1
|
Li W, Liu N, Chen M, Liu D, Liu S. Metformin as an immunomodulatory agent in enhancing head and neck squamous cell carcinoma therapies. Biochim Biophys Acta Rev Cancer 2025; 1880:189262. [PMID: 39827973 DOI: 10.1016/j.bbcan.2025.189262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Head and neck squamous cell carcinoma (HNSCC) remains a significant clinical challenge due to its aggressive behavior and poor prognosis, making the development of novel therapeutics with enhanced efficacy and minimal side effects critical. Metformin, a widely used antidiabetic agent, has recently emerged as a potential adjunctive therapy for HNSCC, exhibiting both direct anti-tumor and immunomodulatory effects. This review comprehensively explores the multifaceted role of metformin in shaping the tumor immune microenvironment within HNSCC. We emphasize its pivotal role in modulating immune cell populations and its potential for synergistic action with immunotherapeutic strategies. Furthermore, we address the current challenges associated with optimizing dosing regimens, identifying predictive biomarkers, and integrating metformin with immunotherapy. By dissecting these aspects, this review aims to pave the way for the development of personalized HNSCC treatment strategies that fully exploit the therapeutic potential of metformin.
Collapse
Affiliation(s)
- Wenting Li
- Department of Dental Materials, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang 110002, Liaoning, China
| | - Nanshu Liu
- Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang 110002, Liaoning, China
| | - Mingwei Chen
- Department of Dental Materials, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang 110002, Liaoning, China
| | - Dongjuan Liu
- Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang 110002, Liaoning, China.
| | - Sai Liu
- Department of Dental Materials, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang 110002, Liaoning, China.
| |
Collapse
|
2
|
Xiong N, Wang Y, Jiang J. USP5 Promotes Head and Neck Squamous Cell Carcinoma Progression via mTOR Signaling Pathway. Cancer Med 2025; 14:e70752. [PMID: 40066708 PMCID: PMC11894462 DOI: 10.1002/cam4.70752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/19/2025] [Accepted: 02/26/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a highly aggressive malignancy characterized by limited prognostic markers and treatment options, contributing to high mortality rates. While Ubiquitin-specific peptidase 5 (USP5) has been implicated in various cancers, its role in HNSCC remains poorly understood. AIMS This study aims to investigate the role of USP5 in the progression of HNSCC and explore its potential as both a prognostic biomarker and a therapeutic target. MATERIALS & METHODS This work utilized single-cell transcriptomic analysis with the Scissor algorithm to identify distinct epithelial subpopulations, particularly focusing on the Stress subpopulation that exhibited significant upregulation of USP5. Validation was conducted using tissue microarray (TMA) analysis and immunohistochemistry (IHC) to compare USP5 expression levels in HNSCC tissues versus adjacent normal tissues. Furthermore, RNA interference (RNAi) experiments were performed to knock down USP5 expression, assessing its effects on tumor cell behavior, including proliferation, migration, and invasion, as well as the regulation of mTORC1 and NF-κB signaling pathways. RESULTS This study revealed that the Stress subpopulation, characterized by USP5 upregulation, was associated with enhanced tumor cell proliferation, migration, and invasion. TMA and IHC analyses confirmed that USP5 expression was significantly higher in HNSCC tissues compared to normal tissues, correlating with poor patient prognosis. Additionally, RNAi-mediated knockdown of USP5 led to reduced tumor cell activities and downregulation of the mTORC1 and NF-κB signaling pathways. DISCUSSION The findings suggest that USP5 plays a critical role in driving HNSCC progression. Its overexpression in aggressive tumor subpopulations and association with poor clinical outcomes highlight its potential utility as both a prognostic biomarker and a therapeutic target. The observed effects on cell behavior and oncogenic signaling pathways provide mechanistic insights into how USP5 for HNSCC therapy. CONCLUSIONS This study establishes USP5 as a key driver of HNSCC progression, underscoring its potential role in prognosis and therapy. Targeting USP5 may offer novel treatment strategies for HNSCC, addressing the urgent need for effective therapeutic interventions in this aggressive malignancy.
Collapse
Affiliation(s)
- Ni Xiong
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of StomatologyGuanghua School of Stomatology, Sun Yat‐Sen UniversityGuangzhouChina
| | - Yue Wang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of StomatologyGuanghua School of Stomatology, Sun Yat‐Sen UniversityGuangzhouChina
| | - Junhong Jiang
- Department of StomatologyJiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical CollegeNanchangChina
| |
Collapse
|
3
|
Xu J, You Z, Zhu Z, Liu M, Zhang Z, Xu P, Dong J, Huang Y, Wang C, Qin H. Integrative analysis of m7G methylation-associated genes prognostic signature with immunotherapy and identification of LARP1 as a key oncogene in head and neck squamous cell carcinoma. Front Immunol 2025; 16:1520070. [PMID: 40018039 PMCID: PMC11864954 DOI: 10.3389/fimmu.2025.1520070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/21/2025] [Indexed: 03/01/2025] Open
Abstract
Background N7-methylguanosine (m7G) methylation is an RNA modification associated with cancer progression, but its specific role in head and neck squamous cell carcinoma (HNSCC) remains unclear. Methods This study analyzed the differential expression of m7G-related genes (m7GRGs) in HNSCC using the TCGA-HNSCC dataset, identifying key pathways associated with the cell cycle, DNA replication, and focal adhesion. A LASSO-Cox regression model was constructed based on four m7GRGs (EIF3D, EIF1, LARP1, and METTL1) and validated with GEO datasets and clinical samples. Further validation of gene upregulation in HNSCC tissues was conducted using RT-qPCR and immunohistochemistry, while the role of LARP1 in HNSCC cells was assessed via knockout experiments. Results The constructed model demonstrated strong predictive performance, with the risk score significantly correlating with prognosis, immune infiltration, and drug sensitivity. An external dataset and clinical specimens further confirmed the model's predictive accuracy for immunotherapy response. Additionally, two regulatory axes-LINC00707/hsa-miR-30b-5p/LARP1 and SNHG16/hsa-miR-30b-5p/LARP1-were identified. LARP1 knockout experiments revealed that suppressing LARP1 markedly inhibited HNSCC cell proliferation, migration, and invasion. Conclusion The m7GRG-based prognostic model developed in this study holds strong clinical potential for predicting prognosis and therapeutic responses in HNSCC. The identification of LARP1 and its related regulatory pathways offers new avenues for targeted therapy in HNSCC.
Collapse
Affiliation(s)
- Juan Xu
- Department of Oncology, Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Zihao You
- Anhui Medical University, Hefei, China
| | | | - Min Liu
- Emergency Department, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zheng Zhang
- Stomatological Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Panpan Xu
- Department of Otolaryngology Head and Neck Surgery, Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Juanjuan Dong
- Department of Oncology, Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Yuting Huang
- Department of Oncology, Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Chao Wang
- Department of Oncology, Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Haotian Qin
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
4
|
Sun M, Zhan N, Yang Z, Zhang X, Zhang J, Peng L, Luo Y, Lin L, Lou Y, You D, Qiu T, Liu Z, Wang Q, Liu Y, Sun P, Yu M, Wang H. Cuproptosis-related lncRNA JPX regulates malignant cell behavior and epithelial-immune interaction in head and neck squamous cell carcinoma via miR-193b-3p/PLAU axis. Int J Oral Sci 2024; 16:63. [PMID: 39511134 PMCID: PMC11543849 DOI: 10.1038/s41368-024-00314-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 11/15/2024] Open
Abstract
The development, progression, and curative efficacy of head and neck squamous cell carcinoma (HNSCC) are influenced by complex interactions between epithelial and immune cells. Nevertheless, the specific changes in the nature of these interactions and their underlying molecular mechanisms in HNSCC are not yet fully understood. Cuproptosis, a form of programmed cell death that is dependent on copper, has been implicated in cancer pathogenesis. However, the understanding of cuproptosis in the context of HNSCC remains limited. In this study, we have discovered that cuproptosis-related long non-coding RNAs (CRLs) known as JPX play a role in promoting the expression of the oncogene urokinase-type plasminogen activator (PLAU) by competitively binding to miR-193b-3p in HNSCC. The increased activity of the JPX/miR-193b-3p/PLAU axis in malignant epithelial cells leads to enhanced cell proliferation, migration, and invasion in HNSCC. Moreover, the overexpression of PLAU in tumor epithelial cells facilitates its interaction with the receptor PLAUR, predominantly expressed on macrophages, thereby influencing the abnormal epithelial-immune interactome in HNSCC. Notably, the JPX inhibitor Axitinib and the PLAU inhibitor Palbociclib may not only exert their effects on the JPX/miR-193b-3p/PLAU axis that impacts the malignant tumor behaviors and the epithelial-immune cell interactions but also exhibit synergistic effects in terms of suppressing tumor cell growth and arresting cell cycle by targeting epidermal growth factor receptor (EGFR) and cyclin-dependent kinase (CDK4/6) for the treatment of HNSCC.
Collapse
Affiliation(s)
- Mouyuan Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Ning Zhan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Zhan Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Xiaoting Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Jingyu Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Lianjie Peng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Yaxian Luo
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Lining Lin
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Yiting Lou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Dongqi You
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Tao Qiu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Zhichao Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Qianting Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Yu Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China.
| | - Ping Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China.
| | - Mengfei Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China.
| | - Huiming Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| |
Collapse
|
5
|
Li D, Yu Q, Wu R, Tuo Z, Wang J, Ye L, Shao F, Chaipanichkul P, Yoo KH, Wei W, Okoli UA, Deng S, Ke M, Cho WC, Heavey S, Feng D. Interactions between oxidative stress and senescence in cancer: Mechanisms, therapeutic implications, and future perspectives. Redox Biol 2024; 73:103208. [PMID: 38851002 PMCID: PMC11201350 DOI: 10.1016/j.redox.2024.103208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/04/2024] [Accepted: 05/23/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Recently, numerous studies have reported the interaction between senescence and oxidative stress in cancer. However, there is a lack of a comprehensive understanding of the precise mechanisms involved. AIM Therefore, our review aims to summarize the current findings and elucidate by presenting specific mechanisms that encompass functional pathways, target genes, and related aspects. METHODS Pubmed and Web of Science databases were retrieved to search studies about the interaction between senescence and oxidative stress in cancer. Relevant publications in the reference list of enrolled studies were also checked. RESULTS In carcinogenesis, oxidative stress-induced cellular senescence acts as a barrier against the transformation of stimulated cells into cancer cells. However, the senescence-associated secretory phenotype (SASP) is positively linked to tumorigenesis. In the cancer progression stage, targeting specific genes or pathways that promote oxidative stress-induced cellular senescence can suppress cancer progression. In terms of treatment, many current clinical therapies combine with novel drugs to overcome resistance and reduce side effects by attenuating oxidative stress-induced senescence. Notably, emerging drugs control cancer development by enhancing oxidative stress-induced senescence. These studies highlight the complacted effects of the interplay between oxidative stress and senescence at different cancer stages and among distinct cell populations. Future research should focus on characterizing the roles of distinct senescent cell types in various tumor stages and identifying the specific components of SASP. CONCLUDSION We've summarized the mechanisms of senescence and oxidative stress in cancer and provided illustrative figures to guide future research in this area.
Collapse
Affiliation(s)
- Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qingxin Yu
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo City, Zhejiang Province, 315211, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Fanglin Shao
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | | | - Koo Han Yoo
- Department of Urology, Kyung Hee University, South Korea
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Uzoamaka Adaobi Okoli
- Division of Surgery & Interventional Science, University College London, London, UK; Basic and Translational Cancer Research Group, Department of Pharmacology and Therapeutics, College of Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Shi Deng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mang Ke
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China.
| | - Susan Heavey
- Division of Surgery & Interventional Science, University College London, London, UK.
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China; Division of Surgery & Interventional Science, University College London, London, UK; Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China.
| |
Collapse
|
6
|
Dong L, Liu C, Sun H, Wang M, Sun M, Zheng J, Yu X, Shi R, Wang B, Zhou Q, Chen Z, Xing B, Wang Y, Yao X, Mei M, Ren Y, Zhou X. Targeting STAT3 potentiates CDK4/6 inhibitors therapy in head and neck squamous cell carcinoma. Cancer Lett 2024; 593:216956. [PMID: 38735381 DOI: 10.1016/j.canlet.2024.216956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Anti-CDK4/6 therapy has been employed for the treatment for head and neck squamous cell carcinoma (HNSCC) with CDK4/6 hyperactivation, but the response rate is relatively low. In this study, we first showed that CDK4 and CDK6 was over-expressed and conferred poor prognosis in HNSCC. Moreover, in RB-positive HNSCC, STAT3 signaling was activated induced by CDK4/6 inhibition and STAT3 promotes RB deficiency by upregulation of MYC. Thirdly, the combination of Stattic and CDK4/6 inhibitor results in striking anti-tumor effect in vitro and in Cal27 derived animal models. Additionally, phospho-STAT3 level negatively correlates with RB expression and predicts poor prognosis in patients with HNSCC. Taken together, our findings suggest an unrecognized function of STAT3 confers to CDK4/6 inhibitors resistance and presenting a promising combination strategy for patients with HNSCC.
Collapse
Affiliation(s)
- Lin Dong
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Chao Liu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Haoyang Sun
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Mo Wang
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Mengyu Sun
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Jianwei Zheng
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaoxue Yu
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Rong Shi
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Bo Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Qianqian Zhou
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Zhiqiang Chen
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Bofan Xing
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Yu Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Xiaofeng Yao
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Mei Mei
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Yu Ren
- Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China; Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Xuan Zhou
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China.
| |
Collapse
|
7
|
Chaudhary S, Siddiqui JA, Appadurai MI, Maurya SK, Murakonda SP, Blowers E, Swanson BJ, Nasser MW, Batra SK, Lakshmanan I, Ganti AK. Dissecting the MUC5AC/ANXA2 signaling axis: implications for brain metastasis in lung adenocarcinoma. Exp Mol Med 2024; 56:1450-1460. [PMID: 38825648 PMCID: PMC11263355 DOI: 10.1038/s12276-024-01255-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 06/04/2024] Open
Abstract
Non-small cell lung carcinoma (NSCLC) exhibits a heightened propensity for brain metastasis, posing a significant clinical challenge. Mucin 5ac (MUC5AC) plays a pivotal role in the development of lung adenocarcinoma (LUAD); however, its role in causing brain metastases remains unknown. In this study, we aimed to investigate the contribution of MUC5AC to brain metastasis in patients with LUAD utilizing various brain metastasis models. Our findings revealed a substantial increase in the MUC5AC level in LUAD brain metastases (LUAD-BrM) samples and brain-tropic cell lines compared to primary samples or parental control cell lines. Intriguingly, depletion of MUC5AC in brain-tropic cells led to significant reductions in intracranial metastasis and tumor growth, and improved survival following intracardiac injection, in contrast to the observations in the control groups. Proteomic analysis revealed that mechanistically, MUC5AC depletion resulted in decreased expression of metastasis-associated molecules. There were increases in epithelial-to-mesenchymal transition, tumor invasiveness, and metastasis phenotypes in tumors with high MUC5AC expression. Furthermore, immunoprecipitation and proteomic analysis revealed a novel interaction of MUC5AC with Annexin A2 (ANXA2), which activated downstream matrix metalloproteases and facilitated extracellular matrix degradation to promote metastasis. Disrupting MUC5AC-ANXA2 signaling with a peptide inhibitor effectively abrogated the metastatic process. Additionally, treatment of tumor cells with an astrocyte-conditioned medium or the chemokine CCL2 resulted in upregulation of MUC5AC expression and enhanced brain colonization. In summary, our study demonstrates that the MUC5AC/ANXA2 signaling axis promotes brain metastasis, suggesting a potential therapeutic paradigm for LUAD patients with high MUC5AC expression.
Collapse
Affiliation(s)
- Sanjib Chaudhary
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
- Fred & Pamela Buffett Cancer Center University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Muthamil Iniyan Appadurai
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Swathi P Murakonda
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Elizabeth Blowers
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-1850, USA
| | - Ben J Swanson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198-1850, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
- Fred & Pamela Buffett Cancer Center University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
- Fred & Pamela Buffett Cancer Center University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
| | - Apar Kishor Ganti
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
- Fred & Pamela Buffett Cancer Center University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-1850, USA.
- Division of Oncology-Hematology, Department of Internal Medicine, VA Nebraska Western Iowa Health Care System, Omaha, NE, 68105-1850, USA.
| |
Collapse
|
8
|
Cui Y, Lv P, Zhang C. NSUN6 mediates 5-methylcytosine modification of METTL3 and promotes colon adenocarcinoma progression. J Biochem Mol Toxicol 2024; 38:e23749. [PMID: 38800929 DOI: 10.1002/jbt.23749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/12/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Colon adenocarcinoma (COAD) is a common and fatal malignant tumor of digestive system with complex etiology. 5-Methylcytosine (m5C) modification of RNA by the NSUN gene family (NSUN1-NSUN7) and DNMT2 reshape cell biology and regulate tumor development. However, the expression profile, prognostic significance and function of these m5C modifiers in COAD remain largely unclear. By mining multiple integrated tumor databases, we found that NSUN1, NSUN2, NSUN5, and NSUN6 were overexpressed in COAD tumor samples relative to normal samples. Clinically, high expression of NSUN6 was significantly associated with shorter survival (including both disease-free survival and overall survival) in COAD patients. NSUN6 was further confirmed to be upregulated at both tissue and cellular levels of COAD, suggesting that NSUN6 plays a critical role in disease progression. Through comprehensive gene enrichment analysis and cell-based functional validation, it was revealed that NSUN6 promoted the cell cycle progression and cell proliferation of COAD. Mechanistically, NSUN6 upregulates the expression of oncogenic METTL3 and catalyzes its m5C modification in COAD cells. Overexpression of METTL3 significantly relieved the cell cycle inhibition of COAD caused by NSUN6 deficiency. Furthermore, NSUN6 was negatively associated with the abundance of infiltrating immune cells in COAD tumors, such as activated B cells, natural killer cells, effector memory CD8 T cells, and regulatory T cells. Importantly, pan-cancer analysis further uncovered that NSUN6 was dysregulated and heterogeneous in various tumors. Thus our findings extend the role of m5C transferase in COAD and suggest that NSUN6 is a potential biomarker and target for this malignancy.
Collapse
Affiliation(s)
- Yuanbo Cui
- Department of Translational Medicine Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Pengju Lv
- Department of Clinical Laboratory, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Chunyan Zhang
- Department of Clinical Laboratory, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Li S, Shi Y, Zhu J, Li J, Wang S, Liu C. Protective effect of oxytocin on vincristine-induced gastrointestinal dysmotility in mice. Front Pharmacol 2024; 15:1270612. [PMID: 38655179 PMCID: PMC11037254 DOI: 10.3389/fphar.2024.1270612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/26/2024] [Indexed: 04/26/2024] Open
Abstract
Aims: Vincristine (VCR), an antineoplastic drug, induces peripheral neuropathy characterized by nerve damage, limiting its use and reducing the quality of life of patients. VCR causes myenteric neuron damage, inhibits gastrointestinal motility, and results in constipation or paralytic ileus in patients. Oxytocin (OT) is an endogenous neuropeptide produced by the enteric nerve system, which regulates gastrointestinal motility and exerts neuroprotective effects. This study aimed to investigate whether OT can improve VCR-induced gastrointestinal dysmotility and evaluate the underlying mechanism. Methods: Mice were injected either with saline or VCR (0.1 mg/kg/d, i. p.) for 14 days, and OT (0.1 mg/kg/d, i.p.) was applied 1 h before each VCR injection. Gastrointestinal transit and the contractile activity of the isolated colonic segments were assessed. The concentration of OT in plasma was measured using ELISA. Immunofluorescence staining was performed to analyze myenteric neurons and reactive oxygen species (ROS) levels. Furthermore, the indicators of oxidative stress were detected. The protein expressions of Nrf2, ERK1/2, P-ERK1/2, p38, and P-p38 in the colon were tested using Western blot. Results: VCR reduced gastrointestinal transit and the responses of isolated colonic segments to electrical field stimulation and decreased the amount of neurons. Furthermore, VCR reduced neuronal nitric oxide synthase and choline acetyltransferase immunopositive neurons in the colonic myenteric nerve plexus. VCR increased the concentration of OT in plasma. Exogenous OT pretreatment ameliorated the inhibition of gastrointestinal motility and the injury of myenteric neurons caused by VCR. OT pretreatment also prevented the decrease of superoxide dismutase activity, glutathione content, total antioxidative capacity, and Nrf2 expression, the increase of ROS levels, and the phosphorylation of ERK1/2 and p38 MAPK following VCR treatment. Conclusion: Our results suggest that OT pretreatment can protect enteric neurons from VCR-induced injury by inhibiting oxidative stress and MAPK pathways (ERK1/2, p38). This may be the underlying mechanism by which it alleviates gastrointestinal dysmotility.
Collapse
Affiliation(s)
- Shuang Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, China
| | - Yao Shi
- Ministry of Education Key Laboratory of Protein, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jianchun Zhu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, China
| | - Jingxin Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, China
| | - Shuanglian Wang
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Chuanyong Liu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, China
- Provincial Key Lab of Mental Disorders, Shandong University, Jinan, China
| |
Collapse
|
10
|
Li R, Wang Q, Zhao Y, Zhu Y, Wang X. Palbociclib inhibits the progression of head and neck cancer and improves the Cetuximab response under specific condition in vitro and in vivo. Mol Biol Rep 2024; 51:455. [PMID: 38536540 DOI: 10.1007/s11033-024-09423-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/06/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND In head and neck squamous cell carcinoma (HNSCC) with human papillomavirus (HPV)-negative, deregulation of cell cycle is partly due to inactivation of p16INK4 and overexpression of cyclin D1. Here we investigated the in vitro and in vivo effects of the CDK4/6 inhibitor Palbociclib alone or combined with EGFR inhibitor Cetuximab in HNSCC. METHODS AND RESULTS CCK-8, soft agar assay, colony formation assay, wound healing assay and transwell assay, β-galactosidase assay, western blotting, and cell-derived xenografts were used to investigated the in vitro and in vivo activity of drugs. Cell viability and colony formation decreased in a dose-dependent manner in Tu686, AMC-HN8, and Fadu cells under Palbociclib treatment. Palbociclib remarkably inhibited migration, invasion and the expression MMP-9 in HNSCC cells. Palbociclib also induced senescence. Palbociclib caused the dephosphorylation of RB but increased the cyclin D1 level in a dose-dependent manner. Moreover, combination with Cetuximab could significantly prevent the induction of cyclin D1 and activation of EGFR signals from Palbociclib treatment. Nevertheless, only within the range of certain concentrations, a synergistic inhibitory effect on cell growth was observed when combined with Palbociclib and Cetuximab. Although the synergistic effect in Palbociclib/Cetuximab combined therapy was comparable to that in traditional chemotherapeutic regimens (cisplatin/Cetuximab) in Fadu tumor xenograft, the combination therapy was less active than Cetuximab monotherapy in Tu686 tumor xenograft. CONCLUSION In HPV-negative HNSCC, CDK4/6 inhibitor shows promising anti-tumor effects, which exhibits a synergistic effect when combined with EGFR inhibitor only in specific drug concentration and mouse model.
Collapse
Affiliation(s)
- Ruichen Li
- Department of Radiation Oncology, Eye & ENT Hospital of Fudan University, 83 Fenyang Road, Shanghai, 200031, China
| | - Qi Wang
- Department of Plastic Surgery, Jiahui International Hospital, Jiahui Health, Shanghai, 200031, China
| | - Yang Zhao
- Department of Radiation Oncology, Eye & ENT Hospital of Fudan University, 83 Fenyang Road, Shanghai, 200031, China
| | - Yi Zhu
- Department of Radiation Oncology, Eye & ENT Hospital of Fudan University, 83 Fenyang Road, Shanghai, 200031, China.
| | - Xiaoshen Wang
- Department of Radiation Oncology, Eye & ENT Hospital of Fudan University, 83 Fenyang Road, Shanghai, 200031, China.
| |
Collapse
|
11
|
Zhang C, Cui Y. N6-methyladenosine-induced METTL1 promotes tumor proliferation via CDK4. Biol Chem 2024; 405:217-228. [PMID: 37694982 DOI: 10.1515/hsz-2023-0260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/24/2023] [Indexed: 09/12/2023]
Abstract
N6-methyladenosine (m6A) and N7-methylguanosine (m7G) modification of RNA represent two major intracellular post-transcriptional regulation modes of gene expression. However, the crosstalk of these two epigenetic modifications in tumorigenesis remain poorly understood. Here, we show that m6A methyltransferase METTL3-mediated METTL1 promotes cell proliferation of head and neck squamous cell carcinoma (HNSC) through m7G modification of the cell-cycle regulator CDK4. By mining the database GEPIA, METTL1 was shown to be up-regulated in a broad spectrum of human cancers and correlated with patient clinical outcomes, particularly in HNSC. Mechanistically, METTL3 methylates METTL1 mRNA and mediates its elevation in HNSC via m6A. Functionally, over-expression of METTL1 enhances HNSC cell growth and facilitates cell-cycle progress, while METTL1 knockdown represses these biological behaviors. Moreover, METTL1 physically binds to CDK4 transcript and regulates its m7G modification level to stabilize CDK4. Importantly, the inhibitory effects of METTL1 knockdown on the proliferation of HNSC, esophageal cancer (ESCA), stomach adenocarcinoma (STAD), and colon adenocarcinoma (COAD) were significantly mitigated by over-expression of CDK4. Taken together, this study expands the understanding of epigenetic mechanisms involved in tumorigenesis and identifies the METTL1/CDK4 axis as a potential therapeutic target for digestive system tumors.
Collapse
Affiliation(s)
- Chunyan Zhang
- Department of Clinical Laboratory, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Yuanbo Cui
- Translational Medicine Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| |
Collapse
|
12
|
Files R, Santos C, Queiroga FL, Silva F, Delgado L, Pires I, Prada J. Investigating Cox-2 and EGFR as Biomarkers in Canine Oral Squamous Cell Carcinoma: Implications for Diagnosis and Therapy. Curr Issues Mol Biol 2024; 46:485-497. [PMID: 38248333 PMCID: PMC10814971 DOI: 10.3390/cimb46010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common and highly aggressive dog tumor known for its local invasiveness and metastatic potential. Understanding the molecular mechanisms driving the development and progression of OSCC is crucial for improving diagnostic and therapeutic strategies. Additionally, spontaneous oral squamous cell carcinomas in dogs are an excellent model for studying human counterparts. In this study, we aimed to investigate the significance of two key molecular components, Cox-2 and EGFR, in canine OSCC. We examined 34 tumor sections from various dog breeds to assess the immunoexpression of Cox-2 and EGFR. Our findings revealed that Cox-2 was highly expressed in 70.6% of cases, while EGFR overexpression was observed in 44.1%. Cox-2 overexpression showed association with histological grade of malignancy (HGM) (p = 0.006) and EGFR with vascular invasion (p = 0.006). COX-2 and EGFR concurrent expression was associated with HGM (p = 0.002), as well as with the presence of vascular invasion (p = 0.002). These data suggest that Cox-2 and EGFR could be promising biomarkers and potential therapeutic targets, opening avenues for developing novel treatment strategies for dogs affected by OSCC. Further studies are warranted to delve deeper into these findings and translate them into clinical practice.
Collapse
Affiliation(s)
- Rita Files
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (C.S.); (F.L.Q.); (F.S.); (J.P.)
| | - Catarina Santos
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (C.S.); (F.L.Q.); (F.S.); (J.P.)
| | - Felisbina L. Queiroga
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (C.S.); (F.L.Q.); (F.S.); (J.P.)
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Centre for the Study of Animal Science, CECA-ICETA, University of Porto, 4200-427 Porto, Portugal
| | - Filipe Silva
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (C.S.); (F.L.Q.); (F.S.); (J.P.)
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Leonor Delgado
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences—CESPU (IUCS-CESPU), 4585-116 Gandra, Portugal;
- Pathology Department, INNO Serviços Especializados em Veterinária, 4710-503 Braga, Portugal
| | - Isabel Pires
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (C.S.); (F.L.Q.); (F.S.); (J.P.)
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Justina Prada
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (C.S.); (F.L.Q.); (F.S.); (J.P.)
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|
13
|
Ziegler DV, Parashar K, Fajas L. Beyond cell cycle regulation: The pleiotropic function of CDK4 in cancer. Semin Cancer Biol 2024; 98:51-63. [PMID: 38135020 DOI: 10.1016/j.semcancer.2023.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/02/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
CDK4, along with its regulatory subunit, cyclin D, drives the transition from G1 to S phase, during which DNA replication and metabolic activation occur. In this canonical pathway, CDK4 is essentially a transcriptional regulator that acts through phosphorylation of retinoblastoma protein (RB) and subsequent activation of the transcription factor E2F, ultimately triggering the expression of genes involved in DNA synthesis and cell cycle progression to S phase. In this review, we focus on the newly reported functions of CDK4, which go beyond direct regulation of the cell cycle. In particular, we describe the extranuclear roles of CDK4, including its roles in the regulation of metabolism, cell fate, cell dynamics and the tumor microenvironment. We describe direct phosphorylation targets of CDK4 and decipher how CDK4 influences these physiological processes in the context of cancer.
Collapse
Affiliation(s)
- Dorian V Ziegler
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Kanishka Parashar
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Lluis Fajas
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland; INSERM, Montpellier, France.
| |
Collapse
|
14
|
Silva JPN, Pinto B, Monteiro L, Silva PMA, Bousbaa H. Combination Therapy as a Promising Way to Fight Oral Cancer. Pharmaceutics 2023; 15:1653. [PMID: 37376101 PMCID: PMC10301495 DOI: 10.3390/pharmaceutics15061653] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Oral cancer is a highly aggressive tumor with invasive properties that can lead to metastasis and high mortality rates. Conventional treatment strategies, such as surgery, chemotherapy, and radiation therapy, alone or in combination, are associated with significant side effects. Currently, combination therapy has become the standard practice for the treatment of locally advanced oral cancer, emerging as an effective approach in improving outcomes. In this review, we present an in-depth analysis of the current advancements in combination therapies for oral cancer. The review explores the current therapeutic options and highlights the limitations of monotherapy approaches. It then focuses on combinatorial approaches that target microtubules, as well as various signaling pathway components implicated in oral cancer progression, namely, DNA repair players, the epidermal growth factor receptor, cyclin-dependent kinases, epigenetic readers, and immune checkpoint proteins. The review discusses the rationale behind combining different agents and examines the preclinical and clinical evidence supporting the effectiveness of these combinations, emphasizing their ability to enhance treatment response and overcome drug resistance. Challenges and limitations associated with combination therapy are discussed, including potential toxicity and the need for personalized treatment approaches. A future perspective is also provided to highlight the existing challenges and possible resolutions toward the clinical translation of current oral cancer therapies.
Collapse
Affiliation(s)
- João P. N. Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
| | - Bárbara Pinto
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
| | - Luís Monteiro
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
| | - Patrícia M. A. Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal
| | - Hassan Bousbaa
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
| |
Collapse
|
15
|
Halder S, Basu S, Lal S, Ganti AK, Batra SK, Seshacharyulu P. Targeting the EGFR signaling pathway in cancer therapy: What's new in 2023? Expert Opin Ther Targets 2023; 27:305-324. [PMID: 37243489 PMCID: PMC10330690 DOI: 10.1080/14728222.2023.2218613] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
INTRODUCTION Epidermal growth factor receptor (EGFR) is frequently amplified, overexpressed, and mutated in multiple cancers. In normal cell physiology, EGFR signaling controls cellular differentiation, proliferation, growth, and survival. During tumorigenesis, mutations in EGFR lead to increased kinase activity supporting survival, uncontrolled proliferation, and migratory functions of cancer cells. Molecular agents targeting the EGFR pathway have been discovered, and their efficacy has been demonstrated in clinical trials. To date, 14 EGFR-targeted agents have been approved for cancer treatments. AREAS COVERED This review describes the newly identified pathways in EGFR signaling, the evolution of novel EGFR-acquired and innate resistance mechanisms, mutations, and adverse side effects of EGFR signaling inhibitors. Subsequently, the latest EGFR/panEGFR inhibitors in preclinical and clinical studies have been summarized. Finally, the consequences of combining immune checkpoint inhibitors and EGFR inhibitors have also been discussed. EXPERT OPINION As new mutations are threatened against EGFR-tyrosine kinase inhibitors (TKIs), we suggest the development of new compounds targeting specific mutations without inducing new mutations. We discuss potential future research on developing EGFR-TKIs specific for exact allosteric sites to overcome acquired resistance and reduce adverse events. The rising trend of EGFR inhibitors in the pharma market and their economic impact on real-world clinical practice are discussed.
Collapse
Affiliation(s)
- Sushanta Halder
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Soumi Basu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Shobhit Lal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Apar K. Ganti
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
- Eppley Institute for Research in Cancer and Allied Diseases
- Division of Oncology-Hematology, Department of Internal Medicine, VA Nebraska Western Iowa Health Care System, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
- Fred & Pamela Buffett Cancer Center University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
- Eppley Institute for Research in Cancer and Allied Diseases
- Fred & Pamela Buffett Cancer Center University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
- Fred & Pamela Buffett Cancer Center University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| |
Collapse
|
16
|
Romaniello D, Gelfo V, Pagano F, Sgarzi M, Morselli A, Girone C, Filippini DM, D’Uva G, Lauriola M. IL-1 and senescence: Friends and foe of EGFR neutralization and immunotherapy. Front Cell Dev Biol 2023; 10:1083743. [PMID: 36712972 PMCID: PMC9877625 DOI: 10.3389/fcell.2022.1083743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
Historically, senescence has been considered a safe program in response to multiple stresses in which cells undergo irreversible growth arrest. This process is characterized by morphological and metabolic changes, heterochromatin formation, and secretion of inflammatory components, known as senescence-associated secretory phenotype (SASP). However, recent reports demonstrated that anti-cancer therapy itself can stimulate a senescence response in tumor cells, the so-called therapy-induced senescence (TIS), which may represent a temporary bypass pathway that promotes drug resistance. In this context, several studies have shown that EGFR blockage, by TKIs or moAbs, promotes TIS by increasing IL-1 cytokine production, thus pushing cells into a "pseudo-senescent" state. Today, senotherapeutic agents are emerging as a potential strategy in cancer treatment thanks to their dual role in annihilating senescent cells and simultaneously preventing their awakening into a resistant and aggressive form. Here, we summarize classic and recent findings about the cellular processes driving senescence and SASP, and we provide a state-of-the-art of the anti-cancer strategies available so far that exploits the activation and/or blockade of senescence-based mechanisms.
Collapse
Affiliation(s)
- Donatella Romaniello
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy,Centre for Applied Biomedical Research (CRBA), Bologna University Hospital Authority St. Orsola -Malpighi Polyclinic, Bologna, Italy
| | - Valerio Gelfo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy,Centre for Applied Biomedical Research (CRBA), Bologna University Hospital Authority St. Orsola -Malpighi Polyclinic, Bologna, Italy
| | - Federica Pagano
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Michela Sgarzi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Alessandra Morselli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Cinzia Girone
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Daria Maria Filippini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy,Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Gabriele D’Uva
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy,Centre for Applied Biomedical Research (CRBA), Bologna University Hospital Authority St. Orsola -Malpighi Polyclinic, Bologna, Italy,National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
| | - Mattia Lauriola
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy,Centre for Applied Biomedical Research (CRBA), Bologna University Hospital Authority St. Orsola -Malpighi Polyclinic, Bologna, Italy,*Correspondence: Mattia Lauriola,
| |
Collapse
|
17
|
Xue Y, Jiang X, Wang J, Zong Y, Yuan Z, Miao S, Mao X. Effect of regulatory cell death on the occurrence and development of head and neck squamous cell carcinoma. Biomark Res 2023; 11:2. [PMID: 36600313 PMCID: PMC9814270 DOI: 10.1186/s40364-022-00433-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/08/2022] [Indexed: 01/06/2023] Open
Abstract
Head and neck cancer is a malignant tumour with a high mortality rate characterized by late diagnosis, high recurrence and metastasis rates, and poor prognosis. Head and neck squamous cell carcinoma (HNSCC) is the most common type of head and neck cancer. Various factors are involved in the occurrence and development of HNSCC, including external inflammatory stimuli and oncogenic viral infections. In recent years, studies on the regulation of cell death have provided new insights into the biology and therapeutic response of HNSCC, such as apoptosis, necroptosis, pyroptosis, autophagy, ferroptosis, and recently the newly discovered cuproptosis. We explored how various cell deaths act as a unique defence mechanism against cancer emergence and how they can be exploited to inhibit tumorigenesis and progression, thus introducing regulatory cell death (RCD) as a novel strategy for tumour therapy. In contrast to accidental cell death, RCD is controlled by specific signal transduction pathways, including TP53 signalling, KRAS signalling, NOTCH signalling, hypoxia signalling, and metabolic reprogramming. In this review, we describe the molecular mechanisms of nonapoptotic RCD and its relationship to HNSCC and discuss the crosstalk between relevant signalling pathways in HNSCC cells. We also highlight novel approaches to tumour elimination through RCD.
Collapse
Affiliation(s)
- Yuting Xue
- grid.412651.50000 0004 1808 3502Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xuejiao Jiang
- grid.24696.3f0000 0004 0369 153XBeijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Junrong Wang
- grid.412651.50000 0004 1808 3502Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuxuan Zong
- Department of Breast Surgery, The First of hospital of Qiqihar, Qiqihar, China
| | - Zhennan Yuan
- grid.412651.50000 0004 1808 3502Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Susheng Miao
- grid.412651.50000 0004 1808 3502Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xionghui Mao
- grid.412651.50000 0004 1808 3502Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
18
|
Hu Z, Wen S, Huo Z, Wang Q, Zhao J, Wang Z, Chen Y, Zhang L, Zhou F, Guo Z, Liu H, Zhou S. Current Status and Prospects of Targeted Therapy for Osteosarcoma. Cells 2022; 11:3507. [PMID: 36359903 PMCID: PMC9653755 DOI: 10.3390/cells11213507] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 09/26/2023] Open
Abstract
Osteosarcoma (OS) is a highly malignant tumor occurring in bone tissue with a high propensity to metastasize, and its underlying mechanisms remain largely elusive. The OS prognosis is poor, and improving the survival of OS patients remains a challenge. Current treatment methods such as surgical approaches, chemotherapeutic drugs, and immunotherapeutic drugs remain ineffective. As research progresses, targeted therapy is gradually becoming irreplaceable. In this review, several treatment modalities for osteosarcoma, such as surgery, chemotherapy, and immunotherapy, are briefly described, followed by a discussion of targeted therapy, the important targets, and new technologies for osteosarcoma treatment.
Collapse
Affiliation(s)
- Zunguo Hu
- Department of Joint Surgery, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang 261061, China
| | - Shuang Wen
- Department of Joint Surgery, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang 261061, China
| | - Zijun Huo
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
| | - Qing Wang
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Jiantao Zhao
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
| | - Zihao Wang
- Department of Joint Surgery, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang 261061, China
| | - Yanchun Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
| | - Lingyun Zhang
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Fenghua Zhou
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Zhangyu Guo
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Huancai Liu
- Department of Joint Surgery, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang 261061, China
| | - Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
19
|
Yang P, Lian Q, Fu R, Ding GB, Amin S, Li Z, Li Z. Cucurbitacin E Triggers Cellular Senescence in Colon Cancer Cells via Regulating the miR-371b-5p/TFAP4 Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2936-2947. [PMID: 35192356 DOI: 10.1021/acs.jafc.1c07952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The induction of cellular senescence is considered as a potent strategy to suppress cancer progression. Cucurbitacin E (CE) belongs to the triterpenoids and has received substantial attention for its antineoplastic property. However, the function of CE on cellular senescence remained elusive. Herein, we revealed that CE significantly induced cellular senescence in colorectal cancer (CRC) cells. The CE effects on the cellular senescence in CRC cells were confirmed by observing the common features of the senescence, such as the enhanced activity of senescence-associated β-galactosidase, γ-H2AX positive staining, and upregulation of senescence-associated proteins including p53, p27, and p21. Moreover, CE exerted pro-senescent effects in CRC cells via attenuating the transcription factor activating enhancer-binding protein 4 (TFAP4) expression, and the ectopic expression of TFAP4 blocked the CE-induced senescence. Mechanistically, CE treatment caused a robust increase in miR-371b-5p, which markedly repressed TFAP4. In contrast, silencing of miR-371b-5p counteracted the percentages of CE-induced senescent cells from 37.49 ± 2.61 to 7.06 ± 0.91% in HCT-116 cells via derepressing TFAP4 to attenuate the expression of p53, p21, and p16. Altogether, these results demonstrated that dietary CE induces CRC cellular senescence via modulating the miR-371b-5p/TFAP4 axis and presents opportunities for potential therapeutic strategies against CRC.
Collapse
Affiliation(s)
- Peng Yang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Qing Lian
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Rong Fu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Guo-Bin Ding
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Sajid Amin
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Zongwei Li
- Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas 77030, United States
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
20
|
Pothuraju R, Pai P, Chaudhary S, Siddiqui JA, Cox JL, Kaur S, Rachagani S, Roy HK, Bouvet M, Batra SK. Depletion of transmembrane mucin 4 (Muc4) alters intestinal homeostasis in a genetically engineered mouse model of colorectal cancer. Aging (Albany NY) 2022; 14:2025-2046. [PMID: 35255004 PMCID: PMC8954958 DOI: 10.18632/aging.203935] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/21/2022] [Indexed: 11/28/2022]
Abstract
Mucins are components of the mucus layer overlying the intestinal epithelial cells, which maintains physiological homeostasis. Altered mucin expression is associated with disease progression. Expression of MUC4 decreases in colorectal cancer (CRC); however, its functional role and implications in the intestinal pathology in CRC are not studied well. Therefore, we generated a genetically engineered Muc4 knockout (Muc4-/-) CRC mouse model by crossing with Muc4-/- and Apcflox/flox mice in the presence of colon-specific inducible Cre. We observed that deficiency of Muc4 results in an increased number of macroscopic tumors in the colon and rectal region and leads to poor survival. Further, the absence of Muc4 was associated with goblet cell dysfunction where the expression of intestinal homeostasis molecules (Muc2 and Fam3D) was downregulated. Next, we also observed that loss of Muc4 showed reduced thickness of mucus layer, leading to infiltration of bacteria, reduction in anti-microbial peptides, and upregulation of pro-inflammatory cytokines. Further, Apc gene mutation results in activation of the Wnt/β-catenin signaling pathway that corroborated with an increased nuclear accumulation of β-catenin and activation of its target genes: cyclin D1 and c-Myc in Muc4-/- mice was observed. We conclude that the presence of Muc4 is essential for intestinal homeostasis, reduces tumor burden, and improves overall survival.
Collapse
Affiliation(s)
- Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Priya Pai
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sanjib Chaudhary
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jawed A Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jesse L Cox
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hemant K Roy
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael Bouvet
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA.,VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
21
|
Liang R. Letter to the editor regarding "Dual blockade of EGFR and CDK4/6 delays head and neck squamous cell carcinoma progression by inducing metabolic rewiring.". Cancer Lett 2022; 527:191-192. [PMID: 35115094 DOI: 10.1016/j.canlet.2021.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 12/11/2021] [Indexed: 11/16/2022]
Affiliation(s)
- Renba Liang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| |
Collapse
|
22
|
Chaudhary S, Lakshmanan I, Ganti AK, Macha MA, Batra SK. Reply. Cancer Lett 2022; 527:193-194. [PMID: 35115095 DOI: 10.1016/j.canlet.2021.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022]
Affiliation(s)
- Sanjib Chaudhary
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Apar Kishor Ganti
- VA Nebraska Western Iowa Health Care System, Division of Oncology-Hematology, University of Nebraska Medical Center, Omaha, NE, 68105, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu and Kashmir, 192122, India
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA.
| |
Collapse
|
23
|
Ettl T, Schulz D, Bauer RJ. The Renaissance of Cyclin Dependent Kinase Inhibitors. Cancers (Basel) 2022; 14:293. [PMID: 35053461 PMCID: PMC8773807 DOI: 10.3390/cancers14020293] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022] Open
Abstract
Cyclin-dependent kinases (CDK) regulate cell cycle progression. During tumor development, altered expression and availability of CDKs strongly contribute to impaired cell proliferation, a hallmark of cancer. In recent years, targeted inhibition of CDKs has shown considerable therapeutic benefit in a variety of tumor entities. Their success is reflected in clinical approvals of specific CDK4/6 inhibitors for breast cancer. This review provides a detailed insight into the molecular mechanisms of CDKs as well as a general overview of CDK inhibition. It also summarizes the latest research approaches and current advances in the treatment of head and neck cancer with CDK inhibitors. Instead of monotherapies, combination therapies with CDK inhibitors may especially provide promising results in tumor therapy. Indeed, recent studies have shown a synergistic effect of CDK inhibition together with chemo- and radio- and immunotherapy in cancer treatment to overcome tumor evasion, which may lead to a renaissance of CDK inhibitors.
Collapse
Affiliation(s)
- Tobias Ettl
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Daniela Schulz
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
- Center for Medical Biotechnology, Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Richard Josef Bauer
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
- Center for Medical Biotechnology, Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
24
|
Jiang ZY, Liu JB, Wang XF, Ma YS, Fu D. Current Status and Prospects of Clinical Treatment of Osteosarcoma. Technol Cancer Res Treat 2022; 21:15330338221124696. [PMID: 36128851 PMCID: PMC9500272 DOI: 10.1177/15330338221124696] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Osteosarcoma, one of the common malignant tumors in the skeletal system, originates in mesenchymal tissue, and the most susceptible area of occurrence is the metaphysis with its abundant blood supply. Tumors are characterized by highly malignant spindle stromal cells that can produce bone-like tissue. Most of the osteosarcoma are primary, and a few are secondary. Osteosarcoma occurs primarily in children and adolescents undergoing vigorous bone growth and development. Most cases involve rapid tumor development and early blood metastasis. In recent years, research has grown in the areas of molecular biology, imaging medicine, biological materials, applied anatomy, surgical techniques, biomechanics, and comprehensive treatment of tumors. With developments in molecular biology and tissue bioengineering, treatment methods have also made great progress, especially in comprehensive limb salvage treatment, which significantly enhances the quality of life after surgery and improves the 5-year survival rate of patients with malignant tumors. This article provides a review of limb salvage, immunotherapy, gene therapy, and targeted therapy from traditional amputation to neoadjuvant chemotherapy, providing a reference for current clinical treatments for osteosarcoma.
Collapse
Affiliation(s)
- Zong-Yuan Jiang
- Department of Hand Surgery, 380381Shenzhen Longhua District People's Hospital, Shenzhen, China
| | - Ji-Bin Liu
- Institute of Oncology, Nantong UniversityAffiliated Tumor Hospital of Nantong University, Nantong, China
| | - Xiao-Feng Wang
- Department of Orthopedics, Zhongshan Hospital, 12478Fudan University, Shanghai, China
| | - Yu-Shui Ma
- Cancer Institute, 74754Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Da Fu
- Department of General Surgery, Ruijin Hospital, 12474Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|