1
|
Mu D, Chen B, Liu X, Zheng S, Zhang Y, Ni H, Zhou D. Exploring the potential mechanisms of Da ChaiHu decoction against pancreatic cancer based on network pharmacology prediction and molecular docking approach. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04107-w. [PMID: 40266298 DOI: 10.1007/s00210-025-04107-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 03/25/2025] [Indexed: 04/24/2025]
Abstract
Da ChaiHu decoction (DCHD) is used in Chinese medicine to treat pancreatic cancer (PC), but its exact mechanism is not known. The aim of this study was to investigate the main active ingredients and specific mechanisms of DCHD against PC. Firstly, the active ingredients and targets of DCHD and PC-related targets were searched from the TCMSP, DrugBank, NCBI and GeneCards databases, respectively. The intersected targets of both were then taken to construct a PPI network using STRING, and this network was visualized by Cytoscape 3.8.2. GO and KEGG enrichment analyses of the intersected targets were performed using R 4.2.1 "clusterProfiler", "enrichplot", and "ggplot2" packages. Molecular docking was performed utilizing MOE software to detect the binding capacity between compounds and targets. Cell proliferation, apoptosis, invasion and migration were examined through a CCK8 kit, Muse® Cell Analyzer, transwell and wound healing experiment, respectively. The expression levels of five core targets were assessed by RT-qPCR in PANC-1 cells treated with stigmasterol. Molecular dynamic simulations analysis was conducted to analyze the binding affinities and modes of interaction between molecules and stigmasterol using the GROMACS 5.1.4 program package. In this study, 141 common targets of DCHD and PC were obtained. GO-MF items indicated that DCHD exerts its effects on PC primarily by influencing the binding activity of DNA-binding transcription factors. The KEGG analysis revealed that these genes were implicated in various signaling pathways, including the IL-17 signaling pathway and the PI3K/Akt signaling pathway. Stigmasterol was chosen as the final ingredient for subsequent investigation due to its derivation from herb (Da ChaiHu), its encompassment of more common targets, and the scarcity of existing research on its role in PC. The results of molecular docking and Molecular dynamic simulations analysis showed that stigmasterol had good binding activity with BCL2, and ICAM1. In vitro experiments suggested that stigmasterol could effectively inhibit the proliferation, invasion and migration of PANC-1 cells, and promote cell apoptosis. Moreover, stigmasterol treatment led to the reduced expression of AKT1, HIF1A, BCL2, IL1B, and ICAM1. This study is the first to reveal the main active components and potential mechanisms of DCHD against PC, which provides a theoretical basis for studying the role of DCHD in the treatment of PC. Especially, the anti-PC mechanism of active compound stigmasterol might be associated with inhibiting proliferation, invasion and migration and accelerating apoptosis. Furthermore, five targets (AKT1, HIF1A, BCL2, IL1B, and ICAM1) were identified as key targets of stigmasterol, and the mRNA expressions of these genes were down-regulated by stigmasterol through in vitro experiments.
Collapse
Affiliation(s)
- Dong Mu
- Department of Gastroenterology and Hepatology, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Beijin Chen
- Department of Gastroenterology and Hepatology, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Xiaoli Liu
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, China
| | - Shumei Zheng
- Department of Gastroenterology and Hepatology, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Yong Zhang
- Department of Gastroenterology and Hepatology, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Hua Ni
- Department of Gastroenterology and Hepatology, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Dejiang Zhou
- Department of Gastroenterology and Hepatology, The General Hospital of Western Theater Command, Chengdu, 610083, China.
- , Chengdu, China.
| |
Collapse
|
2
|
Xu A, Liu Y, Wang B, Zhang Q, Ma Y, Xue Y, Wang Z, Sun Q, Sun Y, Bian L. Ceramide synthase 6 induces mitochondrial dysfunction and apoptosis in hemin-treated neurons by impairing mitophagy through interacting with sequestosome 1. Free Radic Biol Med 2025; 227:282-295. [PMID: 39643132 DOI: 10.1016/j.freeradbiomed.2024.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Intracerebral hemorrhage (ICH) is a severe subtype of stroke linked to high morbidity and mortality rates. However, the underlying mechanisms of neuronal injury post-ICH remain poorly understood. In this study, we investigated sphingolipid metabolism alterations in neurons using lipidomics and explored the regulatory mechanisms involved. Western blot and live-cell imaging were applied to detect mitochondrial quality and mitophagy level. We found a significant upregulation of ceramide synthase 6 (CERS6)-related C16 ceramide biosynthesis after hemin treatment. Knockdown of CERS6 notably ameliorated mitochondrial dysfunction and reduced neuronal apoptosis. Additionally, impaired neuronal mitophagy was observed after hemin treatment, which was restored by CERS6 knockdown. Mechanistically, CERS6 impaired mitophagy by interacting with sequestosome 1, leading to mitochondrial dysfunction and neuronal apoptosis. Our study explored the relationship between ceramide metabolism and mitophagy in neurons, revealing the pro-apoptotic role of CERS6 while providing a potential therapeutic target for patients with ICH.
Collapse
Affiliation(s)
- Aoqian Xu
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yikui Liu
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baofeng Wang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qixiang Zhang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxiao Ma
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxiao Xue
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuohang Wang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfang Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhao Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Liuguan Bian
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Qiao X, Xue R, Li S, Li J, Ji C. Expression of LASS2 Can be Regulated by Dihydroartemisinin to Regulate Cisplatin Chemosensitivity in Bladder Cancer Cells. Curr Pharm Biotechnol 2025; 26:525-538. [PMID: 38757331 DOI: 10.2174/0113892010305651240514100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION The aim of this study was to investigate the potential of dihydroartemisinin to augment the efficacy of cisplatin chemotherapy through the modulation of LASS2 expression. METHODS TCMSP, CTR-DB, TCGA-BLC, and other databases were used to analyze the possibility of LASS2 as the target gene of dihydroartemisinin. Cell experiments revealed the synergistic effect of DDP and DHA. Animal experiments showed that DHA inhibited the growth of DDP-treated mice. In addition, WB, real-time PCR, and immunohistochemical analysis showed that DHA enhanced LASS2 (CERS2) expression in bladder cancer cells and DDP-treated mice. RESULTS LASS2 is associated with cisplatin chemosensitivity.LASS2 expression levels are different between BLC tissues and normal tissues. COX analysis showed that patients with high LASS2 expression had a higher cumulative overall survival rate than those with low LASS2 expression. The Sankey plot showed that LASS2 expression is lower in BLC tissues with more advanced stage and distant metastasis. The docking score of DHA and LASS2 reached the maximum value of -5.5259, indicating that DHA had a strong binding affinity with LASS2 targets. CCK8 assay showed that the most effective concentration ratio of DHA to DDP was 2.5 μg/ml + 10μg/ml. In vivo experiments showed that DHA inhibited tumor growth in cisplatin-treated mice. In addition, WB, RT-qPCR, and immunohistochemical analysis showed that DHA was able to enhance LASS2 expression in BLC cells and DDP-treated mice. CONCLUSION The upregulation of LASS2 (CERS2) expression in bladder cancer cells by DHA has been found to enhance cisplatin chemosensitivity.
Collapse
Affiliation(s)
- Xuhua Qiao
- Affiliated Hospital of Panzhihua University, Panzhihua Hospital of Chinese and Western Combination, Urology Basic and Clinical Research Team of Affiliated Hospital of Panzhihua University, Urology Research and Innovation Platform of Panzhihua City, Panzhihua, Sichuan 617000, P.R. China
| | - Rongbo Xue
- Affiliated Hospital of Panzhihua University, Panzhihua Hospital of Chinese and Western Combination, Urology Basic and Clinical Research Team of Affiliated Hospital of Panzhihua University, Urology Research and Innovation Platform of Panzhihua City, Panzhihua, Sichuan 617000, P.R. China
| | - Shijie Li
- Affiliated Hospital of Panzhihua University, Panzhihua Hospital of Chinese and Western Combination, Urology Basic and Clinical Research Team of Affiliated Hospital of Panzhihua University, Urology Research and Innovation Platform of Panzhihua City, Panzhihua, Sichuan 617000, P.R. China
| | - Jun Li
- Affiliated Hospital of Panzhihua University, Panzhihua Hospital of Chinese and Western Combination, Urology Basic and Clinical Research Team of Affiliated Hospital of Panzhihua University, Urology Research and Innovation Platform of Panzhihua City, Panzhihua, Sichuan 617000, P.R. China
| | - Chundong Ji
- Affiliated Hospital of Panzhihua University, Panzhihua Hospital of Chinese and Western Combination, Urology Basic and Clinical Research Team of Affiliated Hospital of Panzhihua University, Urology Research and Innovation Platform of Panzhihua City, Panzhihua, Sichuan 617000, P.R. China
| |
Collapse
|
4
|
Chen Y, Dai J, Chen P, Dai Q, Chen Y, Li Y, Lu M, Qin S, Wang Q. Long non-coding RNAs-sphingolipid metabolism nexus: Potential targets for cancer treatment. Pharmacol Res 2024; 210:107539. [PMID: 39647803 DOI: 10.1016/j.phrs.2024.107539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/26/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as pivotal regulators of cancer pathogenesis, influencing various cellular processes and contributing to tumorigenesis. Sphingolipid metabolism has garnered interest as a potential target for cancer therapy owing to its considerable diagnostic and prognostic value. Recent studies have demonstrated that lncRNAs regulate tumor-associated metabolic reprogramming via sphingolipid metabolism. However, the precise nature of the interactions between lncRNAs and sphingolipid metabolism remains unclear. This review summarizes the key roles of lncRNAs and sphingolipid metabolism in tumorigenesis. We emphasize that the interaction between lncRNAs and sphingolipid metabolism influences their impact on both cancer prognosis and drug resistance. These findings suggest that lncRNA-sphingolipid metabolism interaction holds great potential as a newl target for cancer treatment.
Collapse
Affiliation(s)
- Yan Chen
- Department of Pharmacy, Center for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China; Department of Respiratory Critical Care, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Jing Dai
- School of pharmacy, Chengdu Medical college, Chengdu, China.
| | - Peng Chen
- Department of Pharmacy, Center for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Quan Dai
- Department of Ultrasound, Center for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Ya Chen
- Department of Pharmacy, Center for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Yuying Li
- Department of Respiratory Critical Care, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Man Lu
- Department of Ultrasound, Center for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Shugang Qin
- Department of Exerimental Research, Center for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Qiuju Wang
- Department of Experimental Research, Sichuan Cancer Hospital & Institute, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China.
| |
Collapse
|
5
|
Ma J, Chen Z, Hou L. Revealing a cancer-associated fibroblast-based risk signature for pancreatic adenocarcinoma through single-cell and bulk RNA-seq analysis. Aging (Albany NY) 2024; 16:12525-12542. [PMID: 39332020 PMCID: PMC11466480 DOI: 10.18632/aging.206043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/15/2024] [Indexed: 09/29/2024]
Abstract
PURPOSE Proliferation of stromal connective tissue is a hallmark of pancreatic adenocarcinoma (PAAD). The engagement of activated cancer-associated fibroblasts (CAFs) contributes to the progression of PAAD through their involvement in tumor fibrogenesis. However, the prognostic significance of CAF-based risk signature in PAAD has not been explored. METHODS The single-cell RNA sequencing (scRNA-seq) data sourced from GSE155698 within the Gene Expression Omnibus (GEO) database was supplemented by bulk RNA sequencing data from The Cancer Genome Atlas (TCGA) and microarray data retrieved from the GEO database. The scRNA-seq data underwent processing via the Seurat package to identify distinct CAF clusters utilizing specific CAF markers. Differential gene expression analysis between normal and tumor samples was conducted within the TCGA-PAAD cohort. Univariate Cox regression analysis pinpointed genes associated with CAF clusters, identifying prognostic CAF-related genes. These genes were utilized in LASSO regression to craft a predictive risk signature. Subsequently, integrating clinicopathological traits and the risk signature, a nomogram model was constructed. RESULTS Our scRNA-seq analysis unveiled four distinct CAF clusters in PAAD, with two linked to PAAD prognosis. Among 207 identified DEGs, 148 exhibited significant correlation with these CAF clusters, forming the basis of a seven-gene risk signature. This signature emerged as an independent predictor in multivariate analysis for PAAD and demonstrated predictive efficacy in immunotherapeutic outcomes. Additionally, a novel nomogram, integrating age and the CAF-based risk signature, exhibited robust predictability and reliability in prognosticating PAAD. Moreover, the risk signature displayed substantial correlations with stromal and immune scores, as well as specific immune cell types. CONCLUSIONS The prognosis of PAAD can be accurately predicted using the CAF-based risk signature, and a thorough analysis of the PAAD CAF signature may aid in deciphering the patient's immunotherapy response and presenting fresh cancer treatment options.
Collapse
Affiliation(s)
- Jing Ma
- Department of Emergency Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhinan Chen
- Department of Emergency Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Limin Hou
- Department of Emergency Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
6
|
Wang W, Ding M, Wang Q, Song Y, Huo K, Chen X, Xiang Z, Liu L. Advances in Foxp3+ regulatory T cells (Foxp3+ Treg) and key factors in digestive malignancies. Front Immunol 2024; 15:1404974. [PMID: 38919615 PMCID: PMC11196412 DOI: 10.3389/fimmu.2024.1404974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
Foxp3+ regulatory T cells (Foxp3+ Treg) play a role in regulating various types of tumors, but uncertainty still exists regarding the exact mechanism underlying Foxp3+ Treg activation in gastrointestinal malignancies. As of now, research has shown that Foxp3+ Treg expression, altered glucose metabolism, or a hypoxic tumor microenvironment all affect Foxp3+ Treg function in the bodies of tumor patients. Furthermore, it has been demonstrated that post-translational modifications are essential for mature Foxp3 to function properly. Additionally, a considerable number of non-coding RNAs (ncRNAs) have been implicated in the activation of the Foxp3 signaling pathway. These mechanisms regulating Foxp3 may one day serve as potential therapeutic targets for gastrointestinal malignancies. This review primarily focuses on the properties and capabilities of Foxp3 and Foxp3+Treg. It emphasizes the advancement of research on the regulatory mechanisms of Foxp3 in different malignant tumors of the digestive system, providing new insights for the exploration of anticancer treatments.
Collapse
Affiliation(s)
- Wanyao Wang
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Minglu Ding
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Qiuhong Wang
- Mudanjiang Hospital for Cardiovascular Diseases, Department of Anesthesiology, Mudanjiang, Heilongjiang, China
| | - Yidan Song
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Keyuan Huo
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Xiaojie Chen
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Zihan Xiang
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Lantao Liu
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| |
Collapse
|
7
|
Yin ZH, Tan WH, Jiang YL. Exploration of the Molecular Mechanism of Curcuma aromatica Salisb's Anticolorectal Cancer Activity via the Integrative Approach of Network Pharmacology and Experimental Validation. ACS OMEGA 2024; 9:21426-21439. [PMID: 38764617 PMCID: PMC11097187 DOI: 10.1021/acsomega.4c01759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/21/2024]
Abstract
Curcuma aromatica Salisb (Cur), a well-known herbal medicine, has a wide spectrum of anti-inflammatory, anticarcinogenic, and antioxidant activities. However, the roles of its active compounds and potential mechanisms in colorectal cancer remain unknown. This research utilized network pharmacology and experimental validation to explore the possible mechanisms by which Cur protects against colorectal cancer. The active compounds of Cur and related genes for colorectal cancer were obtained from public databases. The DrugBank database was used to search for anticolorectal cancer drugs licensed through the FDA and their targets, and a "drug-component-target" relationship network was created using the Cytoscape program. The String database produced the PPI network. The ability of these active ingredients to bind to core targets was confirmed by molecular docking using AutoDock Vina. Cell and animal experiments were then carried out. A total of 274 targets were obtained from Cur, 49 of which were potential therapeutic targets. Four key targets, PTGS2, AKT1, TP53, and estrogen receptor 1 (ESR1), were screened via the PPI network and the FDA drug-target network. Molecular docking results revealed that Cur had strong binding abilities to these targets. In vivo and in vitro experiments demonstrated that Cur suppressed the development of colorectal cancer by regulating its targets (PTGS2, AKT1, TP53, and ESR1), which play crucial roles in promoting apoptosis and suppressing cell proliferation, migration, and invasion. Collectively, Cur protects against colorectal cancer by regulating the AKT1/PTGS2/ESR1 and P53 pathways, which lays the groundwork for further research and clinical applications of Cur in colorectal cancer therapy.
Collapse
Affiliation(s)
- Zhi-Hui Yin
- The First Affiliated Hospital, Department of Anorectal, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Wei-Hua Tan
- The First Affiliated Hospital, Emergency Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yi-Ling Jiang
- The First Affiliated Hospital, Department of Oncology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
8
|
He X, Xu Z, Ren R, Wan P, Zhang Y, Wang L, Han Y. A novel sphingolipid metabolism-related long noncoding RNA signature predicts the prognosis, immune landscape and therapeutic response in pancreatic adenocarcinoma. Heliyon 2024; 10:e23659. [PMID: 38173505 PMCID: PMC10761810 DOI: 10.1016/j.heliyon.2023.e23659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 11/23/2023] [Accepted: 12/09/2023] [Indexed: 01/05/2024] Open
Abstract
Sphingolipid metabolism affects prognosis and resistance to immunotherapy in patients with cancer and is an emerging target in cancer therapy with promising diagnostic and prognostic value. Long noncoding ribonucleic acids (lncRNAs) broadly regulate tumour-associated metabolic reprogramming. However, the potential of sphingolipid metabolism-related lncRNAs in pancreatic adenocarcinoma (PAAD) is poorly understood. In this study, coexpression algorithms were employed to identify sphingolipid metabolism-related lncRNAs. The least absolute shrinkage and selection operator (LASSO) algorithm was used to develop a sphingolipid metabolism-related lncRNA signature (SMLs). The prognostic predictive stability of the SMLs was validated using Kaplan-Meier. Univariate and multivariate Cox, receiver operating characteristic (ROC) and clinical stratification analyses were used to comprehensively assess the SMLs. Gene set variation analysis (GSVE), gene ontology (GO) and tumor mutation burden (TMB) analysis explored the potential mechanisms. Additionally, single sample gene set enrichment analysis (ssGSEA), ESTIMATE, immune checkpoints and drug sensitivity analysis were used to investigate the potential predictive function of the SMLs. Finally, an SMLs-based consensus clustering algorithm was utilized to differentiate patients and determine the suitable population for immunotherapy. The results showed that the SMLs consists of seven sphingolipid metabolism-related lncRNAs, which can well determine the clinical outcome of individuals with PAAD, with high stability and general applicability. In addition, the SMLs-based consensus clustering algorithm divided the TCGA-PAAD cohort into two clusters, with Cluster 1 showing better survival than Cluster 2. Additionally, Cluster 1 had a higher level of immune cell infiltration than Cluster 2, which combined with the higher levels of immune checkpoints in Cluster 1 suggests that Cluster 1 is more consistent with an immune 'hot tumor' profile and may respond better to immune checkpoint inhibitors (ICIs). This study offers new insights regarding the potential role of sphingolipid metabolism-related lncRNAs as biomarkers in PAAD. The constructed SMLs and the SMLs-based clustering are valuable tools for predicting clinical outcomes in PAAD and provide a basis for clinical selection of individualized treatments.
Collapse
Affiliation(s)
- Xiaolan He
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Zhengyang Xu
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Ruiping Ren
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Peng Wan
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Yu Zhang
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Liangliang Wang
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Ying Han
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
9
|
Du X, Yi X, Zou X, Chen Y, Tai Y, Ren X, He X. PCDH1, a poor prognostic biomarker and potential target for pancreatic adenocarcinoma metastatic therapy. BMC Cancer 2023; 23:1102. [PMID: 37957639 PMCID: PMC10642060 DOI: 10.1186/s12885-023-11474-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/03/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Pancreatic adenocarcinoma (PAAD) is an aggressive solid tumour characterised by few early symptoms, high mortality, and lack of effective treatment. Therefore, it is important to identify new potential therapeutic targets and prognostic biomarkers of PAAD. METHODS The Cancer Genome Atlas and Genotype-Tissue Expression databases were used to identify the expression and prognostic model of protocadherin 1 (PCDH1). The prognostic performance of risk factors and diagnosis of patients with PAAD were evaluated by regression analysis, nomogram, and receiver operating characteristic curve. Paraffin sections were collected from patients for immunohistochemistry (IHC) analysis. The expression of PCDH1 in cells obtained from primary tumours or metastatic biopsies was identified using single-cell RNA sequencing (scRNA-seq). Real-time quantitative polymerase chain reaction (qPCR) and western blotting were used to verify PCDH1 expression levels and the inhibitory effects of the compounds. RESULTS The RNA and protein levels of PCDH1 were significantly higher in PAAD cells than in normal pancreatic ductal cells, similar to those observed in tissue sections from patients with PAAD. Aberrant methylation of the CpG site cg19767205 and micro-RNA (miRNA) hsa-miR-124-1 may be important reasons for the high PCDH1 expression in PAAD. Up-regulated PCDH1 promotes pancreatic cancer cell metastasis. The RNA levels of PCDH1 were significantly down-regulated following flutamide treatment. Flutamide reduced the percentage of PCDH1 RNA level in PAAD cells Panc-0813 to < 50%. In addition, the PCDH1 protein was significantly down-regulated after Panc-0813 cells were incubated with 20 µM flutamide and proves to be a potential therapeutic intervention for PAAD. CONCLUSION PCDH1 is a key prognostic biomarker and promoter of PAAD metastasis. Additionally, flutamide may serve as a novel compound that down-regulates PCDH1 expression as a potential treatment for combating PAAD progression and metastasis.
Collapse
Affiliation(s)
- Xingyi Du
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, 100850, China
- Nanhu Laboratory, Jiaxing, 314002, China
| | - Xiaoyu Yi
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, 100850, China
- Nanhu Laboratory, Jiaxing, 314002, China
| | - Xiaocui Zou
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yuan Chen
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, 100850, China
- Nanhu Laboratory, Jiaxing, 314002, China
| | - Yanhong Tai
- Department of Pathology, No.307 Hospital of PLA, Beijing, 100071, China
| | - Xuhong Ren
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| | - Xinhua He
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, 100850, China.
- Nanhu Laboratory, Jiaxing, 314002, China.
| |
Collapse
|
10
|
Shi T, Li M, Yu Y. Machine learning-enhanced insights into sphingolipid-based prognostication: revealing the immunological landscape and predictive proficiency for immunomotherapy and chemotherapy responses in pancreatic carcinoma. Front Mol Biosci 2023; 10:1284623. [PMID: 38028544 PMCID: PMC10643633 DOI: 10.3389/fmolb.2023.1284623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Background: With a poor prognosis for affected individuals, pancreatic adenocarcinoma (PAAD) is known as a complicated and diverse illness. Immunocytes have become essential elements in the development of PAAD. Notably, sphingolipid metabolism has a dual function in the development of tumors and the invasion of the immune system. Despite these implications, research on the predictive ability of sphingolipid variables for PAAD prognosis is strikingly lacking, and it is yet unclear how they can affect PAAD immunotherapy and targeted pharmacotherapy. Methods: The investigation process included SPG detection while also being pertinent to the prognosis for PAAD. Both the analytical capability of CIBERSORT and the prognostic capability of the pRRophetic R package were used to evaluate the immunological environments of the various HCC subtypes. In addition, CCK-8 experiments on PAAD cell lines were carried out to confirm the accuracy of drug sensitivity estimates. The results of these trials, which also evaluated cell survival and migratory patterns, confirmed the usefulness of sphingolipid-associated genes (SPGs). Results: As a result of this thorough investigation, 32 SPGs were identified, each of which had a measurable influence on the dynamics of overall survival. This collection of genes served as the conceptual framework for the development of a prognostic model, which was carefully assembled from 10 chosen genes. It should be noted that this grouping of patients into cohorts with high and low risk was a sign of different immune profiles and therapy responses. The increased abundance of SPGs was identified as a possible sign of inadequate responses to immune-based treatment approaches. The careful CCK-8 testing carried out on PAAD cell lines was of the highest importance for providing clear confirmation of drug sensitivity estimates. Conclusion: The significance of Sphingolipid metabolism in the complex web of PAAD development is brought home by this study. The novel risk model, built on the complexity of sphingolipid-associated genes, advances our understanding of PAAD and offers doctors a powerful tool for developing personalised treatment plans that are specifically suited to the unique characteristics of each patient.
Collapse
Affiliation(s)
| | | | - Yabin Yu
- Department of Hepatobiliary Surgery, The Affiliated Huaian No 1 People’s Hospital of Nanjing Medical University, Huaian, China
| |
Collapse
|
11
|
Zhang M, Li Z, Liu Y, Ding X, Wang Y, Fan S. The ceramide synthase (CERS/LASS) family: Functions involved in cancer progression. Cell Oncol (Dordr) 2023; 46:825-845. [PMID: 36947340 DOI: 10.1007/s13402-023-00798-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
INTRODUCTION Ceramide synthases (CERSes) are also known longevity assurance (LASS) genes. CERSes play important roles in the regulation of cancer progression. The CERS family is expressed in a variety of human tumours and is involved in tumorigenesis. They are closely associated with the progression of liver, breast, cervical, ovarian, colorectal, head and neck squamous cell, gastric, lung, prostate, oesophageal, pancreatic and blood cancers. CERSes play diverse and important roles in the regulation of cell survival, proliferation, apoptosis, migration, invasion, and drug resistance. The differential expression of CERSes in tumour and nontumour cells and survival analysis of cancer patients suggest that some CERSes could be used as potential prognostic markers. They are also important potential targets for cancer therapy. METHODS In this review, we summarize the available evidence on the inhibitory or promotive roles of CERSes in the progression of many cancers. Furthermore, we summarize the identified upstream and downstream molecular mechanisms that may regulate the function of CERSes in cancer settings.
Collapse
Affiliation(s)
- Mengmeng Zhang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Zhangyun Li
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Yuwei Liu
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Xiao Ding
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Yanyan Wang
- Department of Ultrasonic Medicine, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China.
| | - Shaohua Fan
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| |
Collapse
|
12
|
Liu Y, Li H, Wang X, Huang J, Zhao D, Tan Y, Zhang Z, Zhang Z, Zhu L, Wu B, Chen Z, Peng W. Anti-Alzheimers molecular mechanism of icariin: insights from gut microbiota, metabolomics, and network pharmacology. J Transl Med 2023; 21:277. [PMID: 37095548 PMCID: PMC10124026 DOI: 10.1186/s12967-023-04137-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/16/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Icariin (ICA), an active ingredient extracted from Epimedium species, has shown promising results in the treatment of Alzheimer's disease (AD), although its potential therapeutic mechanism remains largely unknown. This study aimed to investigate the therapeutic effects and the underlying mechanisms of ICA on AD by an integrated analysis of gut microbiota, metabolomics, and network pharmacology (NP). METHODS The cognitive impairment of mice was measured using the Morris Water Maze test and the pathological changes were assessed using hematoxylin and eosin staining. 16S rRNA sequencing and multi-metabolomics were performed to analyze the alterations in the gut microbiota and fecal/serum metabolism. Meanwhile, NP was used to determine the putative molecular regulation mechanism of ICA in AD treatment. RESULTS Our results revealed that ICA intervention significantly improved cognitive dysfunction in APP/PS1 mice and typical AD pathologies in the hippocampus of the APP/PS1 mice. Moreover, the gut microbiota analysis showed that ICA administration reversed AD-induced gut microbiota dysbiosis in APP/PS1 mice by elevating the abundance of Akkermansia and reducing the abundance of Alistipe. Furthermore, the metabolomic analysis revealed that ICA reversed the AD-induced metabolic disorder via regulating the glycerophospholipid and sphingolipid metabolism, and correlation analysis revealed that glycerophospholipid and sphingolipid were closely related to Alistipe and Akkermansia. Moreover, NP indicated that ICA might regulate the sphingolipid signaling pathway via the PRKCA/TNF/TP53/AKT1/RELA/NFKB1 axis for the treatment of AD. CONCLUSION These findings indicated that ICA may serve as a promising therapeutic approach for AD and that the ICA-mediated protective effects were associated with the amelioration of microbiota disturbance and metabolic disorder.
Collapse
Affiliation(s)
- Yuqing Liu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Hongli Li
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Xiaowei Wang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Jianhua Huang
- Hunan Academy of Chinese Medicine, Changsha, 410013, People's Republic of China
| | - Di Zhao
- Hunan Academy of Chinese Medicine, Changsha, 410013, People's Republic of China
| | - Yejun Tan
- School of Mathematics, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zhen Zhang
- YangSheng College of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Lemei Zhu
- Academician Workstation, Changsha Medical University, Changsha, 410219, China
| | - Beibei Wu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zhibao Chen
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China.
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
13
|
Zhang X, Zhuge J, Liu J, Xia Z, Wang H, Gao Q, Jiang H, Qu Y, Fan L, Ma J, Tan C, Luo W, Luo Y. Prognostic signatures of sphingolipids: Understanding the immune landscape and predictive role in immunotherapy response and outcomes of hepatocellular carcinoma. Front Immunol 2023; 14:1153423. [PMID: 37006285 PMCID: PMC10063861 DOI: 10.3389/fimmu.2023.1153423] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a complex disease with a poor outlook for patients in advanced stages. Immune cells play an important role in the progression of HCC. The metabolism of sphingolipids functions in both tumor growth and immune infiltration. However, little research has focused on using sphingolipid factors to predict HCC prognosis. This study aimed to identify the key sphingolipids genes (SPGs) in HCC and develop a reliable prognostic model based on these genes. Methods The TCGA, GEO, and ICGC datasets were grouped using SPGs obtained from the InnateDB portal. A prognostic gene signature was created by applying LASSO-Cox analysis and evaluating it with Cox regression. The validity of the signature was verified using ICGC and GEO datasets. The tumor microenvironment (TME) was examined using ESTIMATE and CIBERSORT, and potential therapeutic targets were identified through machine learning. Single-cell sequencing was used to examine the distribution of signature genes in cells within the TME. Cell viability and migration were tested to confirm the role of the key SPGs. Results We identified 28 SPGs that have an impact on survival. Using clinicopathological features and 6 genes, we developed a nomogram for HCC. The high- and low-risk groups were found to have distinct immune characteristics and response to drugs. Unlike CD8 T cells, M0 and M2 macrophages were found to be highly infiltrated in the TME of the high-risk subgroup. High levels of SPGs were found to be a good indicator of response to immunotherapy. In cell function experiments, SMPD2 and CSTA were found to enhance survival and migration of Huh7 cells, while silencing these genes increased the sensitivity of Huh7 cells to lapatinib. Conclusion The study presents a six-gene signature and a nomogram that can aid clinicians in choosing personalized treatments for HCC patients. Furthermore, it uncovers the connection between sphingolipid-related genes and the immune microenvironment, offering a novel approach for immunotherapy. By focusing on crucial sphingolipid genes like SMPD2 and CSTA, the efficacy of anti-tumor therapy can be increased in HCC cells.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Pathology, the Second People’s Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, China
| | - Jinke Zhuge
- Department of Respiratory Medicine, Hainan Cancer Hospital, Hainan, China
| | - Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Huixiong Wang
- Department of Hepatobiliary Surgery, Hospital of Inner Mongolia Baotou Steel, Baotou, Inner Mongolia, China
| | - Qiang Gao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hao Jiang
- Department of Pathology, the Second People’s Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, China
| | - Yanyu Qu
- Department of Pathology, the Second People’s Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, China
| | - Linlin Fan
- Department of Pathology, the Second People’s Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, China
| | - Jiali Ma
- Department of Pathology, the Second People’s Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, China
| | - Chunhua Tan
- Department of Pathology, the Second People’s Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, China
| | - Wei Luo
- Department of General Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Yong Luo
- Department of Urology, The Second People’s Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, China
| |
Collapse
|
14
|
Wang J, Gong R, Zhao C, Lei K, Sun X, Ren H. Human FOXP3 and tumour microenvironment. Immunology 2023; 168:248-255. [PMID: 35689826 DOI: 10.1111/imm.13520] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/12/2022] [Indexed: 01/17/2023] Open
Abstract
The tumour microenvironment (TME) is a complex system composed of cancer cells, stromal cells and immune cells. Regulatory T cells (Tregs) in the TME impede immune surveillance of tumours and suppress antitumor immune responses. Transcription factor forkhead box protein 3 (FOXP3) is the main marker of Tregs, which dominates the function of Tregs. FOXP3 was originally thought to be a Tregs-specific expression molecule, and recent studies have found that FOXP3 is expressed in a variety of tumours with inconsistent functional roles. This review summarizes the recent progress of infiltrating Treg-FOXP3 and tumour-FOXP3 in TME, discusses the communication mechanism between FOXP3+ cells and effector T cells in TME, the relationship between FOXP3 and clinical prognosis, and the potential of FOXP3-targeted therapy.
Collapse
Affiliation(s)
- Jia Wang
- Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Qingdao Medical School, Qingdao University, Qingdao, Shandong, China
| | - Ruining Gong
- Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chenyang Zhao
- Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ke Lei
- Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaoyuan Sun
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - He Ren
- Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Tianjin, China
| |
Collapse
|
15
|
Zhang P, Pei S, Gong Z, Feng Y, Zhang X, Yang F, Wang W. By integrating single-cell RNA-seq and bulk RNA-seq in sphingolipid metabolism, CACYBP was identified as a potential therapeutic target in lung adenocarcinoma. Front Immunol 2023; 14:1115272. [PMID: 36776843 PMCID: PMC9914178 DOI: 10.3389/fimmu.2023.1115272] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/12/2023] [Indexed: 01/28/2023] Open
Abstract
Background Lung adenocarcinoma (LUAD) is a heterogeneous disease with a dismal prognosis for advanced tumors. Immune-associated cells in the microenvironment substantially impact LUAD formation and progression, which has gained increased attention in recent decades. Sphingolipids have a profound impact on tumor formation and immune infiltration. However, few researchers have focused on the utilization of sphingolipid variables in the prediction of LUAD prognosis. The goal of this work was to identify the major sphingolipid-related genes (SRGs) in LUAD and develop a valid prognostic model based on SRGs. Methods The most significant genes for sphingolipid metabolism (SM) were identified using the AUCell and WGCNA algorithms in conjunction with single-cell and bulk RNA-seq. LASSO and COX regression analysis was used to develop risk models, and patients were divided into high-and low-risk categories. External nine provided cohorts evaluated the correctness of the models. Differences in immune infiltration, mutation landscape, pathway enrichment, immune checkpoint expression, and immunotherapy were also further investigated in distinct subgroups. Finally, cell function assay was used to verify the role of CACYBP in LUAD cells. Results A total of 334 genes were selected as being most linked with SM activity for further investigation, and a risk model consisting of 11 genes was established using lasso and cox regression. According to the median risk value, patients were split into high- and low-risk groups, and the high-risk group had a worse prognosis. The low-risk group had more immune cell infiltration and higher expression of immune checkpoints, which illustrated that the low-risk group was more likely to benefit from immunotherapy. It was verified that CACYBP could increase the ability of LUAD cells to proliferate, invade, and migrate. Conclusion The eleven-gene signature identified in this research may help physicians create individualized care plans for LUAD patients. CACYBP may be a new therapeutic target for patients with advanced LUAD.
Collapse
Affiliation(s)
- Pengpeng Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shengbin Pei
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zeitian Gong
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanlong Feng
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fang Yang
- Department of Ophthalmology, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany,*Correspondence: Fang Yang, ; Wei Wang,
| | - Wei Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,*Correspondence: Fang Yang, ; Wei Wang,
| |
Collapse
|
16
|
ITGA2 overexpression inhibits DNA repair and confers sensitivity to radiotherapies in pancreatic cancer. Cancer Lett 2022; 547:215855. [PMID: 35998796 DOI: 10.1016/j.canlet.2022.215855] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/26/2022] [Accepted: 07/30/2022] [Indexed: 11/20/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a dismal disease with a 5-year survival rate of less than 10%, despite the recent advances in chemoradiotherapy. The sensitivity of the PDAC patients to chemoradiotherapy varies widely, especially to radiotherapy, suggesting the need for more elucidation of the underlying mechanisms. In this study, a novel function of the nuclear ITGA2, the alpha subunit of transmembrane collagen receptor integrin alpha-2/beta-1, regulating the DNA damage response (DDR), was identified. First, analyzing The Cancer Genome Atlas (TCGA) PDAC data set indicated that the expression status of ITGA2 was negatively correlated with the genome stability parameters. The study further demonstrated that ITGA2 specially inhibited the activity of the non-homologous end joining (NHEJ) pathway and conferred the sensitivity to radiotherapy in PDAC by restraining the recruitment of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to Ku70/80 heterodimer during DDR. Considering the overexpression of ITGA2 and its associated with the poor prognosis of PDAC patients, this study suggested that the ITGA2 expression status could be used as an indicator for radiotherapy and DNA damage reagents, and the radiotherapy in combination with the overexpression of ITGA2 might be a viable treatment strategy for the PDAC patients.
Collapse
|
17
|
Janneh AH, Ogretmen B. Targeting Sphingolipid Metabolism as a Therapeutic Strategy in Cancer Treatment. Cancers (Basel) 2022; 14:2183. [PMID: 35565311 PMCID: PMC9104917 DOI: 10.3390/cancers14092183] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Sphingolipids are bioactive molecules that have key roles in regulating tumor cell death and survival through, in part, the functional roles of ceramide accumulation and sphingosine-1-phosphate (S1P) production, respectively. Mechanistic studies using cell lines, mouse models, or human tumors have revealed crucial roles of sphingolipid metabolic signaling in regulating tumor progression in response to anticancer therapy. Specifically, studies to understand ceramide and S1P production pathways with their downstream targets have provided novel therapeutic strategies for cancer treatment. In this review, we present recent evidence of the critical roles of sphingolipids and their metabolic enzymes in regulating tumor progression via mechanisms involving cell death or survival. The roles of S1P in enabling tumor growth/metastasis and conferring cancer resistance to existing therapeutics are also highlighted. Additionally, using the publicly available transcriptomic database, we assess the prognostic values of key sphingolipid enzymes on the overall survival of patients with different malignancies and present studies that highlight their clinical implications for anticancer treatment.
Collapse
Affiliation(s)
| | - Besim Ogretmen
- Hollings Cancer Center, Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
18
|
A Review on the Efficacy and Safety of Nab-Paclitaxel with Gemcitabine in Combination with Other Therapeutic Agents as New Treatment Strategies in Pancreatic Cancer. Life (Basel) 2022; 12:life12030327. [PMID: 35330078 PMCID: PMC8953820 DOI: 10.3390/life12030327] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 01/27/2023] Open
Abstract
Pancreatic cancer has one of the highest mortality rates among cancers, and a combination of nab-paclitaxel with gemcitabine remains the cornerstone of first-line therapy. However, major advances are required to achieve improvements in patient outcomes. For this reason, several research groups have proposed supplementing treatment with other therapeutic agents. Ongoing studies are being conducted to find the optimal treatment in a first-line setting. In this work, we used a search strategy to compare studies on the efficacy and safety of nab-paclitaxel with gemcitabine in combination with other therapeutic agents based on the criteria of the Preferred Reporting Items for Systematic Reviews. We found seven studies in different clinical phases that met the inclusion criteria. The seven therapeutic agents were ibrutinib, necuparanib, tarextumab, apatorsen, cisplatin, enzalutamide, and momelotinib. Although these therapeutic agents have different mechanisms of action, and molecular biology studies are still needed, the present review was aimed to answer the following question: which formulations of the nab-paclitaxel/gemcitabine regimen in combination with other therapeutic agents are safest for patients with previously untreated metastatic pancreas ductal adenocarcinoma? The triple regimen is emerging as the first-line option for patients with pancreatic cancer, albeit with some limitations. Thus, further studies of this regimen are recommended.
Collapse
|