1
|
Aldayel AM, Bosaeed M, Almansour S, Alharbi NK, Alenazi M, Aljami HA, Aldibasi O, Aljouie A, Xu H, Cui Z. IgM has a better relative distribution in inflammation sites and tumor tissues than IgG. J Nanobiotechnology 2025; 23:253. [PMID: 40156022 PMCID: PMC11954317 DOI: 10.1186/s12951-025-03213-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 02/10/2025] [Indexed: 04/01/2025] Open
Abstract
Immunoglobulins (Igs) play a crucial role in host's defense and in developing therapies against inflammatory diseases and cancer. Herein, we first studied the relative distribution of IgM and IgG in mouse models with acute or chronic inflammation. We found that IgM showed a more selective distribution towards inflammation sites than IgG. Similarly, in a tumor-bearing mouse model, IgM showed a higher tumor-to-blood or -to healthy organs ratio than IgG. We hypothesized that the difference in the sizes between IgM and IgG may have contributed to the differences in their relative distribution, which was supported by using an IgG nanoparticle system that was similar to IgM in size. To confirm the findings in clinics, we investigated IgM and IgG levels in the blood and bronchoalveolar lavage fluid (BALF) of patients diagnosed with fungal pneumonia and showed that the relative distribution of IgM was significantly higher than IgG in the BALF samples as compared to that in serum. Such an understanding of our immune system at the nano-level may help us develop more effective biotechnological interventions against inflammatory diseases and cancers.
Collapse
Affiliation(s)
- Abdulaziz M Aldayel
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, TX, 78712, USA.
- Nanomedicine Department, King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City (KAMC), 11426, Riyadh, Saudi Arabia.
- Department of Biostatistics and Bioinformatics, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, 11426, Riyadh, Saudi Arabia.
- College of Pharmacy & College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), 11426, Riyadh, Saudi Arabia.
| | - Mohammad Bosaeed
- Infectious Diseases Research Department, King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City (KAMC), 11426, Riyadh, Saudi Arabia
- Department of Medicine, King Abdulaziz Medical City (KAMC), 11426, Riyadh, Saudi Arabia
- College of Pharmacy & College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), 11426, Riyadh, Saudi Arabia
| | - Sarah Almansour
- Infectious Diseases Research Department, King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City (KAMC), 11426, Riyadh, Saudi Arabia
- Department of Medicine, King Abdulaziz Medical City (KAMC), 11426, Riyadh, Saudi Arabia
- College of Pharmacy & College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), 11426, Riyadh, Saudi Arabia
| | - Naif Khalaf Alharbi
- Infectious Diseases Research Department, King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City (KAMC), 11426, Riyadh, Saudi Arabia
- Department of Biostatistics and Bioinformatics, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, 11426, Riyadh, Saudi Arabia
| | - Mohammed Alenazi
- Infectious Diseases Research Department, King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City (KAMC), 11426, Riyadh, Saudi Arabia
| | - Haya A Aljami
- Infectious Diseases Research Department, King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City (KAMC), 11426, Riyadh, Saudi Arabia
| | - Omar Aldibasi
- Department of Biostatistics and Bioinformatics, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, 11426, Riyadh, Saudi Arabia
- College of Pharmacy & College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), 11426, Riyadh, Saudi Arabia
| | - Abdulrhman Aljouie
- Department of Biostatistics and Bioinformatics, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, 11426, Riyadh, Saudi Arabia
- College of Pharmacy & College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), 11426, Riyadh, Saudi Arabia
| | - Haiyue Xu
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Zhengrong Cui
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
2
|
Mete R, Das S, Saha A, Roy S, Mondal S, Bose A, Basu B, Elossaily GM, Prajapati B. Transgenesis in Drug Discovery: Enhancing Target Identification and Validation. Mol Biotechnol 2025:10.1007/s12033-025-01426-4. [PMID: 40148722 DOI: 10.1007/s12033-025-01426-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/05/2025] [Indexed: 03/29/2025]
Abstract
Transgenesis, the introduction of foreign genetic material into the genome of an organism, has become a crucial and transformative technique in the realm of drug discovery. This review article provides a comprehensive overview of the integral role that transgenesis plays in the drug discovery process, with a specific focus on target identification and target validation. By examining the recent advancements and innovative approaches, this article aims to shed light on the importance of transgenesis in accelerating drug development. In the context of target identification, transgenesis has allowed for the creation of relevant disease models, enabling researchers to study the genetic and molecular basis of various disorders. The use of transgenic animals, such as mice and zebrafish, has facilitated the identification of potential drug targets by mimicking specific human disease conditions. This review also discusses emerging technologies, such as CRISPR-Cas9 and other genome editing tools, which have revolutionized the field of transgenesis. These technologies have enhanced the precision and efficiency of genetic manipulations in transgenic animals, making the creation of disease-relevant models more accessible and cost-effective. Moreover, integration of omics technologies, such as genomics, transcriptomics, proteomics, and metabolomics, has provided a holistic view of the molecular changes in transgenic models, further aiding in target identification and validation. This review emphasizes the importance of transgenesis in target identification and validation and underscores its vital role in shaping the future of drug discovery.
Collapse
Affiliation(s)
- Rumela Mete
- TAAB Biostudy Services, Jadavpur, Kolkata, 700032, India
| | - Sourav Das
- Department of Pharmaceutics, School of Pharmacy, The Neotia University, Sarisa, West Bengal, 743368, India
| | - Arindam Saha
- Cognizant Technology Solutions Private Limited, Salt Lake, Kolkata, 700091, India
| | - Sukanta Roy
- Department of Pharmaceutics, School of Pharmacy, The Neotia University, Sarisa, West Bengal, 743368, India
| | - Smritilekha Mondal
- Department of Biopharmaceutics, Dr. Reddy's Laboratory, Bachupally Village, Hyderabad, Telangana, 500090, India
| | - Anirbandeep Bose
- Department of Pharmaceutical Technology, School of Health & Medical Sciences, Adamas University, Barasat, Kolkata, West Bengal, 700126, India
| | - Biswajit Basu
- Department of Pharmaceutical Technology, School of Health & Medical Sciences, Adamas University, Barasat, Kolkata, West Bengal, 700126, India
| | - Gehan M Elossaily
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh, 13713, Saudi Arabia
| | - Bhupendra Prajapati
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| |
Collapse
|
3
|
Kaur R, Sharma A, Wijekoon N. Breast cancer preclinical models: a vital resource for comprehending disease mechanisms and therapeutic development. EXCLI JOURNAL 2025; 24:267-285. [PMID: 40071025 PMCID: PMC11895054 DOI: 10.17179/excli2024-7973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/26/2024] [Indexed: 03/14/2025]
Abstract
A significant obstacle in translating innovative breast cancer treatments from bench to bed side is demonstrating efficacy in preclinical settings prior to clinical trials, as the heterogeneity of breast cancer can be challenging to replicate in the laboratory. A significant number of potential medicines have not progressed to clinical trials because preclinical models inadequately replicate the complexities of the varied tumor microenvironment. Consequently, the variety of breast cancer models is extensive, and the selection of a model frequently depends on the specific inquiry presented. This review aims to present an overview of the existing breast cancer models, highlighting their advantages, limitations, and challenges in the context of innovative drug discovery, thereby offering insights that may be advantageous to future translational studies. Conventional monolayer cultures are critical for elucidating the different breast cancer types and their behavior, have limitations in adequately replicating tumor environments. The 3D models such as patient-derived xenografts, cell-derived xenografts and genetically engineered models offer better insights by maintaining tumor microenvironments and cellular heterogeneity. Results can be further enhanced when compared with breast epithelial cells, a negative control to determine early stages by investigating differences between healthy and cancerous mammary cells. While cell lines such as MCF-7, MDA-MB-231 etc are useful in vitro models, they exhibit genetic variations that may affect drug responses over time. Additionally, animal models, particularly rodents, are instrumental in breast cancer research due to their biological resemblances to humans and the relative ease of genetic modification, however, witness a low occurrence of tumors. This review thus concludes that different preclinical models have their associated benefits and pitfalls. Therefore, specific preclinical models can be created by altering the gene expression at the genetic level or could be selected as per specific experimental needs which will enable successful translation of preclinical findings into clinical trials can be possible. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Ravneet Kaur
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Punjab-144411, India
| | - Anuradha Sharma
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Punjab-144411, India
| | - Nalaka Wijekoon
- Interdisciplinary Center for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6200, Maastricht, The Netherlands
| |
Collapse
|
4
|
Elkordy AA, Hill D, Attia M, Chaw CS. Liposomes and Their Therapeutic Applications in Enhancing Psoriasis and Breast Cancer Treatments. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1760. [PMID: 39513840 PMCID: PMC11547384 DOI: 10.3390/nano14211760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Psoriasis and breast cancer are two examples of diseases where associated inflammatory pathways within the body's immune system are implicated. Psoriasis is a complex, chronic and incurable inflammatory skin disorder that is primarily recognized by thick, scaly plaques on the skin. The most noticeable pathophysiological effect of psoriasis is the abnormal proliferation of keratinocytes. Breast cancer is currently the most diagnosed cancer and the leading cause of cancer-related death among women globally. While treatments targeting the primary tumor have significantly improved, preventing metastasis with systemic treatments is less effective. Nanocarriers such as liposomes and lipid nanoparticles have emerged as promising drug delivery systems for drug targeting and specificity. Advances in technologies and drug combinations have emerged to develop more efficient lipid nanocarriers to include more than one drug in combinational therapy to enhance treatment outcomes and/or relief symptoms for better patients' quality of life. Although there are FDA-approved liposomes with anti-cancer drugs for breast cancer, there are still unmet clinical needs to reduce the side effects associated with those nanomedicines. Hence, combinational nano-therapy may eliminate some of the issues and challenges. Furthermore, there are no nanomedicines yet clinically available for psoriasis. Hence, this review will focus on liposomes encapsulated single and/or combinational therapy to augment treatment outcomes with an emphasis on the effectiveness of combinational therapy within liposomal-based nanoparticulate drug delivery systems to tackle psoriasis and breast cancer. This review will also include an overview of both diseases, challenges in delivering drug therapy and the roles of nanomedicines as well as psoriasis and breast cancer models used for testing therapeutic interventions to pave the way for effective in vivo testing prior to the clinical trials.
Collapse
Affiliation(s)
- Amal Ali Elkordy
- School of Pharmacy and Pharmaceutical Sciences, University of Sunderland, Sunderland SR1 3SD, UK; (A.A.E.); (M.A.)
| | - David Hill
- School of Nursing and Health Sciences, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK;
| | - Mohamed Attia
- School of Pharmacy and Pharmaceutical Sciences, University of Sunderland, Sunderland SR1 3SD, UK; (A.A.E.); (M.A.)
| | - Cheng Shu Chaw
- School of Pharmacy and Pharmaceutical Sciences, University of Sunderland, Sunderland SR1 3SD, UK; (A.A.E.); (M.A.)
| |
Collapse
|
5
|
Kalaimani K, Balachandran S, Boopathy LK, Roy A, Jayachandran B, Sankaranarayanan S, Arumugam MK. Recent advancements in small interfering RNA based therapeutic approach on breast cancer. Eur J Pharmacol 2024; 981:176877. [PMID: 39128807 DOI: 10.1016/j.ejphar.2024.176877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/23/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Breast cancer (BC) is the most common and malignant tumor diagnosed in women, with 2.9 million cases in 2023 and the fifth highest cancer-causing mortality worldwide. Recent developments in targeted therapy options for BC have demonstrated the promising potential of small interfering RNA (siRNA)-based cancer therapeutic approaches. As BC continues to be a global burden, siRNA therapy emerges as a potential treatment strategy to regulate disease-related genes in other types of cancers, including BC. siRNAs are tiny RNA molecules that, by preventing their expression, can specifically silence genes linked to the development of cancer. In order to increase the stability and effectiveness of siRNA delivery to BC cells, minimize off-target effects, and improve treatment efficacy, advanced delivery technologies such as lipid nanoparticles and nanocarriers have been created. Additionally, combination therapies, such as siRNAs that target multiple pathways are used in conjunction with conventional chemotherapy agents, have shown synergistic effects in various preclinical studies, opening up new treatment options for breast cancer that are personalized and precision medicine-oriented. Targeting important genes linked to BC growth, metastasis, and chemo-resistance has been reported in BC research using siRNA-based therapies. This study reviews recent reports on therapeutic approaches to siRNA for advanced treatment of BC. Furthermore, this review evaluates the role and mechanisms of siRNA in BC and demonstrates the potential of exploiting siRNA as a novel target for BC therapy.
Collapse
Affiliation(s)
- Kathirvel Kalaimani
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Shana Balachandran
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Lokesh Kumar Boopathy
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Anitha Roy
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India
| | - Bhuvaneshwari Jayachandran
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Sangamithra Sankaranarayanan
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Madan Kumar Arumugam
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India.
| |
Collapse
|
6
|
Oladokun R, Smith C, Eubank T, Srivastava S. Dielectric Signatures of Late Carcinoma Immune Cells Using MMTV-PyMT Mammary Carcinoma Models. ACS OMEGA 2024; 9:41378-41388. [PMID: 39398140 PMCID: PMC11465564 DOI: 10.1021/acsomega.4c04210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024]
Abstract
Peripheral blood mononuclear cells (PBMCs) are specialized immune cells produced from hematopoietic stem cells (HSC). They actively surveil for any signs of infection, foreign invaders, and abnormal or aberrant cells associated with diseases. Numerous inherent interactions between PBMCs and proliferating cancer cells facilitate cellular communication, inducing alterations in the composition of the PBMCs. These subtle alterations can be detected by using dielectrophoresis (DEP). The ultimate objective is to apply this knowledge in a clinical setting to achieve noninvasive early detection of breast cancer while minimizing the occurrence of false positives and negatives commonly associated with standard screening methods like mammography. To realize our long-term goal, we are probing the dielectric properties of the PBMCs from FVB/N MMTV-PyMT+ (late carcinoma, PyMT+ PBMC) and FVB/N (wild-type, WT-PBMC) age-matched mice at 14+ weeks using dielectrophoresis on a microfluidic platform. The central hypothesis of this research is that the changes triggered in the subcellular components, such as the cytoskeleton, lipid bilayer membrane, cytoplasm, focal adhesion proteins, and extracellular matrix (ECM) at the onset of carcinoma, regulate dielectric properties (conductivity, σ; and permittivity, ε), thus affecting the bioelectric signals that aid in the detection of breast cancer. The ANOVA results suggest a significant difference in PyMT+ PBMCs crossover frequencies at 0.01 and 0.05 S/m medium conductivity levels. Post hoc pairwise analysis of WT-PBMCs showed that the crossover frequencies are distinct across the medium conductivity ranges from 0.01 to 0.05 S/m. This study revealed that on average, PyMT+ PBMCs have increased crossover frequency, polarizability, higher membrane capacitance, and a folding factor compared with the age-matched wild-type PBMCs.
Collapse
Affiliation(s)
- Raphael Oladokun
- Department
of Chemical & Biomedical Engineering, West Virginia University, Morgantown, West Virginia 26506-6201, United States
| | - Christopher Smith
- Department
of Chemical & Biomedical Engineering, West Virginia University, Morgantown, West Virginia 26506-6201, United States
| | - Timothy Eubank
- Department
of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, West Virginia 26506-6201, United States
| | - Soumya Srivastava
- Department
of Chemical & Biomedical Engineering, West Virginia University, Morgantown, West Virginia 26506-6201, United States
| |
Collapse
|
7
|
Nelson BJ, Krol V, Bansal A, Andersson JD, Wuest F, Pandey MK. Aspects and prospects of preclinical theranostic radiopharmaceutical development. Theranostics 2024; 14:6446-6470. [PMID: 39479448 PMCID: PMC11519794 DOI: 10.7150/thno.100339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 11/02/2024] Open
Abstract
This article provides an overview of preclinical theranostic radiopharmaceutical development, highlighting aspects of the preclinical development stages that can lead towards a clinical trial. The key stages of theranostic radiopharmaceutical development are outlined, including target selection, tracer development, radiopharmaceutical synthesis, automation and quality control, in vitro radiopharmaceutical analysis, selecting a suitable in vivo model, preclinical imaging and pharmacokinetic analysis, preclinical therapeutic analysis, dosimetry, toxicity, and preparing for clinical translation. Each stage is described and augmented with examples from the literature. Finally, an outlook on the prospects for the radiopharmaceutical theranostics field is provided.
Collapse
Affiliation(s)
- Bryce J.B. Nelson
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2 Canada
| | - Viktoria Krol
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Aditya Bansal
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jan D. Andersson
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2 Canada
- Edmonton Radiopharmaceutical Center, Alberta Health Services, Edmonton, Alberta, T6G 1Z2, Canada
| | - Frank Wuest
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2 Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Mukesh K. Pandey
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Mayo Clinic Comprehensive Cancer Center, Rochester, MN 55905, USA
| |
Collapse
|
8
|
Elia A, Pataccini G, Saldain L, Ambrosio L, Lanari C, Rojas P. Antiprogestins for breast cancer treatment: We are almost ready. J Steroid Biochem Mol Biol 2024; 241:106515. [PMID: 38554981 DOI: 10.1016/j.jsbmb.2024.106515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/05/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
The development of antiprogestins was initially a gynecological purpose. However, since mifepristone was developed, its application for breast cancer treatment was immediately proposed. Later, new compounds with lower antiglucocorticoid and antiandrogenic effects were developed to be applied to different pathologies, including breast cancer. We describe herein the studies performed in the breast cancer field with special focus on those reported in recent years, ranging from preclinical biological models to those carried out in patients. We highlight the potential use of antiprogestins in breast cancer prevention in women with BRCA1 mutations, and their use for breast cancer treatment, emphasizing the need to elucidate which patients will respond. In this sense, the PR isoform ratio has emerged as a possible tool to predict antiprogestin responsiveness. The effects of combined treatments of antiprogestins together with other drugs currently used in the clinic, such as tamoxifen, CDK4/CDK6 inhibitors or pembrolizumab in preclinical models is discussed since it is in this scenario that antiprogestins will be probably introduced. Finally, we explain how transcriptomic or proteomic studies, that were carried out in different luminal breast cancer models and in breast cancer samples that responded or were predicted to respond to the antiprogestin therapy, show a decrease in proliferative pathways. Deregulated pathways intrinsic of each model are discussed, as well as how these analyses may contribute to a better understanding of the mechanisms involved.
Collapse
Affiliation(s)
- Andrés Elia
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME CONICET), Buenos Aires, Argentina
| | - Gabriela Pataccini
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME CONICET), Buenos Aires, Argentina
| | - Leo Saldain
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME CONICET), Buenos Aires, Argentina
| | - Luisa Ambrosio
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME CONICET), Buenos Aires, Argentina
| | - Claudia Lanari
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME CONICET), Buenos Aires, Argentina
| | - Paola Rojas
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME CONICET), Buenos Aires, Argentina.
| |
Collapse
|
9
|
Sobol RW. Mouse models to explore the biological and organismic role of DNA polymerase beta. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 1:57-71. [PMID: 38619421 PMCID: PMC11027944 DOI: 10.1002/em.22593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/16/2024]
Abstract
Gene knock-out (KO) mouse models for DNA polymerase beta (Polβ) revealed that loss of Polβ leads to neonatal lethality, highlighting the critical organismic role for this DNA polymerase. While biochemical analysis and gene KO cell lines have confirmed its biochemical role in base excision repair and in TET-mediated demethylation, more long-lived mouse models continue to be developed to further define its organismic role. The Polb-KO mouse was the first of the Cre-mediated tissue-specific KO mouse models. This technology was exploited to investigate roles for Polβ in V(D)J recombination (variable-diversity-joining rearrangement), DNA demethylation, gene complementation, SPO11-induced DNA double-strand break repair, germ cell genome stability, as well as neuronal differentiation, susceptibility to genotoxin-induced DNA damage, and cancer onset. The revolution in knock-in (KI) mouse models was made possible by CRISPR/cas9-mediated gene editing directly in C57BL/6 zygotes. This technology has helped identify phenotypes associated with germline or somatic mutants of Polβ. Such KI mouse models have helped uncover the importance of key Polβ active site residues or specific Polβ enzyme activities, such as the PolbY265C mouse that develops lupus symptoms. More recently, we have used this KI technology to mutate the Polb gene with two codon changes, yielding the PolbL301R/V303R mouse. In this KI mouse model, the expressed Polβ protein cannot bind to its obligate heterodimer partner, Xrcc1. Although the expressed mutant Polβ protein is proteolytically unstable and defective in recruitment to sites of DNA damage, the homozygous PolbL301R/V303R mouse is viable and fertile, yet small in stature. We expect that this and additional targeted mouse models under development are poised to reveal new biological and organismic roles for Polβ.
Collapse
Affiliation(s)
- Robert W. Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912
| |
Collapse
|
10
|
Ferreira T, Azevedo T, Silva J, Faustino-Rocha AI, Oliveira PA. Current views on in vivo models for breast cancer research and related drug development. Expert Opin Drug Discov 2024; 19:189-207. [PMID: 38095187 DOI: 10.1080/17460441.2023.2293152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/06/2023] [Indexed: 02/03/2024]
Abstract
INTRODUCTION Animal models play a crucial role in breast cancer research, in particular mice and rats, who develop mammary tumors that closely resemble their human counterparts. These models allow the study of mechanisms behind breast carcinogenesis, as well as the efficacy and safety of new, and potentially more effective and advantageous therapeutic approaches. Understanding the advantages and disadvantages of each model is crucial to select the most appropriate one for the research purpose. AREA COVERED This review provides a concise overview of the animal models available for breast cancer research, discussing the advantages and disadvantages of each one for searching new and more effective approaches to treatments for this type of cancer. EXPERT OPINION Rodent models provide valuable information on the genetic alterations of the disease, the tumor microenvironment, and allow the evaluation of the efficacy of chemotherapeutic agents. However, in vivo models have limitations, and one of them is the fact that they do not fully mimic human diseases. Choosing the most suitable model for the study purpose is crucial for the development of new therapeutic agents that provide better care for breast cancer patients.
Collapse
Affiliation(s)
- Tiago Ferreira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Tiago Azevedo
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Jessica Silva
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana I Faustino-Rocha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Department of Zootechnics, School of Sciences and Technology, University of Évora, Évora, Portugal
- Department of Zootechnics, School of Sciences and Technology, Comprehensive Health Research Center, Évora, Portugal
| | - Paula A Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Clinical Academic Center of Trás-Os-Montes and Alto Douro, University of Trás-Os-Montes and Alto Douro, Vila Real, Portugal
| |
Collapse
|
11
|
Jain M, Goel A. Current Insights in Murine Models for Breast Cancer: Present, Past and Future. Curr Pharm Des 2024; 30:2267-2275. [PMID: 38910416 DOI: 10.2174/0113816128306053240604074142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/25/2024] [Accepted: 05/09/2024] [Indexed: 06/25/2024]
Abstract
Breast cancer is an intricate disease that is increasing at a fast pace, and numerous heterogeneities within it further make it difficult to investigate. We have always used animal models to understand cancer pathology and create an in vivo microenvironment that closely resembles human cancer. They are considered an indispensable part of any clinical investigation regarding cancer. Animal models have a high potency in identifying the relevant biomarkers and genetic pathways involved in the course of disease prognosis. Researchers have previously explored a variety of organisms, including Drosophila melanogaster, zebrafish, and guinea pigs, to analyse breast cancer, but murine models have proven the most comprehensive due to their homologous nature with human chromosomes, easy availability, simple gene editing, and high adaptability. The available models have their pros and cons, and it depends on the researcher to select the one most relevant to their research question. Chemically induced models are cost-effective and simple to create. Transplantation models such as allografts and xenografts can mimic the human breast cancer environment reliably. Genetically engineered mouse models (GEMMs) help to underpin the genetic alterations involved and test novel immunotherapies. Virus-mediated models and gene knockout models have also provided new findings regarding breast cancer progression and metastasis. These mouse models have also enabled the visualization of breast cancer metastases. It is also imperative to consider the cost-effectiveness of these models. Despite loopholes, mouse models have evolved and are required for disease analysis.
Collapse
Affiliation(s)
- Mansi Jain
- Department of Biotechnology, GLA University, Mathura, India
| | - Anjana Goel
- Department of Biotechnology, GLA University, Mathura, India
| |
Collapse
|
12
|
Rentz LE, Whetsell MA, Clayton SA, Mizener AD, Holásková I, Chapa MG, Hoblitzell EH, Eubank TD, Pistilli EE. Sexual Dimorphism of Skeletal Muscle in a Mouse Model of Breast Cancer: A Functional and Molecular Analysis. Int J Mol Sci 2023; 24:11669. [PMID: 37511427 PMCID: PMC10380440 DOI: 10.3390/ijms241411669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Breast cancer incidence in men is statistically rare; however, given the lack of screening in males, more advanced stages at initial diagnosis result in lower 5-year survival rates for men with breast cancer compared to women. A sexual dimorphism, with respect to the effect of tumor growth on cachexia incidence and severity, has also been reported across cancer types. The purpose of this study was to examine the sexual dimorphism of breast cancer as it pertains to skeletal muscle function and molecular composition. Using female and male transgenic PyMT mice, we tested the hypothesis that the isometric contractile properties and molecular composition of skeletal muscle would be differentially affected by breast tumors. PyMT tumor-bearing mice of each sex, corresponding to maximal tumor burden, were compared to their respective controls. RNA sequencing of skeletal muscle revealed different pathway alterations that were exclusive to each sex. Further, differentially expressed genes and pathways were substantially more abundant in female tumor mice, with only minimal dysregulation in male tumor mice, each compared to their respective controls. These differences in the transcriptome were mirrored in isometric contractile properties, with greater tumor-induced dysfunction in females than male mice, as well as muscle wasting. Collectively, these data support the concept of sexually dimorphic responses to cancer in skeletal muscle and suggest that these responses may be associated with the clinical differences in breast cancer between the sexes. The identified sex-dependent pathways within the muscle of male and female mice provide a framework to evaluate therapeutic strategies targeting tumor-associated skeletal muscle alterations.
Collapse
Affiliation(s)
- Lauren E. Rentz
- Division of Exercise Physiology, Department of Human Performance, West Virginia University School of Medicine, Morgantown, WV 26506, USA; (L.E.R.); (M.A.W.); (S.A.C.)
| | - Marcella A. Whetsell
- Division of Exercise Physiology, Department of Human Performance, West Virginia University School of Medicine, Morgantown, WV 26506, USA; (L.E.R.); (M.A.W.); (S.A.C.)
| | - Stuart A. Clayton
- Division of Exercise Physiology, Department of Human Performance, West Virginia University School of Medicine, Morgantown, WV 26506, USA; (L.E.R.); (M.A.W.); (S.A.C.)
| | - Alan D. Mizener
- Cancer Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA; (A.D.M.); (M.G.C.); (T.D.E.)
| | - Ida Holásková
- Office of Statistics, West Virginia Agriculture and Forestry Experiment Station, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, WV 26506, USA;
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA;
| | - Matthew G. Chapa
- Cancer Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA; (A.D.M.); (M.G.C.); (T.D.E.)
| | - Emily H. Hoblitzell
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA;
| | - Timothy D. Eubank
- Cancer Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA; (A.D.M.); (M.G.C.); (T.D.E.)
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA;
| | - Emidio E. Pistilli
- Division of Exercise Physiology, Department of Human Performance, West Virginia University School of Medicine, Morgantown, WV 26506, USA; (L.E.R.); (M.A.W.); (S.A.C.)
- Cancer Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA; (A.D.M.); (M.G.C.); (T.D.E.)
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA;
| |
Collapse
|
13
|
Rentz LE, Whetsell M, Clayton SA, Mizener AD, Holásková I, Chapa MG, Hoblitzell EH, Eubank TD, Pistilli EE. Sexual Dimorphism of Skeletal Muscle in a Mouse Model of Breast Cancer: A Functional and Molecular Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544049. [PMID: 37362158 PMCID: PMC10288531 DOI: 10.1101/2023.06.07.544049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Breast cancer incidence in men is statistically rare; however, given the lack of screening in males, more advanced stages at initial diagnosis results in lower 5-year survival rates for men with breast cancer compared to women. A sexual dimorphism, with respect to the effect of tumor growth on cachexia incidence and severity, has also been reported across cancer types. The purpose of this study was to examine the sexual dimorphism of breast cancer as it pertains to skeletal muscle function and molecular composition. Using female and male transgenic PyMT mice, we tested the hypothesis that isometric contractile properties and molecular composition of skeletal muscle would be differentially affected by breast tumors. PyMT tumor-bearing mice of each sex, corresponding to maximal tumor burden, were compared to their respective controls. RNA-sequencing of skeletal muscle revealed different pathway alterations that were exclusive to each sex. Further, differentially expressed genes and pathways were substantially more abundant in female tumor mice, with only minimal dysregulation in male tumor mice, each compared to their respective controls. These differences in the transcriptome were mirrored in isometric contractile properties, with greater tumor-induced dysfunction in females than male mice, as well as muscle wasting. Collectively, these data support the concept of sexually dimorphic responses to cancer in skeletal muscle and suggest these responses may be associated with the clinical differences in breast cancer between the sexes. The identified sex-dependent pathways within muscle of male and female mice provide a framework to evaluate therapeutic strategies targeting tumor-associated skeletal muscle alterations.
Collapse
Affiliation(s)
- Lauren E. Rentz
- Division of Exercise Physiology, Department of Human Performance, West Virginia University School of Medicine, Morgantown, WV, 26506
| | - Marcella Whetsell
- Division of Exercise Physiology, Department of Human Performance, West Virginia University School of Medicine, Morgantown, WV, 26506
| | - Stuart A. Clayton
- Division of Exercise Physiology, Department of Human Performance, West Virginia University School of Medicine, Morgantown, WV, 26506
| | - Alan D. Mizener
- Cancer Institute, West Virginia University School of Medicine, Morgantown, WV, 26506
| | - Ida Holásková
- Office of Statistics, West Virginia Agriculture and Forestry Experiment Station, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, WV, 26506
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, 26506
| | - Matthew G. Chapa
- Cancer Institute, West Virginia University School of Medicine, Morgantown, WV, 26506
| | - E. Hannah Hoblitzell
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, 26506
| | - Timothy D. Eubank
- Cancer Institute, West Virginia University School of Medicine, Morgantown, WV, 26506
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, 26506
| | - Emidio E. Pistilli
- Division of Exercise Physiology, Department of Human Performance, West Virginia University School of Medicine, Morgantown, WV, 26506
- Cancer Institute, West Virginia University School of Medicine, Morgantown, WV, 26506
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, 26506
| |
Collapse
|
14
|
Howle R, Moorthy A, Buggy DJ. Investigating the Influence of Anaesthesiology for Cancer Resection Surgery on Oncologic Outcomes: The Role of Experimental In Vivo Models. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58101380. [PMID: 36295541 PMCID: PMC9609581 DOI: 10.3390/medicina58101380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/29/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022]
Abstract
The incidence and societal burden of cancer is increasing globally. Surgery is indicated in the majority of solid tumours, and recent research in the emerging field of onco-anaesthesiology suggests that anaesthetic-analgesic interventions in the perioperative period could potentially influence long-term oncologic outcomes. While prospective, randomised controlled clinical trials are the only research method that can conclusively prove a causal relationship between anaesthetic technique and cancer recurrence, live animal (in vivo) experimental models may more realistically test the biological plausibility of these hypotheses and the mechanisms underpinning them, than limited in vitro modelling. This review outlines the advantages and limitations of available animal models of cancer and how they might be used in perioperative cancer metastasis modelling, including spontaneous or induced tumours, allograft, xenograft, and transgenic tumour models.
Collapse
Affiliation(s)
- Ryan Howle
- Department of Anaesthesiology & Perioperative Medicine, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
- Department of Anaesthesiology, Mater Private Hospital, Eccles Street, D07 WKW8 Dublin, Ireland
| | - Aneurin Moorthy
- Department of Anaesthesiology & Perioperative Medicine, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
- Department of Anaesthesiology, Mater Private Hospital, Eccles Street, D07 WKW8 Dublin, Ireland
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Donal J. Buggy
- Department of Anaesthesiology & Perioperative Medicine, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
- Department of Anaesthesiology, Mater Private Hospital, Eccles Street, D07 WKW8 Dublin, Ireland
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Outcomes Research, Cleveland Clinic, Cleveland, OH 44195, USA
- Correspondence:
| |
Collapse
|
15
|
Hunt BG, Jones A, Lester C, Davis JC, Benight NM, Waltz SE. RON ( MST1R) and HGFL ( MST1) Co-Overexpression Supports Breast Tumorigenesis through Autocrine and Paracrine Cellular Crosstalk. Cancers (Basel) 2022; 14:2493. [PMID: 35626096 PMCID: PMC9140067 DOI: 10.3390/cancers14102493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Aberrant RON signaling is present in numerous cancers including breast cancer. Evidence suggests that the ligand, hepatocyte growth factor-like (HGFL), is also overexpressed in breast cancer. RON (MST1R) and HGFL (MST1) genes are located on human chromosome 3 and mouse chromosome 9 respectively and are found near each other in both species. Based on co-expression patterns, we posited that RON and HGFL are co-regulated and that coordinate upregulation drives aggressive tumorigenesis. METHODS Mouse models were used to establish the functional significance of RON and HGFL co-overexpression on the activation of tumor cells and tumor-associated macrophages in breast cancer. TCGA and METABRIC gene expression and alteration data were used to query the relationships between MST1R and MST1 in breast cancer. RESULTS In tumor models, physiologic sources of HGFL modestly improve Arginase-1+ (M2) macrophage recruitment to the tumor proper. Tumor-cell produced HGFL functions in autocrine to sustain tumor cell RON activation and MAPK-dependent secretion of chemotactic factors and in paracrine to activate RON on macrophages and to promote breast cancer stem cell self-renewal. In silico analyses support that RON and HGFL are co-expressed across virtually all cancer types including breast cancer and that common genomic alterations do not appear to be drivers of RON/HGFL co-overexpression. CONCLUSIONS Co-overexpression of RON and HGFL in breast cancer cells (augmented by physiologic sources of HGFL) promotes tumorigenesis through autocrine-mediated RON activation/RON-dependent secretome changes and paracrine activation of macrophage RON to promote breast cancer stem cell self-renewal.
Collapse
Affiliation(s)
- Brian G. Hunt
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (B.G.H.); (A.J.); (C.L.); (J.C.D.); (N.M.B.)
| | - Angelle Jones
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (B.G.H.); (A.J.); (C.L.); (J.C.D.); (N.M.B.)
| | - Carissa Lester
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (B.G.H.); (A.J.); (C.L.); (J.C.D.); (N.M.B.)
| | - James C. Davis
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (B.G.H.); (A.J.); (C.L.); (J.C.D.); (N.M.B.)
| | - Nancy M. Benight
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (B.G.H.); (A.J.); (C.L.); (J.C.D.); (N.M.B.)
| | - Susan E. Waltz
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (B.G.H.); (A.J.); (C.L.); (J.C.D.); (N.M.B.)
- Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH 45220, USA
| |
Collapse
|
16
|
Weele LJ, Djomehri SI, Cai S, Antony J, Sikandar SS, Qian D, Ho WH, West R, Scheeren FA, Clarke MF. Mesenchymal tumor cells drive adaptive resistance of
Trp53
‐/‐
breast tumor cells to inactivated mutant
Kras. Mol Oncol 2022; 16:3128-3145. [PMID: 35398967 PMCID: PMC9441006 DOI: 10.1002/1878-0261.13220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/13/2022] [Accepted: 04/07/2022] [Indexed: 11/10/2022] Open
Affiliation(s)
- Linda J. Weele
- Institute for Stem Cell Biology and Regenerative Medicine School of Medicine Stanford University Stanford CA 94305 USA
| | - Sabra I. Djomehri
- Institute for Stem Cell Biology and Regenerative Medicine School of Medicine Stanford University Stanford CA 94305 USA
| | - Shang Cai
- Institute for Stem Cell Biology and Regenerative Medicine School of Medicine Stanford University Stanford CA 94305 USA
- Westlake University Shilongshan St #18 Hangzhou, Xihu District Zhejiang Province China
| | - Jane Antony
- Institute for Stem Cell Biology and Regenerative Medicine School of Medicine Stanford University Stanford CA 94305 USA
| | - Shaheen S. Sikandar
- Institute for Stem Cell Biology and Regenerative Medicine School of Medicine Stanford University Stanford CA 94305 USA
- Department of Molecular, Cell and Developmental Biology University of California Santa Cruz CA 95064 USA
| | - Dalong Qian
- Institute for Stem Cell Biology and Regenerative Medicine School of Medicine Stanford University Stanford CA 94305 USA
| | - William H.D. Ho
- Institute for Stem Cell Biology and Regenerative Medicine School of Medicine Stanford University Stanford CA 94305 USA
- Department of Stem Cell Biotechnology California State University Channel Islands Camarillo CA 93012 USA
| | - Robert West
- Department Pathology Stanford University Medical Center Palo Alto CA 94304 USA
| | - Ferenc A. Scheeren
- Department of Medical Oncology Leiden University Medical Center Leiden RC 2300 The Netherlands
| | - Michael F. Clarke
- Institute for Stem Cell Biology and Regenerative Medicine School of Medicine Stanford University Stanford CA 94305 USA
| |
Collapse
|
17
|
Histone Variant H2A.J Is Enriched in Luminal Epithelial Gland Cells. Genes (Basel) 2021; 12:genes12111665. [PMID: 34828271 PMCID: PMC8619693 DOI: 10.3390/genes12111665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 01/20/2023] Open
Abstract
H2A.J is a poorly studied mammalian-specific variant of histone H2A. We used immunohistochemistry to study its localization in various human and mouse tissues. H2A.J showed cell-type specific expression with a striking enrichment in luminal epithelial cells of multiple glands including those of breast, prostate, pancreas, thyroid, stomach, and salivary glands. H2A.J was also highly expressed in many carcinoma cell lines and in particular, those derived from luminal breast and prostate cancer. H2A.J thus appears to be a novel marker for luminal epithelial cancers. Knocking-out the H2AFJ gene in T47D luminal breast cancer cells reduced the expression of several estrogen-responsive genes which may explain its putative tumorigenic role in luminal-B breast cancer.
Collapse
|