1
|
Wark A, Gupta A, Meixner E, König L, Hörner-Rieber J, Forster T, Lang K, Ellerbrock M, Herfarth K, Debus J, Arians N. Bone Marrow Sparing by Intensity Modulated Proton Beam Therapy in Postoperative Irradiation of Gynecologic Malignancies. Technol Cancer Res Treat 2024; 23:15330338241252622. [PMID: 38845139 PMCID: PMC11159539 DOI: 10.1177/15330338241252622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/02/2024] [Accepted: 04/15/2024] [Indexed: 06/09/2024] Open
Abstract
Purpose: The aim of this matched-pair cohort study was to evaluate the potential of intensity-modulated proton therapy (IMPT) for sparring of the pelvic bone marrow and thus reduction of hematotoxicity compared to intensity-modulated photon radiotherapy (IMRT) in the setting of postoperative irradiation of gynaecological malignancies. Secondary endpoint was the assessment of predictive parameters for the occurrence of sacral insufficiency fractures (SIF) when applying IMPT. Materials and Methods: Two cohorts were analyzed consisting of 25 patients each. Patients were treated with IMPT compared with IMRT and had uterine cervical (n = 8) or endometrial cancer (n = 17). Dose prescription, patient age, and diagnosis were matched. Dosimetric parameters delivered to the whole pelvic skeleton and subsites (ilium, lumbosacral, sacral, and lower pelvis) and hematological toxicity were evaluated. MRI follow-up for evaluation of SIF was only available for the IMPT group. Results: In the IMPT group, integral dose to the pelvic skeleton was significantly lower (23.4GyRBE vs 34.3Gy; p < 0.001), the average V5Gy, V10Gy, and V20Gy were reduced by 40%, 41%, and 28%, respectively, compared to the IMRT group (p < 0.001). In particular, for subsites ilium and lower pelvis, the low dose volume was significantly lower. Hematotoxicity was significantly more common in the IMRT group (80% vs 32%; p = 0009), especially hematotoxicity ≥ CTCAE II (36% vs 8%; p = 0.037). No patient in the IMPT group experienced hematotoxicity > CTCAE II. In the IMPT cohort, 32% of patients experienced SIF. Overall SIF occurred more frequently with a total dose of 50.4 GyRBE (37.5%) compared to 45 GyRBE (22%). No significant predictive dose parameters regarding SIF could be detected aside from a trend regarding V50Gy to the lumbosacral subsite. Conclusion: Low-dose exposure to the pelvic skeleton and thus hematotoxicity can be significantly reduced by using IMPT compared to a matched photon cohort. Sacral insufficiency fracture rates appear similar to reported rates for IMRT in the literature.
Collapse
Affiliation(s)
- Antje Wark
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Anil Gupta
- All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Eva Meixner
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Laila König
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tobias Forster
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Kristin Lang
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Malte Ellerbrock
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
| | - Klaus Herfarth
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Nathalie Arians
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| |
Collapse
|
2
|
Guan H, Zhang W, Xie D, Nie Y, Chen S, Sun X, Zhao H, Liu X, Wang H, Huang X, Bai C, Huang B, Zhou P, Gao S. Cytosolic Release of Mitochondrial DNA and Associated cGAS Signaling Mediates Radiation-Induced Hematopoietic Injury of Mice. Int J Mol Sci 2023; 24:ijms24044020. [PMID: 36835431 PMCID: PMC9960871 DOI: 10.3390/ijms24044020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Mitochondrion is an important organelle of eukaryotic cells and a critical target of ionizing radiation (IR) outside the nucleus. The biological significance and mechanism of the non-target effect originating from mitochondria have received much attention in the field of radiation biology and protection. In this study, we investigated the effect, role, and radioprotective significance of cytosolic mitochondrial DNA (mtDNA) and its associated cGAS signaling on hematopoietic injury induced by IR in vitro culture cells and in vivo total body irradiated mice in this study. The results demonstrated that γ-ray exposure increases the release of mtDNA into the cytosol to activate cGAS signaling pathway, and the voltage-dependent anion channel (VDAC) may contribute to IR-induced mtDNA release. VDAC1 inhibitor DIDS and cGAS synthetase inhibitor can alleviate bone marrow injury and ameliorate hematopoietic suppression induced by IR via protecting hematopoietic stem cells and adjusting subtype distribution of bone marrow cells, such as attenuating the increase of the F4/80+ macrophage proportion in bone marrow cells. The present study provides a new mechanistic explanation for the radiation non-target effect and an alternative technical strategy for the prevention and treatment of hematopoietic acute radiation syndrome.
Collapse
Affiliation(s)
- Hua Guan
- Hengyang Medical School, University of South China, Hengyang 421001, China
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
- Correspondence: (H.G.); (S.G.)
| | - Wen Zhang
- Hengyang Medical School, University of South China, Hengyang 421001, China
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Dafei Xie
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yuehua Nie
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
- School of Public Health, University of South China, Hengyang 421001, China
| | - Shi Chen
- Hengyang Medical School, University of South China, Hengyang 421001, China
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
- School of Public Health, University of South China, Hengyang 421001, China
| | - Xiaoya Sun
- Hengyang Medical School, University of South China, Hengyang 421001, China
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
- School of Public Health, University of South China, Hengyang 421001, China
| | - Hongling Zhao
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiaochang Liu
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hua Wang
- Beijing Key Laboratory for Radiobiology, Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xin Huang
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Chenjun Bai
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Bo Huang
- School of Public Health, University of South China, Hengyang 421001, China
| | - Pingkun Zhou
- Hengyang Medical School, University of South China, Hengyang 421001, China
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
- School of Public Health, University of South China, Hengyang 421001, China
| | - Shanshan Gao
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
- Correspondence: (H.G.); (S.G.)
| |
Collapse
|
3
|
Xu Y, Zou H, Shao Z, Zhang X, Ren X, He H, Zhang D, Du D, Zou C. Efficacy and safety of different radiotherapy doses in neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer: A retrospective study. Front Oncol 2023; 13:1119323. [PMID: 36895482 PMCID: PMC9989274 DOI: 10.3389/fonc.2023.1119323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Background This study aims to compare the efficacy and safety of neoadjuvant chemoradiotherapy (nCRT) with different radiotherapy doses (45Gy and 50.4Gy) in patients with locally advanced rectal cancer (LARC). Methods Herein, 120 patients with LARC were retrospectively enrolled between January 2016 and June 2021. All patients underwent two courses of induction chemotherapy (XELOX), chemoradiotherapy, and total mesorectum excision (TME). A total of 72 patients received a radiotherapy dose of 50.4 Gy, while 48 patients received a dose of 45 Gy. Surgery was then performed within 5-12 weeks following nCRT. Results There was no statistically significant difference between the baseline characteristics of the two groups. The rate of good pathological response in the 50.4Gy group was 59.72% (43/72), while in the 45Gy group achieved 64.58% (31/48) (P>0.05). The disease control rate (DCR) in the 50.4Gy group was 88.89% (64/72), compared to 89.58% (43/48) in the 45Gy group (P>0.05). The incidence of adverse reactions for radioactive proctitis, myelosuppression, and intestinal obstruction or perforation differed significantly between the two groups (P<0.05). The anal retention rate in the 50.4Gy group was significantly higher in contrast to the 45Gy group (P<0.05). Conclusions Patients receiving a radiotherapy dose of 50.4Gy have a better anal retention rate but also a higher incidence of adverse events such as radioactive proctitis, myelosuppression, and intestinal obstruction or perforation, and a comparable prognosis to patients treated with a radiotherapy dose of 45Gy.
Collapse
Affiliation(s)
- Yuyan Xu
- Department of Radiotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haizhou Zou
- Department of Oncology, Wenzhou Hospital of Traditional Chinese Medicine, Wenzhou, China
| | - Zhenyong Shao
- Department of Radiotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuebang Zhang
- Department of Radiotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - XiaoLin Ren
- Department of Radiotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huijuan He
- Department of Radiotherapy, Quzhou People's Hospital, Quzhou, China
| | - Dahai Zhang
- Department of Radiotherapy, Dongyang People's Hospital, Jinhua, China
| | - Dexi Du
- Department of Radiotherapy Oncology, Lishui Central Hospital, Lishui, China
| | - Changlin Zou
- Department of Radiotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Abstract
Dose constraints are essential for performing dosimetry, especially for intensity modulation and for radiotherapy under stereotaxic conditions. We present the update of the recommendations of the French society of oncological radiotherapy for the use of these doses in classical current practice but also for reirradiation.
Collapse
Affiliation(s)
- G Noël
- Département de radiothérapie-oncologie, Institut de cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, BP 23025, 67033 Strasbourg, France.
| | - D Antoni
- Département de radiothérapie-oncologie, Institut de cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, BP 23025, 67033 Strasbourg, France
| |
Collapse
|
5
|
Abstract
The delineation of organs at risk is the basis of radiotherapy oncologists' work. Indeed, the knowledge of this delineation enables to better identify the target volumes and to optimize dose distribution, involving the prognosis of the patients but also their future. The learning of this delineation must continue throughout the clinician's career. Some contour changes have appeared with better imaging, some volumes are now required due to development of knowledge of side effects. In addition, the increasing survival time of patients requires to be more systematic and precise in the delineations, both to avoid complications until now exceptional but also because re-irradiations are becoming more and more frequent. We present the update of the recommendations of the French Society for Radiation Oncology (SFRO) on new findings or adaptations to volumes at risk.
Collapse
Affiliation(s)
- G Noël
- Department of Radiation Oncology, Institut de Cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, BP 23025, 67033 Strasbourg, France.
| | - C Le Fèvre
- Department of Radiation Oncology, Institut de Cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, BP 23025, 67033 Strasbourg, France
| | - D Antoni
- Department of Radiation Oncology, Institut de Cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, BP 23025, 67033 Strasbourg, France
| |
Collapse
|