1
|
Ma Q, Hao S, Hong W, Tergaonkar V, Sethi G, Tian Y, Duan C. Versatile function of NF-ĸB in inflammation and cancer. Exp Hematol Oncol 2024; 13:68. [PMID: 39014491 PMCID: PMC11251119 DOI: 10.1186/s40164-024-00529-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/06/2024] [Indexed: 07/18/2024] Open
Abstract
Nuclear factor-kappaB (NF-ĸB) plays a crucial role in both innate and adaptive immune systems, significantly influencing various physiological processes such as cell proliferation, migration, differentiation, survival, and stemness. The function of NF-ĸB in cancer progression and response to chemotherapy has gained increasing attention. This review highlights the role of NF-ĸB in inflammation control, biological mechanisms, and therapeutic implications in cancer treatment. NF-ĸB is instrumental in altering the release of inflammatory factors such as TNF-α, IL-6, and IL-1β, which are key in the regulation of carcinogenesis. Specifically, in conditions including colitis, NF-ĸB upregulation can intensify inflammation, potentially leading to the development of colorectal cancer. Its pivotal role extends to regulating the tumor microenvironment, impacting components such as macrophages, fibroblasts, T cells, and natural killer cells. This regulation influences tumorigenesis and can dampen anti-tumor immune responses. Additionally, NF-ĸB modulates cell death mechanisms, notably by inhibiting apoptosis and ferroptosis. It also has a dual role in stimulating or suppressing autophagy in various cancers. Beyond these functions, NF-ĸB plays a role in controlling cancer stem cells, fostering angiogenesis, increasing metastatic potential through EMT induction, and reducing tumor cell sensitivity to chemotherapy and radiotherapy. Given its oncogenic capabilities, research has focused on natural products and small molecule compounds that can suppress NF-ĸB, offering promising avenues for cancer therapy.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230022, P.R. China
| | - Shuai Hao
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, P.R. China
| | - Weilong Hong
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, 60532, USA.
| | - Chenyang Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China.
| |
Collapse
|
2
|
Huang G, Zhang W, Tian H. Evaluation of the radiosensitizing effect of MEK inhibitor KZ-001 on non-small cell lung cancer cells in vitro. ASIAN BIOMED 2023; 17:230-237. [PMID: 37899758 PMCID: PMC10602635 DOI: 10.2478/abm-2023-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Background Non-small cell lung cancer (NSCLC) has a poor prognosis and usually presents resistance against radiotherapy. MEK inhibitors have been proven to possess a radiosensitization effect. The compound KZ-001 as a particular MEK inhibitor is superior to the listed MEK inhibitor AZD6244. Objective To investigate whether KZ-001 could enhance the radiosensitivity of NSCLC cell lines in vitro. Methods MTT and colony formation assay were used to evaluate the radiosensitivity effect of KZ-001. Immunofluorescence, cell cycle, apoptosis staining, and western blot experiments were used to explore the radiosensitivity mechanism. Results KZ-001 significantly decreased A549 cell viability at 6 Gy and 8 Gy radiation doses and caused the radiosensitivity at 1 Gy, 4 Gy, and 6 Gy in colony formation experiments. The A549 apoptosis ratio induced by irradiation (IR) combined with KZ-001 increased significantly in comparison with that by IR monotherapy (10.57% vs. 6.23%, P = 0.0055). The anti-apoptosis marker Bcl-XL was found downregulated in KZ-001 and IR-treated A549/H460 cells, but apoptosis marker Bax was downregulated in H460. Extracellular regulated protein kinases (ERK1/2) phosphorylation of H460 cells could be blocked both by IR alone and IR combined with KZ-001. IR combined with KZ-001 is able to inhibit ERK activation of A549 cells apparently. KZ-001 increased the proportion of G2 phase in irradiated cells from 21.24% to 32.22%. KZ-001 could also significantly increase the double-strand break damage cell ratio to more than 30% compared to the irradiation alone group. Conclusions MEK1/2 inhibitor KZ-001 is a potential radiosensitizer for clinical applications.
Collapse
Affiliation(s)
- Gongchao Huang
- Department of Chemistry, School of Science, Tianjin University, Tianjin300072, China
| | - Wenqin Zhang
- Department of Chemistry, School of Science, Tianjin University, Tianjin300072, China
| | - Hongqi Tian
- Shanghai Kechow Pharma, Inc., Shanghai201203, China
| |
Collapse
|
3
|
Franklin C, Mohr P, Bluhm L, Grimmelmann I, Gutzmer R, Meier F, Garzarolli M, Weichenthal M, Pfoehler C, Herbst R, Terheyden P, Utikal J, Ulrich J, Debus D, Haferkamp S, Kaatz M, Forschner A, Leiter U, Nashan D, Kreuter A, Sachse M, Welzel J, Heinzerling L, Meiss F, Weishaupt C, Gambichler T, Weyandt G, Dippel E, Schatton K, Celik E, Trommer M, Helfrich I, Roesch A, Zimmer L, Livingstone E, Schadendorf D, Horn S, Ugurel S. Impact of radiotherapy and sequencing of systemic therapy on survival outcomes in melanoma patients with previously untreated brain metastasis: a multicenter DeCOG study on 450 patients from the prospective skin cancer registry ADOREG. J Immunother Cancer 2022; 10:jitc-2022-004509. [PMID: 35688555 PMCID: PMC9189852 DOI: 10.1136/jitc-2022-004509] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Despite of various therapeutic strategies, treatment of patients with melanoma brain metastasis (MBM) still is a major challenge. This study aimed at investigating the impact of type and sequence of immune checkpoint blockade (ICB) and targeted therapy (TT), radiotherapy, and surgery on the survival outcome of patients with MBM. METHOD We assessed data of 450 patients collected within the prospective multicenter real-world skin cancer registry ADOREG who were diagnosed with MBM before start of the first non-adjuvant systemic therapy. Study endpoints were progression-free survival (PFS) and overall survival (OS). RESULTS Of 450 MBM patients, 175 (38.9%) received CTLA-4+PD-1 ICB, 161 (35.8%) PD-1 ICB, and 114 (25.3%) BRAF+MEK TT as first-line treatment. Additional to systemic therapy, 67.3% of the patients received radiotherapy (stereotactic radiosurgery (SRS); conventional radiotherapy (CRT)) and 24.4% had surgery of MBM. 199 patients (42.2%) received a second-line systemic therapy. Multivariate Cox regression analysis revealed the application of radiotherapy (HR for SRS: 0.213, 95% CI 0.094 to 0.485, p<0.001; HR for CRT: 0.424, 95% CI 0.210 to 0.855, p=0.016), maximal size of brain metastases (HR for MBM >1 cm: 1.977, 95% CI 1.117 to 3.500, p=0.019), age (HR for age >65 years: 1.802, 95% CI 1.016 to 3.197, p=0.044), and ECOG performance status (HR for ECOG ≥2: HR: 2.615, 95% CI 1.024 to 6.676, p=0.044) as independent prognostic factors of OS on first-line therapy. The type of first-line therapy (ICB vs TT) was not independently prognostic. As second-line therapy BRAF+MEK showed the best survival outcome compared with ICB and other therapies (HR for CTLA-4+PD-1 compared with BRAF+MEK: 13.964, 95% CI 3.6 to 54.4, p<0.001; for PD-1 vs BRAF+MEK: 4.587 95% CI 1.3 to 16.8, p=0.022 for OS). Regarding therapy sequencing, patients treated with ICB as first-line therapy and BRAF+MEK as second-line therapy showed an improved OS (HR for CTLA-4+PD-1 followed by BRAF+MEK: 0.370, 95% CI 0.157 to 0.934, p=0.035; HR for PD-1 followed by BRAF+MEK: 0.290, 95% CI 0.092 to 0.918, p=0.035) compared with patients starting with BRAF+MEK in first-line therapy. There was no significant survival difference when comparing first-line therapy with CTLA-4+PD-1 ICB with PD-1 ICB. CONCLUSIONS In patients with MBM, the addition of radiotherapy resulted in a favorable OS on systemic therapy. In BRAF-mutated MBM patients, ICB as first-line therapy and BRAF+MEK as second-line therapy were associated with a significantly prolonged OS.
Collapse
Affiliation(s)
- Cindy Franklin
- Department of Dermatology and Venereology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Peter Mohr
- Department of Dermatology, Elbe Kliniken Buxtehude, Buxtehude, Germany
| | - Leonie Bluhm
- Department of Dermatology, Elbe Kliniken Buxtehude, Buxtehude, Germany
| | - Imke Grimmelmann
- Department of Dermatology, Hannover Medical School, Hannover, Germany
| | - Ralf Gutzmer
- Department of Dermatology, Muehlenkreiskliniken Minden and Ruhr University Bochum, Minden, Germany
| | - Friedegund Meier
- Skin Cancer Center at the University Cancer Centre Dresden and National Center for Tumor Diseases, Dresden, Germany; Department of Dermatology, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Marlene Garzarolli
- Skin Cancer Center at the University Cancer Centre Dresden and National Center for Tumor Diseases, Dresden, Germany; Department of Dermatology, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Michael Weichenthal
- Department of Dermatology, Skin Cancer Center, Schleswig-Holstein University Hospital, Campus Kiel, Kiel, Germany
| | - Claudia Pfoehler
- Department of Dermatology, Saarland University Medical School, Homburg/Saar, Germany
| | - Rudolf Herbst
- Department of Dermatology, HELIOS Klinikum Erfurt, Erfurt, Germany
| | | | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Heidelberg, Germany
| | - Jens Ulrich
- Department of Dermatology and Skin Cancer Center, Harzklinikum Dorothea Christiane Erxleben, Quedlinburg, Germany
| | - Dirk Debus
- Department of Dermatology, Nuremberg General Hospital, Paracelsus Medical University, Nuremberg, Germany
| | - Sebastian Haferkamp
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Martin Kaatz
- Department of Dermatology, SRH Wald-Klinikum Gera, Gera, Germany
| | - Andrea Forschner
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - Ulrike Leiter
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - Dorothee Nashan
- Department of Dermatology, Hospital of Dortmund, Dortmund, Germany
| | - Alexander Kreuter
- Department of Dermatology, Venereology and Allergology, HELIOS St. Elisabeth Klinik Oberhausen, University Witten-Herdecke, Herdecke, Germany
| | - Michael Sachse
- Department of Dermatology, Klinikum Bremerhaven Reinkenheide, Bremerhaven, Germany
| | - Julia Welzel
- Department of Dermatology and Allergology, University Hospital Augsburg, Augsburg, Germany
| | - Lucie Heinzerling
- Department of Dermatology and Allergology, Ludwig-Maximilian University, München, Germany
| | - Frank Meiss
- Department of Dermatology and Venereology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Carsten Weishaupt
- Department of Dermatology, University Hospital of Münster, Münster, Germany
| | - Thilo Gambichler
- Department of Dermatology, Ruhr University Bochum, Bochum, Germany
| | - Gerhard Weyandt
- Department of Dermatology and Allergology, Hospital Bayreuth, Bayreuth, Germany
| | - Edgar Dippel
- Department of Dermatology, Ludwigshafen Medical Center, Ludwigshafen, Germany
| | - Kerstin Schatton
- Department of Dermatology, Heinrich Heine University, Düsseldorf, Germany
| | - Eren Celik
- Department of Radiation Oncology and Cyberknife Center, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Maike Trommer
- Department of Radiation Oncology and Cyberknife Center, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Iris Helfrich
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, Essen, Germany and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, Essen, Germany
| | - Alexander Roesch
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, Essen, Germany and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, Essen, Germany
| | - Lisa Zimmer
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, Essen, Germany and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, Essen, Germany
| | - Elisabeth Livingstone
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, Essen, Germany and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, Essen, Germany
| | - Dirk Schadendorf
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, Essen, Germany and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, Essen, Germany
| | - Susanne Horn
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, Essen, Germany and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, Essen, Germany.,Rudolf-Schönheimer-Institute of Biochemistry, Medical Faculty of the University Leipzig, Leipzig, Germany
| | - Selma Ugurel
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, Essen, Germany and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, Essen, Germany
| |
Collapse
|
4
|
Qiong L, Yin J. Orosomucoid 1 promotes epirubicin resistance in breast cancer by upregulating the expression of matrix metalloproteinases 2 and 9. Bioengineered 2021; 12:8822-8832. [PMID: 34654351 PMCID: PMC8806942 DOI: 10.1080/21655979.2021.1987067] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Orosomucoid 1 (ORM1) has been shown to be upregulated in the serum of breast cancer patients; however, the expression and function of ORM1 in breast cancer remains unknown. We measured the expression of ORM1 in breast cancer tissues and cell lines using qRT-PCR. A colony formation assay was done to assess cell proliferation and Transwell and wound healing assays were performed to determine the migration and invasion capacity of the cells, respectively. In addition, a CCK-8 assay was used to measure epirubicin cytotoxicity and western blot assays were done to analyze the putative mechanisms of epirubicin sensitivity. We found that the expression of ORM1 was upregulated in breast cancer tissues and cell lines. The expression of ORM1 enhanced the proliferation and migration of the cell lines. In contrast, down-regulation of ORM1 inhibited the expression of MMP-2 and MMP-9 and activation of the AKT/ERK signaling pathway. Therefore, ORM1 may represent a potential therapeutic target for breast cancer and promote epirubicin resistance by regulating the expression of MMP-2 and MMP-9, as well as activating the AKT/ERK signaling pathway.
Collapse
Affiliation(s)
- Luo Qiong
- Department of Breast and Thyroid Surgery, Affiliated Hengyang Hospital, Southern Medical University (Hengyang Central Hospital), Hengyang, People's Republic of China
| | - Jun Yin
- Department of Breast and Thyroid Surgery, Affiliated Hengyang Hospital, Southern Medical University (Hengyang Central Hospital), Hengyang, People's Republic of China
| |
Collapse
|
5
|
Chen H, Luo M, Wang X, Liang T, Huang C, Huang C, Wei L. Inhibition of PAD4 enhances radiosensitivity and inhibits aggressive phenotypes of nasopharyngeal carcinoma cells. Cell Mol Biol Lett 2021; 26:9. [PMID: 33726680 PMCID: PMC7962337 DOI: 10.1186/s11658-021-00251-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a tumor deriving from nasopharyngeal epithelium. Peptidyl-arginine deiminase 4 (PAD4) is a vital mediator of histone citrullination and plays an essential role in regulating disease process. Radiotherapy is an essential method to treat NPC. In this research, we explored the effect of PAD4 on NPC radiosensitivity. METHODS We enrolled 50 NPC patients, established mice xenograft model, and purchased cell lines for this study. Statistical analysis and a series of experiments including RT-qPCR, clonogenic survival, EdU, Transwell, and wound healing assays were done. RESULTS Our data manifested that PAD4 (mRNA and protein) presented a high expression in NPC tissues and cells. GSK484, an inhibitor of PAD4, could inhibit activity of PAD4 in NPC cell lines. PAD4 overexpression promoted the radioresistance, survival, migration, and invasion of NPC cells, whereas treatment of GSK484 exerted inhibitory effects on radioresistance and aggressive phenotype of NPC cells. Additionally, GSK484 could attenuate the effect of PAD4 of NPC cell progression. More importantly, we found that GSK484 significantly inhibited tumor size, tumor weight and tumor volume in mice following irradiation. CONCLUSIONS PAD4 inhibitor GSK484 attenuated the radioresistance and cellular progression in NPC.
Collapse
Affiliation(s)
- Hao Chen
- Department of Endoscopy, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Min Luo
- Department of Endoscopy, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiangping Wang
- Department of Endoscopy, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Ting Liang
- Department of Endoscopy, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chaoyuan Huang
- Department of Endoscopy, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Changjie Huang
- Department of Endoscopy, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Lining Wei
- Department of Oncology, The Second Nanning People's Hospital, No.13 Dancun Road, Jiangnan District, Nanning, 530031, Guangxi, China.
| |
Collapse
|
6
|
Rauschenberg R, Bruns J, Brütting J, Daubner D, Lohaus F, Zimmer L, Forschner A, Zips D, Hassel JC, Berking C, Kaehler KC, Utikal J, Gutzmer R, Terheyden P, Meiss F, Rafei-Shamsabadi D, Kiecker F, Debus D, Dabrowski E, Arnold A, Garzarolli M, Kuske M, Beissert S, Löck S, Linn J, Troost EGC, Meier F. Impact of radiation, systemic therapy and treatment sequencing on survival of patients with melanoma brain metastases. Eur J Cancer 2019; 110:11-20. [PMID: 30739835 DOI: 10.1016/j.ejca.2018.12.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/01/2018] [Accepted: 12/22/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Combining stereotactic radiosurgery (SRS) and active systemic therapies (STs) achieved favourable survival outcomes in patients with melanoma brain metastases (MBMs) in retrospective analyses. However, several aspects of this treatment strategy remain poorly understood. We report on the overall survival (OS) of patients with MBM treated with a combination of radiotherapy (RT) and ST as well as the impact of the v-Raf murine sarcoma viral oncogene homolog B (BRAF)-V600 mutation (BRAFmut) status, types of RT and ST and their sequence. PATIENTS AND METHODS Data of 208 patients treated with SRS or whole brain radiation therapy (WBRT) and either immunotherapy (IT) or targeted therapy (TT) within a 6-week interval to RT were analysed retrospectively. OS was calculated from RT to death or last follow-up. Univariate and multivariate Cox proportional hazard analyses were performed to determine prognostic features associated with OS. RESULTS The median follow-up was 7.3 months. 139 patients received IT, 67 received TT and 2 received IT and TT within 6 weeks to RT (WBRT 45%; SRS 55%). One-year Kaplan-Meier OS rates were 69%, 65%, 33% and 18% (P < .001) for SRS with IT, SRS with TT, WBRT with IT and WBRT with TT, respectively. Patients with a BRAFmut receiving IT combined with RT experienced higher OS rates (88%, 65%, 50% and 18%). TT following RT or started before and continued thereafter was associated with improved median OS compared with TT solely before RT (12.2 [95% confidence interval {CI} 9.3-15.1]; 9.8 [95% CI 6.9-12.6] versus 5.1 [95% CI 2.7-7.5]; P = .03). CONCLUSION SRS and IT achieved the highest OS rates. A BRAFmut appears to be a favourable prognostic factor for OS. For the combination of RT and TT, the sequence appears to be crucial. Combinations of WBRT and ST achieved unprecedentedly high OS rates and warrant further studies.
Collapse
Affiliation(s)
- Ricarda Rauschenberg
- Skin Cancer Center at the University Cancer Centre, Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; National Center for Tumor Diseases (NCT), Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Johannes Bruns
- Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Julia Brütting
- Skin Cancer Center at the University Cancer Centre, Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Dirk Daubner
- Institute of Neuroradiology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Fabian Lohaus
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Lisa Zimmer
- Department of Dermatology, University Hospital, University Duisburg-Essen, Germany & German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Andrea Forschner
- Skin Cancer Center, Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - Daniel Zips
- Department of Radiation Oncology, Skin Cancer Center, CCC Tübingen-Stuttgart, University of Tübingen, Germany
| | - Jessica C Hassel
- Skin Cancer Center, Department of Dermatology and National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Carola Berking
- Skin Cancer Center, Department of Dermatology and Allergy, University Hospital Munich, Munich, Germany
| | - Katharina C Kaehler
- Skin Cancer Center, Department of Dermatology, University Hospital Kiel, Kiel, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Ralf Gutzmer
- Skin Cancer Center Hannover, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Patrik Terheyden
- Skin Cancer Center, Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Frank Meiss
- Skin Cancer Center, Department of Dermatology and Venereology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - David Rafei-Shamsabadi
- Skin Cancer Center, Department of Dermatology and Venereology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Felix Kiecker
- Skin Cancer Center, Department of Dermatology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Dirk Debus
- Skin Cancer Center, Department of Dermatology, Paracelsus Medical University, General Hospital Nuremberg, Germany
| | - Evelyn Dabrowski
- Skin Cancer Center, Department of Dermatology, Ludwigshafen Medical Center, Ludwigshafen, Germany
| | - Andreas Arnold
- Skin Cancer Center, Department of Dermatology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Marlene Garzarolli
- Skin Cancer Center at the University Cancer Centre, Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; National Center for Tumor Diseases (NCT), Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marvin Kuske
- Skin Cancer Center at the University Cancer Centre, Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; National Center for Tumor Diseases (NCT), Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Beissert
- Skin Cancer Center at the University Cancer Centre, Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; National Center for Tumor Diseases (NCT), Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steffen Löck
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Jennifer Linn
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Esther G C Troost
- National Center for Tumor Diseases (NCT), Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Friedegund Meier
- Skin Cancer Center at the University Cancer Centre, Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; National Center for Tumor Diseases (NCT), Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
7
|
Kuske M, Rauschenberg R, Garzarolli M, Meredyth-Stewart M, Beissert S, Troost EGC, Glitza OIC, Meier F. Melanoma Brain Metastases: Local Therapies, Targeted Therapies, Immune Checkpoint Inhibitors and Their Combinations-Chances and Challenges. Am J Clin Dermatol 2018; 19:529-541. [PMID: 29417399 PMCID: PMC6061393 DOI: 10.1007/s40257-018-0346-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent phase II trials have shown that BRAF/MEK inhibitors and immune checkpoint inhibitors are active in patients with melanoma brain metastases (MBM), reporting intracranial disease control rates of 50-75%. Furthermore, retrospective analyses suggest that combining stereotactic radiosurgery with immune checkpoint inhibitors or BRAF/MEK inhibitors prolongs overall survival. These data stress the need for inter- and multidisciplinary cooperation that takes into account the individual prognostic factors in order to establish the best treatment for each patient. Although the management of MBM has dramatically improved, a substantial number of patients still progress and die from brain metastases. Therefore, there is an urgent need for prospective studies in patients with MBM that focus on treatment combinations and sequences, new treatment strategies, and biomarkers of treatment response. Moreover, further research is needed to decipher brain-specific mechanisms of therapy resistance.
Collapse
Affiliation(s)
- Marvin Kuske
- Department of Dermatology, Medical Faculty of Technische Universität Dresden, University Hospital Carl Gustav Carus, University of Dresden, Fetscherstr. 74, 01307, Dresden, Germany
- Skin Cancer Center at the University Cancer Centre Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | - Ricarda Rauschenberg
- Department of Dermatology, Medical Faculty of Technische Universität Dresden, University Hospital Carl Gustav Carus, University of Dresden, Fetscherstr. 74, 01307, Dresden, Germany
- Skin Cancer Center at the University Cancer Centre Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | - Marlene Garzarolli
- Department of Dermatology, Medical Faculty of Technische Universität Dresden, University Hospital Carl Gustav Carus, University of Dresden, Fetscherstr. 74, 01307, Dresden, Germany
- Skin Cancer Center at the University Cancer Centre Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | - Michelle Meredyth-Stewart
- Department of Internal Medicine, Medical Faculty of Technische Universität Dresden, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Stefan Beissert
- Department of Dermatology, Medical Faculty of Technische Universität Dresden, University Hospital Carl Gustav Carus, University of Dresden, Fetscherstr. 74, 01307, Dresden, Germany
- Skin Cancer Center at the University Cancer Centre Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | - Esther G C Troost
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- Department of Radiation Oncology, Medical Faculty Carl Gustav Carus, University Hospital, Technische Universität Dresden, Dresden, Germany
- OncoRay-National Center for Radiation Research in Oncology, Dresden, Germany
- Dresden and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Institute of Radiooncology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | | | - Friedegund Meier
- Department of Dermatology, Medical Faculty of Technische Universität Dresden, University Hospital Carl Gustav Carus, University of Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
- Skin Cancer Center at the University Cancer Centre Dresden, Dresden, Germany.
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.
| |
Collapse
|
8
|
Tang L, Wei F, Wu Y, He Y, Shi L, Xiong F, Gong Z, Guo C, Li X, Deng H, Cao K, Zhou M, Xiang B, Li X, Li Y, Li G, Xiong W, Zeng Z. Role of metabolism in cancer cell radioresistance and radiosensitization methods. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:87. [PMID: 29688867 PMCID: PMC5914062 DOI: 10.1186/s13046-018-0758-7] [Citation(s) in RCA: 296] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/10/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Radioresistance is a major factor leading to the failure of radiotherapy and poor prognosis in tumor patients. Following the application of radiotherapy, the activity of various metabolic pathways considerably changes, which may result in the development of resistance to radiation. MAIN BODY Here, we discussed the relationships between radioresistance and mitochondrial and glucose metabolic pathways, aiming to elucidate the interplay between the tumor cell metabolism and radiotherapy resistance. In this review, we additionally summarized the potential therapeutic targets in the metabolic pathways. SHORT CONCLUSION The aim of this review was to provide a theoretical basis and relevant references, which may lead to the improvement of the sensitivity of radiotherapy and prolong the survival of cancer patients.
Collapse
Affiliation(s)
- Le Tang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Wei
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yingfen Wu
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yi He
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Lei Shi
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Can Guo
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Deng
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ke Cao
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
9
|
El Naqa I, Kerns SL, Coates J, Luo Y, Speers C, West CML, Rosenstein BS, Ten Haken RK. Radiogenomics and radiotherapy response modeling. Phys Med Biol 2017; 62:R179-R206. [PMID: 28657906 PMCID: PMC5557376 DOI: 10.1088/1361-6560/aa7c55] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Advances in patient-specific information and biotechnology have contributed to a new era of computational medicine. Radiogenomics has emerged as a new field that investigates the role of genetics in treatment response to radiation therapy. Radiation oncology is currently attempting to embrace these recent advances and add to its rich history by maintaining its prominent role as a quantitative leader in oncologic response modeling. Here, we provide an overview of radiogenomics starting with genotyping, data aggregation, and application of different modeling approaches based on modifying traditional radiobiological methods or application of advanced machine learning techniques. We highlight the current status and potential for this new field to reshape the landscape of outcome modeling in radiotherapy and drive future advances in computational oncology.
Collapse
Affiliation(s)
- Issam El Naqa
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Linear-Endobronchial Ultrasound-Guided Insertion of a Fiducial Marker: A New Tool for Tracking Central Lesions. J Bronchology Interv Pulmonol 2017; 24:166-169. [PMID: 28323733 DOI: 10.1097/lbr.0000000000000258] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Stereotactic body radiotherapy (SBRT) is an effective method for the treatment of localized primary lung tumors. Cyberknife, a highly accurate SBRT technique, follows the target during respiratory cycles using a metallic fiducial marker (FM) previously inserted into the lesion. Various methods have been described for the placement of an FM in peripheral pulmonary lesions; however, none of these is appropriate for mediastinal or hilar tumors. The placement of FMs in central lesions to achieve accurate SBRT is particularly relevant due to their higher mobility during respiratory and cardiac cycles. Here, we describe the use of linear-endobronchial ultrasound for the insertion of an FM marker in a centrally located metastatic melanoma, thereby allowing subsequent treatment with Cyberknife.
Collapse
|
11
|
Liu L, Mu LM, Yan Y, Wu JS, Hu YJ, Bu YZ, Zhang JY, Liu R, Li XQ, Lu WL. The use of functional epirubicin liposomes to induce programmed death in refractory breast cancer. Int J Nanomedicine 2017; 12:4163-4176. [PMID: 28615943 PMCID: PMC5459983 DOI: 10.2147/ijn.s133194] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Currently, chemotherapy is less efficient in controlling the continued development of breast cancer because it cannot eliminate extrinsic and intrinsic refractory cancers. In this study, mitochondria were modified by functional epirubicin liposomes to eliminate refractory cancers through initiation of an apoptosis cascade. The efficacy and mechanism of epirubicin liposomes were investigated on human breast cancer cells in vitro and in vivo using flow cytometry, confocal microscopy, high-content screening system, in vivo imaging system, and tumor inhibition in mice. Mechanistic studies revealed that the liposomes could target the mitochondria, activate the apoptotic enzymes caspase 8, 9, and 3, upregulate the proapoptotic protein Bax while downregulating the antiapoptotic protein Mcl-1, and induce the generation of reactive oxygen species (ROS) through an apoptosis cascade. In xenografted mice bearing breast cancer, the epirubicin liposomes demonstrated prolonged blood circulation, significantly increased accumulation in tumor tissue, and robust anticancer efficacy. This study demonstrated that functional epirubicin liposomes could significantly induce programmed death of refractory breast cancer by activating caspases and ROS-related apoptotic signaling pathways, in addition to the direct killing effect of the anticancer drug itself. Thus, we present a simple nanomedicine strategy to treat refractory breast cancer.
Collapse
Affiliation(s)
- Lei Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Li-Min Mu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Yan Yan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Jia-Shuan Wu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Ying-Jie Hu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Ying-Zi Bu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Jing-Ying Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Rui Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Xue-Qi Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Wan-Liang Lu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| |
Collapse
|
12
|
Nodal recurrence after stereotactic body radiotherapy for early stage non-small cell lung cancer: Incidence and proposed risk factors. Cancer Treat Rev 2017; 56:8-15. [PMID: 28437679 DOI: 10.1016/j.ctrv.2017.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 03/30/2017] [Accepted: 04/02/2017] [Indexed: 12/15/2022]
Abstract
Stereotactic body radiotherapy (SBRT) is an alternative to surgery for patients with early stage non-small cell lung cancer (NSCLC) who are inoperable due to comorbid disease or who refuse surgery. SBRT results in an excellent local control rate of more than 90%, which is comparable to surgery, while short and long-term overall toxicity is low. Surgically treated patients are often more extensively staged pre-operatively, e.g. with endobronchial ultrasound and/or mediastinoscopy, and typically undergo intra-operative lymph node dissection or sampling. Occult nodal metastases (ONM), detected by lymph node dissection, have been shown to increase the incidence of regional recurrence (RR) after surgery, which is associated with poor outcome. In patients undergoing SBRT, however, definite pathological nodal staging is lacking and so other ways to identify patients at high risk for ONM and RR are desirable. The aim of this systematic review is to summarize the incidence of, and risk factors for, RR after SBRT and compare these to those after surgery. The available evidence shows the incidence of RR after SBRT or surgery to be comparable, despite more elaborate pre- and intra-operative lymph node evaluation in surgical patients. However, the fact that this finding is based on mostly retrospective studies in which the majority of patients treated with SBRT were inoperable, needs to be taken into consideration. For now, there is no evidence that inoperable clinical stage I patients with no indication of pathological lymph nodes on PET/CT will benefit from more invasive lymph node staging prior to SBRT.
Collapse
|
13
|
Dummer R, Hoeller C, Gruter IP, Michielin O. Combining talimogene laherparepvec with immunotherapies in melanoma and other solid tumors. Cancer Immunol Immunother 2017; 66:683-695. [PMID: 28238174 PMCID: PMC5445176 DOI: 10.1007/s00262-017-1967-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/31/2017] [Indexed: 01/07/2023]
Abstract
Talimogene laherparepvec is a first-in-class intralesional oncolytic immunotherapy. In a recent Phase III trial (OPTiM), talimogene laherparepvec significantly improved durable response rate compared with subcutaneous granulocyte–macrophage colony-stimulating factor (GM-CSF). Overall response rate was also higher in the talimogene laherparepvec arm, and the greatest efficacy was demonstrated in patients with earlier-stage (IIIB, IIIC, or IVM1a) melanoma. Talimogene laherparepvec was well tolerated, with the majority (89%) of adverse events being grade 1 or 2. Preclinical studies have shown that talimogene laherparepvec exerts antitumor activity by selectively replicating within and destroying cancer cells, and through the release of tumor-associated antigens and expression of GM-CSF, which facilitates a wider antitumor immune response. It is hypothesized that combining talimogene laherparepvec with a systemic immunotherapy may, by bringing together complementary mechanisms of action, further enhance the efficacy of both agents. Indeed, talimogene laherparepvec is currently being assessed in combination with immune checkpoint inhibitors, including ipilimumab and pembrolizumab, in trials for melanoma and other solid tumors. Early results in melanoma indicate that the combination of talimogene laherparepvec with ipilimumab or pembrolizumab has greater efficacy than either therapy alone, without additional safety concerns above those expected for each monotherapy. In this review, we discuss the latest results from trials assessing talimogene laherparepvec in combination with other immunotherapies, provide an overview of ongoing and upcoming combination trials, and suggest future directions for talimogene laherparepvec in combination therapy for solid tumors.
Collapse
Affiliation(s)
- Reinhard Dummer
- Department of Dermatology, University of Zürich Hospital, Gloriastrasse 31, 8091, Zurich, Switzerland.
| | | | | | | |
Collapse
|
14
|
Zindler JD, Jochems A, Lagerwaard FJ, Beumer R, Troost EGC, Eekers DBP, Compter I, van der Toorn PP, Essers M, Oei B, Hurkmans CW, Bruynzeel AME, Bosmans G, Swinnen A, Leijenaar RTH, Lambin P. Individualized early death and long-term survival prediction after stereotactic radiosurgery for brain metastases of non-small cell lung cancer: Two externally validated nomograms. Radiother Oncol 2017; 123:189-194. [PMID: 28237400 DOI: 10.1016/j.radonc.2017.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/24/2016] [Accepted: 02/05/2017] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Commonly used clinical models for survival prediction after stereotactic radiosurgery (SRS) for brain metastases (BMs) are limited by the lack of individual risk scores and disproportionate prognostic groups. In this study, two nomograms were developed to overcome these limitations. METHODS 495 patients with BMs of NSCLC treated with SRS for a limited number of BMs in four Dutch radiation oncology centers were identified and divided in a training cohort (n=214, patients treated in one hospital) and an external validation cohort n=281, patients treated in three other hospitals). Using the training cohort, nomograms were developed for prediction of early death (<3months) and long-term survival (>12months) with prognostic factors for survival. Accuracy of prediction was defined as the area under the curve (AUC) by receiver operating characteristics analysis for prediction of early death and long term survival. The accuracy of the nomograms was also tested in the external validation cohort. RESULTS Prognostic factors for survival were: WHO performance status, presence of extracranial metastases, age, GTV largest BM, and gender. Number of brain metastases and primary tumor control were not prognostic factors for survival. In the external validation cohort, the nomogram predicted early death statistically significantly better (p<0.05) than the unfavorable groups of the RPA, DS-GPA, GGS, SIR, and Rades 2015 (AUC=0.70 versus range AUCs=0.51-0.60 respectively). With an AUC of 0.67, the other nomogram predicted 1year survival statistically significantly better (p<0.05) than the favorable groups of four models (range AUCs=0.57-0.61), except for the SIR (AUC=0.64, p=0.34). The models are available on www.predictcancer.org. CONCLUSION The nomograms predicted early death and long-term survival more accurately than commonly used prognostic scores after SRS for a limited number of BMs of NSCLC. Moreover these nomograms enable individualized probability assessment and are easy into use in routine clinical practice.
Collapse
Affiliation(s)
- Jaap D Zindler
- Department of Radiation Oncology (MAASTRO Clinic), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, The Netherlands.
| | - Arthur Jochems
- Department of Radiation Oncology (MAASTRO Clinic), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, The Netherlands
| | - Frank J Lagerwaard
- Department of Radiation Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Rosemarijne Beumer
- Department of Radiation Oncology (MAASTRO Clinic), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, The Netherlands
| | - Esther G C Troost
- Department of Radiation Oncology (MAASTRO Clinic), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, The Netherlands; Institute of Radiooncology, Helmholtz-Zentrum Dresden-Rossendorf, Germany
| | - Daniëlle B P Eekers
- Department of Radiation Oncology (MAASTRO Clinic), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, The Netherlands
| | - Inge Compter
- Department of Radiation Oncology (MAASTRO Clinic), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, The Netherlands
| | | | - Marion Essers
- Department of Radiation Oncology, Verbeeten Institute, Tilburg, The Netherlands
| | - Bing Oei
- Department of Radiation Oncology, Verbeeten Institute, Tilburg, The Netherlands
| | - Coen W Hurkmans
- Department of Radiation Oncology, Catharina Hospital Eindhoven, The Netherlands
| | - Anna M E Bruynzeel
- Department of Radiation Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Geert Bosmans
- Department of Radiation Oncology (MAASTRO Clinic), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, The Netherlands
| | - Ans Swinnen
- Department of Radiation Oncology (MAASTRO Clinic), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, The Netherlands
| | - Ralph T H Leijenaar
- Department of Radiation Oncology (MAASTRO Clinic), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, The Netherlands
| | - Philippe Lambin
- Department of Radiation Oncology (MAASTRO Clinic), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, The Netherlands
| |
Collapse
|
15
|
Mazzola R, Fiorentino A, Di Paola G, Giaj Levra N, Ricchetti F, Fersino S, Tebano U, Pasetto S, Ruggieri R, Salgarello M, Alongi F. Stereotactic Ablative Radiation Therapy for Lung Oligometastases: Predictive Parameters of Early Response by 18FDG-PET/CT. J Thorac Oncol 2017; 12:547-555. [PMID: 28126325 DOI: 10.1016/j.jtho.2016.11.2234] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/28/2016] [Accepted: 11/15/2016] [Indexed: 12/25/2022]
Abstract
OBJECTIVES The objective of this study was to investigate fludeoxyglucose F 18 positron emission tomography/computed tomography (18FDG-PET/CT) parameters as predictive of response after stereotactic ablative radiotherapy (SABR) for lung oligometastases. METHODS The inclusion criteria of the current retrospective study were as follows: (1) lung oligometastases treated by SABR, (2) presence of 18FDG-PET/CT before and after SABR for at least two subsequent evaluations, (3) Karnofsky performance status higher than 80, and (4) life expectancy longer than 6 months. All patients were treated with a biologically equivalent dose of at least 100 Gy with an alpha/beta ratio of 10. The following metabolic parameters were semiquantitatively defined: maximum standardized uptake value (SUVmax), mean standardized uptake value (SUVmean), metabolic tumor volume, and total lesion glycolysis. RESULTS A total of 50 patients met the inclusion criteria, for a total of 70 lung metastases. The pre-SABR median SUVmax was 6.5 (range 4-17), the median SUVmean was 3.7 (range 2.5-6.5), and the median metabolic tumor volume was 2.3 cm3 (0.2-31 cm3). The following metabolic parameters were significantly related to complete response at 6 months: SUVmax less than 5 (p < 0.001) and SUVmean less than 3.5 (p = 0.03). ΔSUVmax at 3 to 6 months was +126% for lesions with in-field progression versus -26% for the remaining lesions (p = 0.002). ΔSUVmean at 3 to 6 months was +15% for lesions with in-field progression versus -26% for the remaining metastases (p = 0.008). CONCLUSIONS In the current analysis, complete response from lung metastasis at 6 months after stereotactic body radiation therapy was significantly associated with both the maximum and mean values of pre-SABR 18FDG-PET/CT SUV. Longer-term trials are strongly advocated to improve the personalization of the monitoring of tumor response in patients with lung oligometastases and, consequently, monitoring of the cost-effectiveness of the health care.
Collapse
Affiliation(s)
- Rosario Mazzola
- Radiation Oncology, Sacro Cuore Don Calabria Cancer Care Center, Negrar-Verona, Italy.
| | - Alba Fiorentino
- Radiation Oncology, Sacro Cuore Don Calabria Cancer Care Center, Negrar-Verona, Italy
| | | | - Niccolò Giaj Levra
- Radiation Oncology, Sacro Cuore Don Calabria Cancer Care Center, Negrar-Verona, Italy
| | - Francesco Ricchetti
- Radiation Oncology, Sacro Cuore Don Calabria Cancer Care Center, Negrar-Verona, Italy
| | - Sergio Fersino
- Radiation Oncology, Sacro Cuore Don Calabria Cancer Care Center, Negrar-Verona, Italy
| | - Umberto Tebano
- Radiation Oncology School, University of Padua, Padua, Italy
| | - Stefano Pasetto
- Nuclear Medicine, Sacro Cuore Don Calabria Cancer Care Center, Negrar-Verona, Italy
| | - Ruggero Ruggieri
- Radiation Oncology, Sacro Cuore Don Calabria Cancer Care Center, Negrar-Verona, Italy
| | - Matteo Salgarello
- Nuclear Medicine, Sacro Cuore Don Calabria Cancer Care Center, Negrar-Verona, Italy
| | - Filippo Alongi
- Radiation Oncology, Sacro Cuore Don Calabria Cancer Care Center, Negrar-Verona, Italy
| |
Collapse
|
16
|
Palma DA, Louie AV, Rodrigues GB. New Strategies in Stereotactic Radiotherapy for Oligometastases. Clin Cancer Res 2016; 21:5198-204. [PMID: 26626571 DOI: 10.1158/1078-0432.ccr-15-0822] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Patients with metastatic solid tumors are usually treated with palliative intent. Systemic therapy and palliative radiation are often used, with the goals of prolonging survival or maintaining quality of life, but not of cure. In contrast to this paradigm, the theory of oligometastasis suggests that some patients who have a small number of metastases may be amenable to cure if all lesions can be eradicated. Aggressive treatment of patients with oligometastases, using either surgery or radiotherapy, has become more common in the past decade, yet in most situations, no randomized evidence is available to support such an approach. Stereotactic ablative radiotherapy (SABR) is a novel treatment for oligometastases, delivering large doses of radiotherapy in only a few treatments, with excellent rates of local control, and appears to be an excellent noninvasive alternative to surgical resection of metastases. This article reviews recent biologic and clinical data that support the existence of the oligometastatic state and discusses gaps in this evidence base. The emerging role for SABR in the management of this challenging patient population is discussed with a focus on ongoing clinical trials in an attempt to improve overall survival, delay progression, or induce immunologic anticancer effects through the abscopal effect.
Collapse
Affiliation(s)
- David A Palma
- Department of Radiation Oncology, London Health Sciences Centre, London, Ontario, Canada.
| | - Alexander V Louie
- Department of Radiation Oncology, London Health Sciences Centre, London, Ontario, Canada
| | - George B Rodrigues
- Department of Radiation Oncology, London Health Sciences Centre, London, Ontario, Canada
| |
Collapse
|
17
|
Martin OA, Anderson RL, Narayan K, MacManus MP. Does the mobilization of circulating tumour cells during cancer therapy cause metastasis? Nat Rev Clin Oncol 2016; 14:32-44. [PMID: 27550857 DOI: 10.1038/nrclinonc.2016.128] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite progressive improvements in the management of patients with locoregionally confined, advanced-stage solid tumours, distant metastasis remains a very common - and usually fatal - mode of failure after attempted curative treatment. Surgery and radiotherapy are the primary curative modalities for these patients, often combined with each other and/or with chemotherapy. Distant metastasis occurring after treatment can arise from previously undetected micrometastases or, alternatively, from persistent locoregional disease. Another possibility is that treatment itself might sometimes cause or promote metastasis. Surgical interventions in patients with cancer, including biopsies, are commonly associated with increased concentrations of circulating tumour cells (CTCs). High CTC numbers are associated with an unfavourable prognosis in many cancers. Radiotherapy and systemic antitumour therapies might also mobilize CTCs. We review the preclinical and clinical data concerning cancer treatments, CTC mobilization and other factors that might promote metastasis. Contemporary treatment regimens represent the best available curative options for patients who might otherwise die from locally confined, advanced-stage cancers; however, if such treatments can promote metastasis, this process must be understood and addressed therapeutically to improve patient survival.
Collapse
Affiliation(s)
- Olga A Martin
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia.,Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Grattan street, Melbourne, Victoria 3000, Australia
| | - Robin L Anderson
- Metastasis Research Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Grattan street, Melbourne, Victoria 3000, Australia
| | - Kailash Narayan
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Grattan street, Melbourne, Victoria 3000, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Grattan street, Melbourne, Victoria 3000, Australia
| | - Michael P MacManus
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Grattan street, Melbourne, Victoria 3000, Australia
| |
Collapse
|
18
|
Affiliation(s)
- Esther G C Troost
- Helmholtz-Zentrum Dresden-Rossendorf, Institut für Radioonkologie, Dresden, Deutschland. .,Abteilung für Strahlenheilkunde und Radioonkoogie, Universitätsklinikum und Medizinische Fakultät Carl Gustav Carus an der Technischen Universität Dresden, Fetscherstraße 74, 01307, Dresden, Deutschland. .,OncoRay - National Center for Radiation Research in Oncology, Dresden, Deutschland.
| |
Collapse
|
19
|
Scorsetti M. Stereotactic Body Radiation Therapy: A useful weapon in anticancer treatment. Rep Pract Oncol Radiother 2015; 20:ix-x. [PMID: 26696791 DOI: 10.1016/j.rpor.2015.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- M Scorsetti
- Radiosurgery and Radiotherapy Department, Istituto Clinico Humanitas Cancer Center and Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
20
|
Rekers NH, Zegers CML, Yaromina A, Lieuwes NG, Biemans R, Senden-Gijsbers BLMG, Losen M, Van Limbergen EJ, Germeraad WTV, Neri D, Dubois L, Lambin P. Combination of radiotherapy with the immunocytokine L19-IL2: Additive effect in a NK cell dependent tumour model. Radiother Oncol 2015; 116:438-42. [PMID: 26138057 DOI: 10.1016/j.radonc.2015.06.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/09/2015] [Accepted: 06/15/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND AND PURPOSE Recently, we have shown that radiotherapy (RT) combined with the immunocytokine L19-IL2 can induce long-lasting antitumour effects, dependent on ED-B expression and infiltration of cytotoxic T cells. On the other hand, in certain tumours, IL2 treatment can trigger a natural killer cell (NK) immune response. The aim of this study is to investigate the therapeutic effect of our combination therapy in the ED-B positive F9 teratocarcinoma model, lacking MHCI expression and known to be dependent on NK immune responses. MATERIAL AND METHODS In syngeneic F9 tumour bearing 129/FvHsd mice tumour growth delay was evaluated after local tumour irradiation (10Gy) combined with systemic administration of L19-IL2. Immunological responses were investigated using flow cytometry. RESULTS Tumour growth delay of L19-IL2 can be further improved by a single dose of RT administered before immunotherapy, but not during immunotherapy. Furthermore, treatment of L19-IL2 favours a NK response and lacks cytotoxic T cell tumour infiltrating immune cells, which may be explained by the absence of MHCI expression. CONCLUSION An additive effect can be detected when the NK dependent F9 tumour model is treated with radiotherapy and L19-IL2 and therefore this combination could be useful in the absence of tumoural MHCI expression.
Collapse
Affiliation(s)
- Nicolle H Rekers
- Department of Radiation Oncology (MAASTRO), Division of Hematology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, The Netherlands.
| | - Catharina M L Zegers
- Department of Radiation Oncology (MAASTRO), Division of Hematology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, The Netherlands
| | - Ala Yaromina
- Department of Radiation Oncology (MAASTRO), Division of Hematology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, The Netherlands
| | - Natasja G Lieuwes
- Department of Radiation Oncology (MAASTRO), Division of Hematology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, The Netherlands
| | - Rianne Biemans
- Department of Radiation Oncology (MAASTRO), Division of Hematology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, The Netherlands
| | - Birgit L M G Senden-Gijsbers
- Department of Internal Medicine, Division of Hematology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, The Netherlands
| | - Mario Losen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, The Netherlands
| | - Evert J Van Limbergen
- Department of Radiation Oncology (MAASTRO), Division of Hematology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, The Netherlands
| | - Wilfred T V Germeraad
- Department of Internal Medicine, Division of Hematology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, The Netherlands
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Switzerland
| | - Ludwig Dubois
- Department of Radiation Oncology (MAASTRO), Division of Hematology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, The Netherlands
| | - Philippe Lambin
- Department of Radiation Oncology (MAASTRO), Division of Hematology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, The Netherlands
| |
Collapse
|
21
|
Rekers NH, Zegers CM, Germeraad WT, Dubois L, Lambin P. Long-lasting antitumor effects provided by radiotherapy combined with the immunocytokine L19-IL2. Oncoimmunology 2015; 4:e1021541. [PMID: 26405576 PMCID: PMC4570128 DOI: 10.1080/2162402x.2015.1021541] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 02/13/2015] [Accepted: 02/14/2015] [Indexed: 10/27/2022] Open
Abstract
Recently, we have shown that radiotherapy (RT) combined with L19-IL2 can induce a long-lasting antitumor effect, dependent on ED-B expression and infiltration of cytotoxic T cells. These findings will be translated to a Phase I clinical study (NCT02086721) in patients with oligometastatic solid tumors. See this link for the animation: http://youtu.be/xHbwQuCTkRc.
Collapse
Affiliation(s)
- Nicolle H Rekers
- Department of Radiation Oncology (MAASTRO); Maastricht University Medical Centre ; Maastricht, The Netherlands
| | - Catharina Ml Zegers
- Department of Radiation Oncology (MAASTRO); Maastricht University Medical Centre ; Maastricht, The Netherlands
| | - Wilfred Tv Germeraad
- Department of Internal Medicine GROW; School for Oncology and Developmental Biology; Maastricht University Medical Centre ; Maastricht, The Netherlands
| | - Ludwig Dubois
- Department of Radiation Oncology (MAASTRO); Maastricht University Medical Centre ; Maastricht, The Netherlands
| | - Philippe Lambin
- Department of Radiation Oncology (MAASTRO); Maastricht University Medical Centre ; Maastricht, The Netherlands
| |
Collapse
|