1
|
Jiang W, Guan X, Liu W, Li Y, Jiang H, Ngai T. Pickering emulsion templated proteinaceous microparticles as glutathione-responsive carriers for endocytosis in tumor cells. NANOSCALE HORIZONS 2024; 9:536-543. [PMID: 38390971 DOI: 10.1039/d3nh00551h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The use of glucose oxidase (GOx) to disrupt glucose supply has been identified as a promising strategy in cancer starvation therapy. However, independent delivery of GOx is prone to degradation upon exposure to biological conditions and may cause damage to blood vessels and normal organs during transportation. Although some carriers can protect GOx from the surrounding environment, the harsh preparation conditions may compromise its activity. Moreover, the commonly used materials often exhibit poor biocompatibility and possess certain cytotoxicity. To address this issue, we developed a gentle and efficient method based on Pickering emulsion templates to synthesize protein-based microparticles using zein as the matrix material. These microparticles have high stability and can be tailored to efficiently encapsulate biomolecules while preserving their activity. Moreover, the zein-based microparticles can be triggered to release biomolecules in tumor cells under high glutathione levels, demonstrating excellent responsiveness, biocompatibility, and low cytotoxicity. Additionally, when loaded with GOx, these protein-based microparticles effectively deprive tumor cells of nutrients and induce apoptosis by generating high levels of H2O2, thereby exhibiting enhanced anticancer properties.
Collapse
Affiliation(s)
- Weijie Jiang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi, P. R. China.
| | - Xin Guan
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong.
| | - Wei Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi, P. R. China.
| | - Yunxing Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi, P. R. China.
| | - Hang Jiang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi, P. R. China.
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong.
| |
Collapse
|
2
|
Tang Q, Li Q, Shi L, Liu W, Li B, Jin Y. Multifunctional DNA nanoprobe for tumor-targeted synergistic therapy by integrating chemodynamic therapy with gene silencing. NANOSCALE HORIZONS 2023; 8:1106-1112. [PMID: 37317707 DOI: 10.1039/d2nh00575a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Due to the high complexity, diversity and heterogeneity of tumor occurrence and development, multi-mode synergistic therapy is more effective than single treatment modes to improve the antitumor efficacy. Also, multifunctional probes are crucial to realize synergistic therapy. Herein, a multifunctional DNA tetrahedron nanoprobe was ingeniously designed to simultaneously achieve chemodynamic therapy (CDT) and gene silencing for synergistic antitumor. The multifunctional DNA tetrahedron nanoprobe, DNA tetrahedron-silver nanocluster-antagomir-21 (D-sgc8-DTNS-AgNCs-Anta-21), integrated a CDT reagent (DNA-AgNCs) and miRNA-21 inhibitor (Anta-21) with a specific recognition probe (aptamer). After targeted entry in cancer cells, D-sgc8-DTNS-AgNCs-Anta-21 silenced endogenous miRNA-21 by Anta-21 and produced highly toxic ˙OH by reacting with H2O2, which induced apoptosis in the tumor cells. The targeted recognition of aptamers led to the concentration-dependent death of HeLa cells. On the contrary, the cell survival rate of normal cells was basically unaffected with an increase in the concentration of D-sgc8-DTNS-AgNCs-Anta-21. Therefore, the diverse functions, biocompatibility and programmability of DNA provide a useful and easy way to assemble multifunctional probes for synergistic therapy.
Collapse
Affiliation(s)
- Qiaorong Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Qianqian Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Lu Shi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Wei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
3
|
Luan S, Xie R, Yang Y, Xiao X, Zhou J, Li X, Fang P, Zeng X, Yu X, Chen M, Gao H, Yuan Y. Acid-Responsive Aggregated Gold Nanoparticles for Radiosensitization and Synergistic Chemoradiotherapy in the Treatment of Esophageal Cancer. SMALL 2022; 18:e2200115. [PMID: 35261151 DOI: 10.1002/smll.202200115] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/17/2022] [Indexed: 02/05/2023]
Abstract
Radiotherapy and chemotherapy are limited by insufficient therapeutic efficacy of low-dose radiation and nonspecific drug biodistribution. Herein, an acid-responsive aggregated nanosystem (AuNPs-D-P-DA) loaded with doxorubicin (DOX) is designed for radiosensitization and synergistic chemoradiotherapy. In response to the acid microenvironment of esophageal cancer (EC), small-sized AuNPs-D-P-DA forms large-sized gold nanoparticle (AuNPs) aggregates in tumor tissues to hinder the backflow of AuNPs to the circulation, resulting in enhanced tumor accumulation and retention. Simultaneously, the AuNPs-based radiosensitization is significantly improved because of the high concentration and large size of intratumoral AuNPs, while DOX are delivered and released specifically into tumor cells triggered by the acid microenvironment for chemo-radio synergistic therapy. Acid-responsive AuNPs exacerbate radiation-induced DNA damage, cell apoptosis, cell cycle arrest, and low colony formation ability in vitro and enhance anti-tumor efficacy in vivo compared to un-responsive control. When combined with acid-responsive DOX, the therapeutic efficacy of the formulation is further improved by their synergistic effect. After the treatment of acid-responsive AuNPs plus radiotherapy, fatty acid metabolism is reprogrammed in xenograft models, which provides potential targets for further improvement of radiosensitization. In summary, the acid-responsive AuNPs-D-P-DA nanosystem leverages the radio- and chemotherapeutic synergies of AuNPs-sensitized X-ray irradiation and acid-responsive DOX in the treatment of EC.
Collapse
Affiliation(s)
- Siyuan Luan
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Rou Xie
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Yushang Yang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Xin Xiao
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Jianfeng Zhou
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Xiaokun Li
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Pinhao Fang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Xiaoxi Zeng
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Xiangrong Yu
- Department of Radiology, Zhuhai People's Hospital, Jinan University, Zhuhai, 519000, P. R. China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, P. R. China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Yong Yuan
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
4
|
Khalifa J, Lerouge D, Le Péchoux C, Pourel N, Darréon J, Mornex F, Giraud P. Radiotherapy for primary lung cancer. Cancer Radiother 2021; 26:231-243. [PMID: 34953709 DOI: 10.1016/j.canrad.2021.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herein are presented the recommendations from the Société française de radiothérapie oncologique regarding indications and modalities of lung cancer radiotherapy. The recommendations for delineation of the target volumes and organs at risk are detailed.
Collapse
Affiliation(s)
- J Khalifa
- Département de radiothérapie, Institut universitaire du cancer de Toulouse - Oncopole, 1, avenue Irène-Joliot-Curie, 31100 Toulouse, France.
| | - D Lerouge
- Département de radiothérapie, centre François-Baclesse, 3, avenue du General-Harris, 14076 Caen, France
| | - C Le Péchoux
- Département de radiothérapie, Gustave-Roussy, 114, rue Édouard-Vaillant, 94805 Villejuif cedex, France
| | - N Pourel
- Département de radiothérapie, institut Sainte-Catherine, 250, chemin de Baigne-Pieds, CS80005, 84918 Avignon cedex 9, France
| | - J Darréon
- Service de physique médicale, institut Paoli-Calmettes, 232, boulevard de Sainte-Marguerite, 13009 Marseille, France
| | - F Mornex
- Service de radiothérapie, CHU Lyon-Sud, 165, chemin du Grand-Revoyet, 69495 Pierre-Bénite cedex, France
| | - P Giraud
- Service d'oncologie radiothérapie, hôpital européen Georges-Pompidou, Assistance publique-Hôpitaux de Paris, 20, rue Leblanc, Paris, France; Université de Paris, 85, boulevard Saint-Germain, 75006 Paris, France
| |
Collapse
|
5
|
Tagliaferri L, D’Aviero A, Posa A, Iezzi R. Interventional Image-Guided HDR Brachytherapy as a Salvage Treatment: Exclusive or in Combination with Other Local Therapies. MANUAL ON IMAGE-GUIDED BRACHYTHERAPY OF INNER ORGANS 2021:201-217. [DOI: 10.1007/978-3-030-78079-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
6
|
Jumeau R, Vilotte F, Durham AD, Ozsahin EM. Current landscape of palliative radiotherapy for non-small-cell lung cancer. Transl Lung Cancer Res 2019; 8:S192-S201. [PMID: 31673524 DOI: 10.21037/tlcr.2019.08.10] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Radiotherapy (RT) is a cornerstone in the management of advanced stage III and stage IV non-small-cell lung cancer (NSCLC) patients. Despite international guidelines, clinical practice remains heterogeneous. Additionally, the advent of stereotactic ablative RT (SABR) and new systemic treatments such as immunotherapy have shaken up dogmas in the approach of these patients. This review will focus on palliative thoracic RT for NSCLC but will also discuss the role of stereotactic radiotherapy, endobronchial brachytherapy (EBB), the interest of concomitant treatments (chemotherapy and immunotherapy), and the role of RT in lung cancer emergencies with palliative intent.
Collapse
Affiliation(s)
- Raphael Jumeau
- Department of Radiation-Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Florent Vilotte
- Department of Radiation-Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - André-Dante Durham
- Department of Radiation-Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Esat-Mahmut Ozsahin
- Department of Radiation-Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|