; 17:125. [PMID: 31870362 PMCID: PMC6929438 DOI: 10.1186/s12951-019-0559-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/11/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Multidrug resistance (MDR) is a pressing obstacle in clinical chemotherapy for breast cancer. Based on the fact that the drug efflux is an important factor in MDR, we designed a codelivery system to guide the drug efflux inhibitor verapamil (VRP) and the chemotherapeutic agent novantrone (NVT) synergistically into breast cancer cells to reverse MDR. RESULTS This co-delivery system consists of following components: the active targeting peptide RGD, an inorganic calcium phosphate (CaP) shell and an organic inner core. VRP and NVT were loaded into CaP shell and phosphatidylserine polyethylene glycol (PS-PEG) core of nanoparticles (NPs) separately to obtain NVT- and VRP-loaded NPs (NV@CaP-RGD). These codelivered NPs allowed VRP to prevent the efflux of NVT from breast cancer cells by competitively combining with drug efflux pumps. Additionally, NV@CaP-RGD was effectively internalized into breast cancer cells by precise delivery through the effects of the active targeting peptides RGD and EPR. The pH-triggered profile of CaP was also able to assist the NPs to successfully escape from lysosomes, leading to a greatly increased effective intracellular drug concentration. CONCLUSION The concurrent administration of VRP and NVT by organic/inorganic NPs is a promising therapeutic approach to reverse MDR in breast cancer.
Collapse
Affiliation(s)
- Yang Dong
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Hongze Liao
- Marine Drugs Research Center, Department of Pharmacy, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jian Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Hao Fu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - De Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Ke Gong
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Qi Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China.
| |
Collapse
|
44
|
Thilakasiri PS, Dmello RS, Nero TL, Parker MW, Ernst M, Chand AL. Repurposing of drugs as STAT3 inhibitors for cancer therapy. Semin Cancer Biol 2019; 68:31-46. [PMID: 31711994 DOI: 10.1016/j.semcancer.2019.09.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023]
Abstract
Drug repurposing is a valuable approach in delivering new cancer therapeutics rapidly into the clinic. Existing safety and patient tolerability data for drugs already in clinical use represent an untapped resource in terms of identifying therapeutic agents for off-label protein targets. The multicellular effects of STAT3 mediated by a range of various upstream signaling pathways make it an attractive therapeutic target with utility in a range of diseases including cancer, and has led to the development of a variety of STAT3 inhibitors. Moreover, heightened STAT3 transcriptional activation in tumor cells and within the cells of the tumor microenvironment contribute to disease progression. Consequently, there are many STAT3 inhibitors in preclinical development or under evaluation in clinical trials for their therapeutic efficacy predominantly in inflammatory diseases and cancer. Despite these advances, many challenges remain in ultimately providing STAT3 inhibitors to patients as cancer treatments, highlighting the need not only for a better understanding of the mechanisms associated with STAT3 activation, but also how various pharmaceutical agents suppress STAT3 activity in various cancers. In this review we discuss the importance of STAT3-dependent functions in cancer, review the status of compounds designed as direct-acting STAT3 inhibitors, and describe some of the strategies for repurposing of drugs as STAT3 inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Pathum S Thilakasiri
- Cancer and Inflammation Program, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Vic., Australia
| | - Rhynelle S Dmello
- Cancer and Inflammation Program, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Vic., Australia
| | - Tracy L Nero
- ACRF Rational Drug Discovery Centre, St Vincent's Institute, Melbourne, Vic., Australia; Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Melbourne, Vic., Australia
| | - Michael W Parker
- ACRF Rational Drug Discovery Centre, St Vincent's Institute, Melbourne, Vic., Australia; Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Melbourne, Vic., Australia
| | - Matthias Ernst
- Cancer and Inflammation Program, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Vic., Australia
| | - Ashwini L Chand
- Cancer and Inflammation Program, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Vic., Australia.
| |
Collapse
|
45
|
Lin S, Yang L, Yao Y, Xu L, Xiang Y, Zhao H, Wang L, Zuo Z, Huang X, Zhao C. Flubendazole demonstrates valid antitumor effects by inhibiting STAT3 and activating autophagy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:293. [PMID: 31287013 PMCID: PMC6615228 DOI: 10.1186/s13046-019-1303-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/30/2019] [Indexed: 12/21/2022]
Abstract
Background Signal transducer and activator of transcription 3 (STAT3) is an oncogene, which upregulates in approximately 70% of human cancers. Autophagy is an evolutionarily conserved process which maintains cellular homeostasis and eliminates damaged cellular components. Moreover, the STAT3 signaling pathway, which may be triggered by cancer cells, has been implicated in the autophagic process. Methods In this study, we found that the anthelmintic flubendazole exerts potent antitumor activity in three human colorectal cancer (CRC) cell lines and in the nude mouse model. The inhibition of cell proliferation in vitro by flubendazole was evaluated using a clonogenic assay and the MTT assay. Western blot analysis, flow cytometry analysis, siRNA growth experiment and cytoplasmic and nuclear protein extraction were used to investigate the mechanisms of inhibiting STAT3 signaling and activation of autophagy induced by flubendazole. Additionally, the expression of STAT3 and mTOR was analyzed in paired colorectal cancer and normal tissues collected from clinical patients. Results Flubendazole blocked the IL6-induced nuclear translocation of STAT3, which led to inhibition of the transcription of STAT3 target genes, such as MCL1, VEGF and BIRC5. In addition, flubendazole also reduced the expression of P-mTOR, P62, BCL2, and upregulated Beclin1 and LC3-I/II, which are major autophagy-related genes. These processes induced potent cell apoptosis in CRC cells. In addition, flubendazole displayed a synergistic effect with the chemotherapeutic agent 5-fluorouracil in the treatment of CRC. Conclusions Taken together, these results indicate that flubendazole exerts antitumor activities by blocking STAT3 signaling and inevitably affects the autophagy pathway. Flubendazole maybe a novel anticancer drug and offers a distinctive therapeutic strategy in neoadjuvant chemotherapy of CRC. Electronic supplementary material The online version of this article (10.1186/s13046-019-1303-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shichong Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People's Republic of China.,The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Lehe Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People's Republic of China.,The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Yulei Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People's Republic of China.,The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Lingyuan Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People's Republic of China.,The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Youqun Xiang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Haiyang Zhao
- The Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Liangxing Wang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Zhigui Zuo
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People's Republic of China.
| | - Xiaoying Huang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People's Republic of China.
| | - Chengguang Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People's Republic of China.
| |
Collapse
|
46
|
Das M, Kandimalla R, Gogoi B, Dutta KN, Choudhury P, Devi R, Dutta PP, Talukdar NC, Samanta SK. Mahanine, A dietary phytochemical, represses mammary tumor burden in rat and inhibits subtype regardless breast cancer progression through suppressing self-renewal of breast cancer stem cells. Pharmacol Res 2019; 146:104330. [PMID: 31251988 DOI: 10.1016/j.phrs.2019.104330] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 01/28/2023]
Abstract
Mahanine (MH), a carbazole alkaloid isolated from an edible plant (Murraya koenigii), potentially inhibits the growth of altered subtypes of breast cancer cells in vitro and significantly reduced the mammary tumor burden in N-Methyl-N-nitrosourea (MNU) induced rat. The experimental results showed that 20-25 μM of MH for 24 h of treatment was very potent to reduce the cell proliferation through apoptosis with arresting the cells in G0/G1 in both ER+/p53WT MCF-7 and triple negative/p53Mut MDA-MB-231 cells. On the other hand, 10-15 μM of MH exposure to those two cell lines, caused inhibition of mammosphere formation and reduction of CD44high/CD24low/epithelial-specific antigen-positive (ESA+) population, which ultimately led to loss of self-renewal ability of breast cancer stem cells. Further, in vivo observation indicated that intraperitoneal injection of MH for four weeks with a dose of 50 mg/kg body weight thrice in a week, significantly (P = 0.03) reduced the mammary tumor weight in MNU induced rat. In conclusion, this study provides the novel insight into the mechanism of MH mediated growth arrest in subtype irrespective breast cancer progression.
Collapse
Affiliation(s)
- Momita Das
- Drug Discovery Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati-781035, Assam, India
| | - Raghuram Kandimalla
- Drug Discovery Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati-781035, Assam, India
| | - Bhaskarjyoti Gogoi
- Drug Discovery Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati-781035, Assam, India
| | - Krishna Nayani Dutta
- Drug Discovery Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati-781035, Assam, India
| | - Paramita Choudhury
- Drug Discovery Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati-781035, Assam, India
| | - Rajlakshmi Devi
- Drug Discovery Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati-781035, Assam, India
| | - Partha Pratim Dutta
- Drug Discovery Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati-781035, Assam, India
| | - Narayan Chandra Talukdar
- Drug Discovery Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati-781035, Assam, India.
| | - Suman Kumar Samanta
- Drug Discovery Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati-781035, Assam, India.
| |
Collapse
|
47
|
Qin JJ, Yan L, Zhang J, Zhang WD. STAT3 as a potential therapeutic target in triple negative breast cancer: a systematic review. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:195. [PMID: 31088482 PMCID: PMC6518732 DOI: 10.1186/s13046-019-1206-z] [Citation(s) in RCA: 261] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 05/02/2019] [Indexed: 12/24/2022]
Abstract
Triple negative breast cancer (TNBC), which is typically lack of expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), represents the most aggressive and mortal subtype of breast cancer. Currently, only a few treatment options are available for TNBC due to the absence of molecular targets, which underscores the need for developing novel therapeutic and preventive approaches for this disease. Recent evidence from clinical trials and preclinical studies has demonstrated a pivotal role of signal transducer and activator of transcription 3 (STAT3) in the initiation, progression, metastasis, and immune evasion of TNBC. STAT3 is overexpressed and constitutively activated in TNBC cells and contributes to cell survival, proliferation, cell cycle progression, anti-apoptosis, migration, invasion, angiogenesis, chemoresistance, immunosuppression, and stem cells self-renewal and differentiation by regulating the expression of its downstream target genes. STAT3 small molecule inhibitors have been developed and shown excellent anticancer activities in in vitro and in vivo models of TNBC. This review discusses the recent advances in the understanding of STAT3, with a focus on STAT3’s oncogenic role in TNBC. The current targeting strategies and representative small molecule inhibitors of STAT3 are highlighted. We also propose potential strategies that can be further examined for developing more specific and effective inhibitors for TNBC prevention and therapy.
Collapse
Affiliation(s)
- Jiang-Jiang Qin
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China.
| | - Li Yan
- School of Pharmacy, Naval Medical University, 325 Guohe Road, Yangpu District, Shanghai, 200433, China
| | - Jia Zhang
- Shanxi Institute of Traditional Chinese Medicine, Taiyuan, 030012, China
| | - Wei-Dong Zhang
- School of Pharmacy, Naval Medical University, 325 Guohe Road, Yangpu District, Shanghai, 200433, China. .,Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|