1
|
Masnikosa R, Cvetković Z, Pirić D. Tumor Biology Hides Novel Therapeutic Approaches to Diffuse Large B-Cell Lymphoma: A Narrative Review. Int J Mol Sci 2024; 25:11384. [PMID: 39518937 PMCID: PMC11545713 DOI: 10.3390/ijms252111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a malignancy of immense biological and clinical heterogeneity. Based on the transcriptomic or genomic approach, several different classification schemes have evolved over the years to subdivide DLBCL into clinically (prognostically) relevant subsets, but each leaves unclassified samples. Herein, we outline the DLBCL tumor biology behind the actual and potential drug targets and address the challenges and drawbacks coupled with their (potential) use. Therapeutic modalities are discussed, including small-molecule inhibitors, naked antibodies, antibody-drug conjugates, chimeric antigen receptors, bispecific antibodies and T-cell engagers, and immune checkpoint inhibitors. Candidate drugs explored in ongoing clinical trials are coupled with diverse toxicity issues and refractoriness to drugs. According to the literature on DLBCL, the promise for new therapeutic targets lies in epigenetic alterations, B-cell receptor and NF-κB pathways. Herein, we present putative targets hiding in lipid pathways, ferroptosis, and the gut microbiome that could be used in addition to immuno-chemotherapy to improve the general health status of DLBCL patients, thus increasing the chance of being cured. It may be time to devote more effort to exploring DLBCL metabolism to discover novel druggable targets. We also performed a bibliometric and knowledge-map analysis of the literature on DLBCL published from 2014-2023.
Collapse
Affiliation(s)
- Romana Masnikosa
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia;
| | - Zorica Cvetković
- Department of Hematology, Clinical Hospital Centre Zemun, Vukova 9, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade, Serbia
| | - David Pirić
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia;
| |
Collapse
|
2
|
Yang N, Kong B, Zhu Z, Huang F, Zhang L, Lu T, Chen Y, Zhang Y, Jiang Y. Recent advances in targeted protein degraders as potential therapeutic agents. Mol Divers 2024; 28:309-333. [PMID: 36790583 PMCID: PMC9930057 DOI: 10.1007/s11030-023-10606-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/12/2023] [Indexed: 02/16/2023]
Abstract
Targeted protein degradation (TPD) technology has gradually become widespread in the past 20 years, which greatly boosts the development of disease treatment. Contrary to small inhibitors that act on protein kinases, transcription factors, ion channels, and other targets they can bind to, targeted protein degraders could target "undruggable targets" and overcome drug resistance through ubiquitin-proteasome pathway (UPP) and lysosome pathway. Nowadays, some bivalent degraders such as proteolysis-targeting chimeras (PROTACs) have aroused great interest in drug discovery, and some of them have successfully advanced into clinical trials. In this review, to better understand the mechanism of degraders, we elucidate the targeted protein degraders according to their action process, relying on the ubiquitin-proteasome system or lysosome pathway. Then, we briefly summarize the study of PROTACs employing different E3 ligases. Subsequently, the effect of protein of interest (POI) ligands, linker, and E3 ligands on PROTAC degradation activity is also discussed in detail. Other novel technologies based on UPP and lysosome pathway have been discussed in this paper such as in-cell click-formed proteolysis-targeting chimeras (CLIPTACs), molecular glues, Antibody-PROTACs (Ab-PROTACs), autophagy-targeting chimeras, and lysosome-targeting chimeras. Based on the introduction of these degradation technologies, we can clearly understand the action process and degradation mechanism of these approaches. From this perspective, it will be convenient to obtain the development status of these drugs, choose appropriate degradation methods to achieve better disease treatment and provide basis for future research and simultaneously distinguish the direction of future research efforts.
Collapse
Affiliation(s)
- Na Yang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China
| | - Bo Kong
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China
| | - Zhaohong Zhu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China
| | - Fei Huang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China
| | - Liliang Zhang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China
| | - Tao Lu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Yadong Chen
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China.
| | - Yanmin Zhang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China.
| | - Yulei Jiang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
3
|
Florio D, Marasco D. Could Targeting NPM1c+ Misfolding Be a Promising Strategy for Combating Acute Myeloid Leukemia? Int J Mol Sci 2024; 25:811. [PMID: 38255885 PMCID: PMC10815591 DOI: 10.3390/ijms25020811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/30/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous group of diseases classified into various types on the basis of distinct features concerning the morphology, cytochemistry and cytogenesis of leukemic cells. Among the different subtypes, the group "AML with gene mutations" includes the variations of the gene of the multifunctional protein nucleophosmin 1 (NPM1). These mutations are the most frequent (~30-35% of AML adult patients and less in pediatric ones) and occur predominantly in the C-terminal domain (CTD) of NPM1. The most important mutation is the insertion at W288, which determines the frame shift W288Cfs12/Ffs12/Lfs*12 and leads to the addition of 2-12 amino acids, which hamper the correct folding of NPM1. This mutation leads to the loss of the nuclear localization signal (NoLS) and to aberrant cytoplasmic localization, denoted as NPM1c+. Many investigations demonstrated that interfering with the cellular location and oligomerization status of NPM1 can influence its biological functions, including the proper buildup of the nucleolus, and therapeutic strategies have been proposed to target NPM1c+, particularly the use of drugs able to re-direct NPM1 localization. Our studies unveiled a direct link between AML mutations and the neat amyloidogenic character of the CTDs of NPM1c+. Herein, with the aim of exploiting these conformational features, novel therapeutic strategies are proposed that rely on the induction of the selective self-cytotoxicity of leukemic blasts by focusing on agents such as peptides, peptoids or small molecules able to enhance amyloid aggregation and targeting selectively AML-NPM1c+ mutations.
Collapse
Affiliation(s)
| | - Daniela Marasco
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy;
| |
Collapse
|
4
|
Li Q, Zhou L, Qin S, Huang Z, Li B, Liu R, Yang M, Nice EC, Zhu H, Huang C. Proteolysis-targeting chimeras in biotherapeutics: Current trends and future applications. Eur J Med Chem 2023; 257:115447. [PMID: 37229829 DOI: 10.1016/j.ejmech.2023.115447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023]
Abstract
The success of inhibitor-based therapeutics is largely constrained by the acquisition of therapeutic resistance, which is partially driven by the undruggable proteome. The emergence of proteolysis targeting chimera (PROTAC) technology, designed for degrading proteins involved in specific biological processes, might provide a novel framework for solving the above constraint. A heterobifunctional PROTAC molecule could structurally connect an E3 ubiquitin ligase ligand with a protein of interest (POI)-binding ligand by chemical linkers. Such technology would result in the degradation of the targeted protein via the ubiquitin-proteasome system (UPS), opening up a novel way of selectively inhibiting undruggable proteins. Herein, we will highlight the advantages of PROTAC technology and summarize the current understanding of the potential mechanisms involved in biotherapeutics, with a particular focus on its application and development where therapeutic benefits over classical small-molecule inhibitors have been achieved. Finally, we discuss how this technology can contribute to developing biotherapeutic drugs, such as antivirals against infectious diseases, for use in clinical practices.
Collapse
Affiliation(s)
- Qiong Li
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Li Zhou
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, PR China
| | - Siyuan Qin
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Zhao Huang
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Bowen Li
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Ruolan Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Mei Yang
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Huili Zhu
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, 610041, PR China.
| | - Canhua Huang
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China; School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
5
|
Jiang Q, Hu Y, Liu Q, Tang Y, Wu X, Liu J, Tu G, Li G, Lin X, Qu M, Cai Y, Huang X, Xu J, Deng Y, Chen Z, Wu L. Albumin-encapsulated HSP90-PROTAC BP3 nanoparticles not only retain protein degradation ability but also enhance the antitumour activity of BP3 in vivo. J Drug Target 2023; 31:411-420. [PMID: 36866593 DOI: 10.1080/1061186x.2023.2185247] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Proteolysis-targeting chimaera (PROTAC) has received extensive attention in industry. However, there are still some limitations that hinder its further development. In a previous study, our group first demonstrated that the HSP90 degrader BP3 synthesised by the principle of PROTACs showed therapeutic potential for cancer. However, its application was hindered by its high molecular weight and water insolubility. Herein, we aimed to improve these properties of HSP90-PROTAC BP3 by encapsulating it into human serum albumin nanoparticles (BP3@HSA NPs). The results demonstrated that BP3@HSA NPs showed a uniform spherical shape with a size of 141.01 ± 1.07 nm and polydispersity index < 0.2; moreover, BP3@HSA NPs were more readily taken up by breast cancer cells and had a stronger inhibitory effect in vitro than free BP3. BP3@HSA NPs also demonstrated the ability to degrade HSP90. Mechanistically, the improved inhibitory effect of BP3@HSA NPs on breast cancer cells was related to its stronger ability to induce cell cycle arrest and apoptosis. Furthermore, BP3@HSA NPs improved PK properties and showed stronger tumour suppression in mice. Taken together, this study demonstrated that hydrophobic HSP90-PROTAC BP3 nanoparticles encapsulated by human serum albumin could improve the safety and antitumour efficacy of BP3.
Collapse
Affiliation(s)
- Qingna Jiang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, P.R. China
- Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, P.R. China
| | - Yan Hu
- Department of Public Technology Service Center, Fujian Medical University (FMU), Fuzhou, P.R. China
| | - Quanyu Liu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, P.R. China
- Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, P.R. China
- School of Pharmacy, Fujian Health College, Fuzhou, P.R. China
| | - Yuanling Tang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, P.R. China
- Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, P.R. China
| | - Xinhua Wu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, P.R. China
- Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, P.R. China
| | - Jingwen Liu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, P.R. China
- Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, P.R. China
| | - Guihui Tu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, P.R. China
- Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, P.R. China
| | - Ge Li
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, P.R. China
- Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, P.R. China
| | - Xiaoqing Lin
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, P.R. China
- Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, P.R. China
| | - Minghui Qu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, P.R. China
- Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, P.R. China
| | - Yajuan Cai
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, P.R. China
- Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, P.R. China
| | - Xiuwang Huang
- Department of Public Technology Service Center, Fujian Medical University (FMU), Fuzhou, P.R. China
| | - Jianhua Xu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, P.R. China
- Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, P.R. China
| | - Yanping Deng
- Department of Pharmaceutics, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, P.R. China
| | - Zhuo Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian Academy, University of Chinese Academy of Sciences, Fuzhou, P.R. China
| | - Lixian Wu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, P.R. China
- Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, P.R. China
| |
Collapse
|
6
|
Sabnis R. Novel SMARCA Degraders for Treating Cancer. ACS Med Chem Lett 2022; 13:1532-1534. [PMID: 36267129 PMCID: PMC9578032 DOI: 10.1021/acsmedchemlett.2c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Indexed: 11/28/2022] Open
Abstract
Provided herein are novel compounds as SMARCA degraders, pharmaceutical compositions, use of such compounds in treating cancer, and processes for preparing such compounds.
Collapse
Affiliation(s)
- Ram
W. Sabnis
- Smith, Gambrell & Russell LLP,
1105 W. Peachtree Street NE, Suite 1000, Atlanta, Georgia 30309,
United States
| |
Collapse
|
7
|
Pu C, Wang S, Liu L, Feng Z, Zhang H, Gong Q, Sun Y, Guo Y, Li R. Current strategies for improving limitations of proteolysis targeting chimeras. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
The Systematic Analyses of RING Finger Gene Signature for Predicting the Prognosis of Patients with Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:2466006. [PMID: 36199791 PMCID: PMC9529411 DOI: 10.1155/2022/2466006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 09/08/2022] [Indexed: 12/24/2022]
Abstract
RING finger (RNF) proteins are frequently dysregulated in human malignancies and are tightly associated with tumorigenesis. However, the expression profiles of RNF genes in hepatocellular carcinoma (HCC) and their relations with prognosis remain undetermined. Here, we aimed at constructing a prognostic model according to RNF genes for forecasting the outcomes of HCC patients using the data from The Cancer Genome Atlas (TCGA) program. We collected HCC datasets to validate the values of our model in predicting prognosis of HCC patients from International Cancer Genome Consortium (ICGC) platform. Then, functional experiments were carried out to explore the roles of the representative RNF in HCC progression. A total of 107 differentially expressed RNFs were obtained between TCGA-HCC tumor and normal tissues. After comprehensive evaluation, a prognostic signature composed of 11 RNFs (RNF220, RNF25, TRIM25, BMI1, RNF216P1, RNF115, RNF2, TRAIP, RNF157, RNF145, and RNF19B) was constructed based on TCGA cohort. Then, the Kaplan-Meier (KM) curves and the receiver operating characteristic curve (ROC) were employed to evaluate predictive power of the prognostic model in testing cohort (TCGA) and validation cohort (ICGC). The KM and ROC curves illustrated the good predictive power in testing and validation cohort. The areas under the ROC curve are 0.77 and 0.76 in these two cohorts, respectively. Among the prognostic signature genes, BMI1 was selected as a representative for functional study. We found that BMI1 protein level was significantly upregulated in HCC tissues. Moreover, the inhibitor of BMI1, PTC-209, displayed an excellent anti-HCC effect in vitro. Enrichment analysis of BMI1 downstream targets showed that BMI1 might be involved in tumor immunotherapy. Together, our overall analyses revealed that the 11-RNFs prognostic signature might provide us latent chances for evaluating HCC prognosis and developing novel HCC therapy.
Collapse
|