1
|
Yang X, Mao Y, Chen L, Guan X, Wang Z, Huang T. Structural characteristics, biotechnological production and applications of exopolysaccharides from Bacillus sp.: A comprehensive review. Carbohydr Polym 2025; 355:123363. [PMID: 40037736 DOI: 10.1016/j.carbpol.2025.123363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 03/06/2025]
Abstract
Exopolysaccharides (EPS) produced by Bacillus species display various biological activities and characteristics such as anti-oxidant, immunomodulatory, anti-bacterial, and bioadhesive effects. These attributes confer Bacillus species broad potential applications in diverse fields such as food, medicine, environment, and agriculture. Moreover, Bacillus-derived EPS are easier to produce and yield higher quantities than plant-derived polysaccharides. Despite these advantages, Bacillus-derived EPS still encounter numerous obstacles in industrial production and commercial applications, including elevated costs, the absence of mature fermentation tank production procedures, and the lack of systematic in vivo and in vitro activity and metabolic evaluation. Therefore, it is essential to gain insight into the current status of structure, production, and applications of Bacillus-derived EPS for facilitating their future broader application. This paper provides a comprehensive overview of the current research on the production, separation, characteristics and applications of these related biological products. Furthermore, this paper summarizes the current challenges impeding industrial production of Bacillus-derived EPS, along with potential solutions, and their prospective applications in enhancing the attributes of beneficial biofilms, laying a solid scientific foundation for the applications of Bacillus-derived EPS in industry and agriculture.
Collapse
Affiliation(s)
- Xiaolong Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of biopesticides and Chemical Biology (Ministry of Education) & Biopesticide Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Yufei Mao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of biopesticides and Chemical Biology (Ministry of Education) & Biopesticide Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Lan Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of biopesticides and Chemical Biology (Ministry of Education) & Biopesticide Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Xiong Guan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of biopesticides and Chemical Biology (Ministry of Education) & Biopesticide Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Zixuan Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of biopesticides and Chemical Biology (Ministry of Education) & Biopesticide Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China.
| | - Tianpei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of biopesticides and Chemical Biology (Ministry of Education) & Biopesticide Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China.
| |
Collapse
|
2
|
Guo F, Tan Q, Guo J, Li K, Wang X, Cao W, Xiao G. Total Synthesis of the Tridecasaccharide Motif from Angelica Sinensis APS-1 II Polysaccharide with Anti-Leukemia Activity and Structure-Activity Relationship Studies. Angew Chem Int Ed Engl 2025; 64:e202422887. [PMID: 39888241 DOI: 10.1002/anie.202422887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/01/2025]
Abstract
A polysaccharide APS-1 II from a medicinal plant Angelica sinensis (Oliv.) Diels represents a potential therapeutic agent against leukemia. However, the synthetic accessibility of the highly branched and complex APS-1 II polysaccharide with multiple 1, 2-cis-glycosidic linkages remains a difficult task, impeding the in-depth structure-activity relationship biological studies and the development of carbohydrates-based therapeutics against leukemia. Here, we report the first chemical synthesis of tridecasaccharide repeating unit together with shorter sequences 4-mer, 6-mer and 9-mer from APS-1 II polysaccharide via one-pot orthogonal glycosylation strategy based on glycosyl ortho-(1-phenylvinyl)benzoates, which precluded the potential issues such as aglycone transfer associated with one-pot assembly with thioglycosides. The synthetic pathway also features the following aspects: 1) three contiguous and challenging 1, 2-cis-Fuc bonds were highly stereoselectively constructed via the newly developed stereoselective 1, 2-cis-fucosylation method; 2) several 1, 2-trans-glycosidic linkages were formed via neighboring group participation effect, while 1,2-cis-Glc linkage was stereoselectively assembled via N,N-dimethylformamide reagent modulation; 3) the final [1+1+2+9] one-pot assembly of the target tridecasaccharide via strategic utilizations of glycosyl N-phenyltrifluoroacetimidates, ortho-alkynylbenzoates and ortho-(1-phenylvinyl)benzoates. Biological studies revealed that human leukemia K562 and mouse L1210 cells could be effectively inhibited by tridecasaccharide repeating unit and substructure nonasaccharide.
Collapse
Affiliation(s)
- Fuqiang Guo
- Department of Chemistry, Kunming University, 2 Puxin Road, Kunming, 650214, China
| | - Qiang Tan
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Jiahui Guo
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Xian Yang Shi, Yangling, 712100, China
| | - Kaifeng Li
- Department of Chemistry, Kunming University, 2 Puxin Road, Kunming, 650214, China
| | - Xiufang Wang
- Department of Chemistry, Kunming University, 2 Puxin Road, Kunming, 650214, China
| | - Wei Cao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Xian Yang Shi, Yangling, 712100, China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| |
Collapse
|
3
|
Wang L, Zhu X, Liu H, Sun B. Medicine and food homology substances: A review of bioactive ingredients, pharmacological effects and applications. Food Chem 2025; 463:141111. [PMID: 39260169 DOI: 10.1016/j.foodchem.2024.141111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/12/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024]
Abstract
In recent years, the idea of medicine and food homology (MFH), which highlights the intimate relationship between food and medicine, has gained international recognition. Specifically, MFH substances have the ability to serve as both food and medicine. Many foods have been reported to have good nutritional and medical values, not only for satiety but also for nourishing the body and treating diseases pharmacologically. As modern scientific research has progressed, the concept of MFH has been emphasized and developed in a way that has never been seen before. Therefore, in this paper, we reviewed the development history of MFH substances, summarized some typical bioactive ingredients, and recognized pharmacological effects. In addition, we further discussed the application of MFH substances in the food field, with the goal of providing ideas and references for the research and development of MFH in the food industry as well as the progress of related industries.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education; School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Xuecheng Zhu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education; School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Huilin Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education; School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China.
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education; School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| |
Collapse
|
4
|
Ren C, Luo Y, Li X, Ma L, Wang C, Zhi X, Zhao X, Li Y. Pharmacological action of Angelica sinensis polysaccharides: a review. Front Pharmacol 2025; 15:1510976. [PMID: 39872047 PMCID: PMC11770047 DOI: 10.3389/fphar.2024.1510976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/12/2024] [Indexed: 01/29/2025] Open
Abstract
Angelica sinensis, a traditional Chinese herbal medicine and food, which has a long history of clinical application, is used to improve health conditions and treat various diseases. Angelica sinensis polysaccharides (ASP), the main active component of this traditional Chinese medicine, have multicomponent, multitarget characteristics and very broad pharmacological activities. They play important roles in the treatment of several diseases. In addition, the effect is significant, which may provide a more comprehensive database and theoretical support for applying ASP in the treatment of disease and could be considered a promising candidate for preventing disease. This review summarizes the research progress on the extraction, chemical structure, pharmacological effects, and mechanisms of ASP and its derivatives by reviewing relevant national and international literature and provides comprehensive information and a reliable basis for the exploration of new treatment strategies involving botanical drugs for disease therapy. Literature information was obtained from scientific ethnobotany and ethnomedicine databases (up to September 2024), mainly from the PubMed, Web of Science, and CNKI databases. The literature has explored the extraction, purification, structure, and pharmacological effects of Angelica sinensis polysaccharides. The search keywords for such work included "Angelica sinensis" or "Angelica sinensis polysaccharides," and "pharmacological effects," "extraction" and "structure." Multiple studies have shown that ASP has important pharmacological effects, such as antitumor, anemia-improving, anti-inflammatory, antioxidative, immunomodulatory, hepatoprotective, antifibrotic, hypoglycemic, antiradiation, and antiviral effects, the mechanisms of which appear to involve the regulation of inflammation, oxidative stress, and profibrotic signaling pathways. As a natural polysaccharide, ASP has potential applications as a drug. However, further research should be undertaken to clarify the unconfirmed regulatory mechanisms, conduct standard clinical trials, and evaluate the possible side effects. This review establishes a theoretical foundation for future studies on the structure, mechanism, and clinical use of ASP.
Collapse
Affiliation(s)
- Chunzhen Ren
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Gansu Province Key Laboratory of Chinese Medicine for the Prevention and Treatment of Chronic Diseases, Lanzhou, China
- Key Clinical Specialty of the National Health Commission of the People’s Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, China
| | - Yali Luo
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiaojuan Li
- School of Traditional Chinese Medicine, Jiangsu Medical College, Yancheng, China
| | - Like Ma
- First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou, China
| | - Chunling Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Gansu Province Key Laboratory of Chinese Medicine for the Prevention and Treatment of Chronic Diseases, Lanzhou, China
- Key Clinical Specialty of the National Health Commission of the People’s Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, China
| | - Xiaodong Zhi
- First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou, China
- Cardiovascular clinical medicine center, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xinke Zhao
- Gansu Province Key Laboratory of Chinese Medicine for the Prevention and Treatment of Chronic Diseases, Lanzhou, China
- Key Clinical Specialty of the National Health Commission of the People’s Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, China
- First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yingdong Li
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Gansu Province Key Laboratory of Chinese Medicine for the Prevention and Treatment of Chronic Diseases, Lanzhou, China
- Key Clinical Specialty of the National Health Commission of the People’s Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
5
|
Rosado-Pérez J, Castelán-Martínez OD, Mújica-Calderón AJ, Sánchez-Rodríguez MA, Mendoza-Núñez VM. Effect of Tai Chi on Markers of Oxidative Stress: Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18073458. [PMID: 33810466 PMCID: PMC8037964 DOI: 10.3390/ijerph18073458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022]
Abstract
Background: This study aimed to synthesize the evidence of the effect of practicing Tai Chi on oxidative stress markers (OxSM). Methods: This systematic review and meta-analysis was conducting using the MEDLINE, Cochrane Library, ScienceDirect, Scopus, Epistemonikos, Lilacs, and Ovid databases to identify randomized (RCT) and non-randomized (NRCT) clinical trials that evaluated the Tai Chi effect on OxSM compared to sedentary behavior, walking or yoga. Pooled mean differences (MDs) with 95% confidence intervals (95%CI) were estimated using the inverse variance method to determine the effect of Tai Chi on OxSM. PROSPERO register: CRD42019138362. Results: Five RCT and five NRCT were included. Compared to sedentary behavior, regular Tai Chi practice increases the levels of the enzymes superoxide dismutase (MD = 34.97 U/mL, (95%CI, 9.45 to 60.48), 344 participants) and catalase (MD = 15.63 U/mL, (95%CI, 4.05 to 27.22), 110 participants), as well as reducing the levels of lipoperoxides (MD = −0.02 µmol/L, (95%CI, −0.04 to −0.00), 234 participants). For comparisons with walking or yoga, only one study per activity was identified comparing the effect on OxSM. Conclusions: Regular Tai Chi practice increases the levels of superoxide dismutase and catalase, as well as reducing the levels of lipoperoxides. More studies are necessary to determine the effect of Tai Chi on OxSM when compared to other physical activities.
Collapse
Affiliation(s)
- Juana Rosado-Pérez
- Research Unit on Gerontology, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México P.C. 09230, Mexico; (J.R.-P.); (A.J.M.-C.); (M.A.S.-R.)
| | - Osvaldo D. Castelán-Martínez
- Clinical Pharmacology Laboratory, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México P.C. 09230, Mexico;
| | - Abril J. Mújica-Calderón
- Research Unit on Gerontology, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México P.C. 09230, Mexico; (J.R.-P.); (A.J.M.-C.); (M.A.S.-R.)
| | - Martha A. Sánchez-Rodríguez
- Research Unit on Gerontology, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México P.C. 09230, Mexico; (J.R.-P.); (A.J.M.-C.); (M.A.S.-R.)
| | - Víctor Manuel Mendoza-Núñez
- Research Unit on Gerontology, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México P.C. 09230, Mexico; (J.R.-P.); (A.J.M.-C.); (M.A.S.-R.)
- Correspondence: ; Tel.: +52-55-5623-0721; Fax: +52-55-5773-6330
| |
Collapse
|
6
|
Pan S, Jiang L, Wu S. Stimulating effects of polysaccharide from Angelica sinensis on the nonspecific immunity of white shrimps (Litopenaeus vannamei). FISH & SHELLFISH IMMUNOLOGY 2018; 74:170-174. [PMID: 29305988 DOI: 10.1016/j.fsi.2017.12.067] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/26/2017] [Accepted: 12/31/2017] [Indexed: 06/07/2023]
Abstract
Angelica sinensis polysaccharide (ASP) was prepared by hot water extraction. Then, high-performance liquid chromatography and ion chromatography analyses were conducted, and the results indicated that ASP is a heteropolysaccharide, has a molecular mass of 82,000 Da and consists of arabinose, galactose and glucose (molar ratio of 6:1:1). The effects of ASP on the nonspecific immunity of white shrimps (Litopenaeus vannamei) were investigated by feeding them with ASP-containing diets (0.5, 1 and 1.5 g/kg) during a 12-week breeding experiment. Oral ASP administration significantly improved the survival rate, phenoloxidase activity, superoxide dismutase activity, glutathione peroxidase level, disease resistance against V. alginolyticus, total haemocyte count and number of hyaline cells, semigranular cells and granular cells (p < .05). ASP exhibits immunostimulatory effects on Pacific white shrimps (L. vannamei) and may thus be used as a diet supplement for them.
Collapse
Affiliation(s)
- Saikun Pan
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, 59 Cangwu Road, Haizhou, 222005, China; College of Food Engineering, Huaihai Institute of Technology, 59 Cangwu Road, Haizhou, 222005, China; Jiangsu Marine Resources Development Research Institute, Huaihai Institute of Technology, 59 Cangwu Road, Haizhou, 222005, China; Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, 59 Cangwu Road, Haizhou, 222005, China
| | - Longfa Jiang
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, 59 Cangwu Road, Haizhou, 222005, China; College of Food Engineering, Huaihai Institute of Technology, 59 Cangwu Road, Haizhou, 222005, China; Jiangsu Marine Resources Development Research Institute, Huaihai Institute of Technology, 59 Cangwu Road, Haizhou, 222005, China; Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, 59 Cangwu Road, Haizhou, 222005, China
| | - Shengjun Wu
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, 59 Cangwu Road, Haizhou, 222005, China; College of Food Engineering, Huaihai Institute of Technology, 59 Cangwu Road, Haizhou, 222005, China; Jiangsu Marine Resources Development Research Institute, Huaihai Institute of Technology, 59 Cangwu Road, Haizhou, 222005, China; Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, 59 Cangwu Road, Haizhou, 222005, China.
| |
Collapse
|
7
|
Tian S, Hao C, Xu G, Yang J, Sun R. Optimization conditions for extracting polysaccharide from Angelica sinensis and its antioxidant activities. J Food Drug Anal 2017; 25:766-775. [PMID: 28987352 PMCID: PMC9328866 DOI: 10.1016/j.jfda.2016.08.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/25/2016] [Accepted: 08/31/2016] [Indexed: 11/23/2022] Open
Abstract
In this study, polysaccharides from Angelica sinensis were extracted using the ultrasound-assisted extraction method. Based on the results of single factor experiments and orthogonal tests, three independent variables-water/raw material ratio, ultrasound time, and ultrasound power-were selected for investigation. Then, we used response surface methodology to optimize the extraction conditions. The experimental data were fitted to a quadratic equation using multiple regression analysis, and the optimal conditions were as follows: water/raw material ratio, 43.31 mL/g; ultrasonic time, 28.06 minutes; power, 396.83 W. Under such conditions, the polysaccharide yield was 21.89±0.21%, which was well matched with the predicted yield. In vitro assays, scavenging activity of superoxide anion radicals, hydroxyl radicals, and 2,2-diphenyl-1-picry-hydrazyl radical showed that polysaccharides had certain antioxidant activities and that hydroxyl radicals have a remarkable scavenging capability. Therefore, these studies provide reference for further research and rational development of A. sinensis polysaccharide.
Collapse
Affiliation(s)
- Suyang Tian
- Laboratory of Biophysics and Biomedical Engineering, School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062,
China
- Lintong Middle School, Xi’an 710600,
China
| | - Changchun Hao
- Laboratory of Biophysics and Biomedical Engineering, School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062,
China
| | - Guangkuan Xu
- Laboratory of Biophysics and Biomedical Engineering, School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062,
China
| | - Juanjuan Yang
- Laboratory of Biophysics and Biomedical Engineering, School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062,
China
| | - Runguang Sun
- Laboratory of Biophysics and Biomedical Engineering, School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062,
China
| |
Collapse
|
8
|
Wei WL, Zeng R, Gu CM, Qu Y, Huang LF. Angelica sinensis in China-A review of botanical profile, ethnopharmacology, phytochemistry and chemical analysis. JOURNAL OF ETHNOPHARMACOLOGY 2016; 190:116-141. [PMID: 27211015 DOI: 10.1016/j.jep.2016.05.023] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 05/07/2016] [Accepted: 05/10/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Angelica sinensis (Oliv.) Diels, known as Dang Gui (in Chinese), is a traditional medicinal and edible plant that has long been used for tonifying, replenishing, and invigorating blood as well as relieving pain, lubricating the intestines, and treating female irregular menstruation and amenorrhea. A. sinensis has also been used as a health product and become increasingly popular in China, Japan, and Korea. AIM OF THE REVIEW This paper aims to provide a systemic review of traditional uses of A. sinensis and its recent advances in the fields of phytochemistry, analytical methods and toxicology. In addition, possible trends, therapeutic potentials, and perspectives for future research of this plant are also briefly discussed. MATERIALS AND METHODS An extensive review of the literature was conducted, and electronic databases including China National Knowledge Infrastructure, PubMed, Google Scholar, Science Direct, and Reaxys were used to assemble the data. Ethnopharmacological literature and digitalised sources of academic libraries were also systematically searched. In addition, information was obtained from local books and The Plant List (TPL, www.theplantlist.org). RESULT This study reviews the progress in chemical analysis of A. sinensis and its preparations. Previously and newly established methods, including spectroscopy, thin-layer chromatography (TLC), gas chromatography (GC), high-performance liquid chromatography (HPLC), ultra-performance liquid chromatography(UPLC), and nuclear magnetic resonance analysis (NMR), are summarized. Moreover, identified bioactive components such as polysaccharides, ligustilide and ferulic acid were reviewed, along with analytical methods for quantitative and qualitative determination of target analytes, and fingerprinting authentication, quality evaluation of A. sinensis, and toxicology and pharmacodynamic studies. Scientific reports on crude extracts and pure compounds and formulations revealed a wide range of pharmacological activities, including anti-inflammatory activity, antifibrotic action, antispasmodic activity, antioxidant activities, and neuroprotective action, as well as cardio- and cerebrovascular effects. CONCLUSIONS Within the published scientific literature are numerous reports regarding analytical methods that use various chromatographic and spectrophotometric technologies to monitor various types of components with different physicochemical properties simultaneously. This review discusses the reasonable selection of marker compounds based on high concentrations, analytical methods, and commercial availabilities with the goal of developing quick, accurate, and applicable analytical approaches for quality evaluation and establishing harmonised criteria for the analysis of A. sinensis and its finished products. Compounds isolated from A. sinensis are abundant sources of chemical diversity, from which we can discover active molecules. Thus, more studies on the pharmacological mechanisms of the predominant active compounds of A. sinensis are needed. In addition, given that A. sinensis is one of the most popular traditional herbal medicines, its main therapeutic aspects, toxicity, and adverse effects warrant further investigation in the future.
Collapse
Affiliation(s)
- Wen-Long Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Rui Zeng
- College of Pharmacy, Southwest University for Nationalities, Chengdu 610041, China
| | - Cai-Mei Gu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Yan Qu
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Lin-Fang Huang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
9
|
Structural analysis and immunoregulation activity comparison of five polysaccharides from Angelica sinensis. Carbohydr Polym 2016; 140:6-12. [DOI: 10.1016/j.carbpol.2015.12.050] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 11/16/2015] [Accepted: 12/20/2015] [Indexed: 11/19/2022]
|
10
|
Li WY, Li P, Li XQ, Huang H, Yan H, Zhang Y, Cao W. Simultaneous Quantification of Uronic Acid, Amino Sugar, and Neutral Sugar in the Acidic Polysaccharides Extracted from the Roots of Angelica sinensis (Oliv.) Diels by HPLC. FOOD ANAL METHOD 2015. [DOI: 10.1007/s12161-015-0096-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Banerjee S, Parasramka M, Paruthy SB. Polysaccharides in Cancer Prevention: From Bench to Bedside. POLYSACCHARIDES 2015. [DOI: 10.1007/978-3-319-16298-0_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
12
|
Banerjee S, Parasramka M, Paruthy SB. Polysaccharides in Cancer Prevention: From Bench to Bedside. POLYSACCHARIDES 2015. [DOI: 10.1007/978-3-319-03751-6_26-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
13
|
Ji P, Wei Y, Sun H, Xue W, Hua Y, Li P, Zhang W, Zhang L, Zhao H, Li J. Metabolomics research on the hepatoprotective effect of Angelica sinensis polysaccharides through gas chromatography–mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 973C:45-54. [DOI: 10.1016/j.jchromb.2014.10.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 10/05/2014] [Accepted: 10/06/2014] [Indexed: 11/25/2022]
|
14
|
Abstract
The roots of Angelica sinensis (RAS), are a Chinese herbal medicine traditionally used in prescriptions for replenishing blood, treating abnormal menstruation, and other women's diseases. It has also been widely marketed as health food for women's care in Asia, and as a dietary supplement in Europe and America. RAS is well-known for its hematopoietic, antioxidant, and immunoregulatory activities. RAS also possesses anti-cancer, memory, radioprotective, and neuroprotective effects. Phytochemical investigations on this plant led to organic acids, phthalides, polysaccharides, and other metabolites. Based on recent animal studies and clinical trials, RAS has been used in the treatment of gynecologic diseases, cardio-cerebrovascular disease, nervous system diseases, and nephrotic syndrome. In this review, the recent phytochemical and pharmacological studies, drug-drug interactions, clinical applications, and toxicity of RAS are summarized.
Collapse
|
15
|
Zhang F, Bai YH, Zhang J. The Influence of "wuqinxi" exercises on the Lumbosacral Multifidus. J Phys Ther Sci 2014; 26:881-4. [PMID: 25013288 PMCID: PMC4085213 DOI: 10.1589/jpts.26.881] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 01/07/2014] [Indexed: 11/30/2022] Open
Abstract
[Purpose] To investigate the effect of the five animals (wuqinxi)
exercises on the lumbosacral multifidus. [Subjects and Methods] This study enrolled two
groups of volunteers, 15 volunteers who did the five animals exercises, the experimental
group, and 15 volunteers who did aerobic exercise (walking), the control group. Both
before and after the 1 year exercise intervention, the average surface electromyography
(ASEMG) of the two groups in the process of flexion and extension was recorded and analyzed
using DASYLab10.0 software, and the flexion extension ratio (FER) was calculated.
[Results] The ASEMG in the process of flexion was lower than the ASEMG in the process of
extension both before and after the 1 year exercise intervention on both sides of all
volunteers. There was no significant difference in FER between the experimental group and
control group before the 1 year exercise intervention; however, the FER of experimental
group was lower than that of the control group after the 1 year exercise intervention.
There was no significant difference between the two sides in any individual both before
and after the 1 year exercise intervention in both groups. [Conclusion] The
“wuqinxi” exercises improved the function of the lumbosacral
multifidus, and might be an alternative method of reducing low back pain.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, China ; Hebei Provincial Orthopedic Biomechanics Key Laboratory, China
| | - Yu-Hua Bai
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, China ; Hebei Provincial Orthopedic Biomechanics Key Laboratory, China
| | - Jing Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, China ; Hebei Provincial Orthopedic Biomechanics Key Laboratory, China
| |
Collapse
|
16
|
Ji P, Wei Y, Xue W, Hua Y, Zhang M, Sun H, Song Z, Zhang L, Li J, Zhao H, Zhang W. Characterization and antioxidative activities of polysaccharide in Chinese angelica and its processed products. Int J Biol Macromol 2014; 67:195-200. [DOI: 10.1016/j.ijbiomac.2014.03.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/05/2014] [Accepted: 03/17/2014] [Indexed: 10/25/2022]
|
17
|
Liu W, Wang J, Zhang Z, Xu J, Xie Z, Slavin M, Gao X. In vitro and in vivo antioxidant activity of a fructan from the roots of Arctium lappa L. Int J Biol Macromol 2014; 65:446-53. [PMID: 24508920 DOI: 10.1016/j.ijbiomac.2014.01.062] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/26/2014] [Accepted: 01/30/2014] [Indexed: 10/25/2022]
Abstract
To explore new antioxidant resource from food, a water-soluble polysaccharide (ALP1) was extracted and purified from the roots of Arctium lappa L. (A. lappa L.) through hot water extraction followed by ethanol precipitation, ion-exchange chromatography and gel filtration. The antioxidant activity of ALP1 was then evaluated in vitro and in vivo. ALP1 was characterized as a fructan composed of fructose and glucose in the ratio of 13.0:1.0, with an average molecular weight of 4600 Da. The linkages in ALP1 were →1)-Fruf-(2→, Fruf-(2→ and Glcp-(1→. In vitro antioxidant assays demonstrated that ALP1 possessed moderate ABTS(+) scavenging activity, strong hydroxyl radical scavenging activity and strong ferrous ion chelating activity. In in vivo antioxidant assays, ALP1 administration significantly enhanced antioxidant enzyme activities and total antioxidant capacity, as well as decreased the levels of malondialdehyde (MDA) in both the serum and liver of aging mice. These results suggest that ALP1 has potential as a novel natural antioxidant in food industry and pharmaceuticals.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China; School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jiajia Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China; School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zhenzhen Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China; School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jinnan Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China; School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zhuohong Xie
- International Chemistry Testing, Milford, MA 01757, USA
| | - Margaret Slavin
- Department of Nutrition and Food Studies, George Mason University, Fairfax, VA 22030, USA
| | - Xiangdong Gao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China; School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
18
|
Isolation, Characterization, and Biological Activities of Polysaccharides from Medicinal Plants and Mushrooms. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2014. [DOI: 10.1016/b978-0-444-63281-4.00005-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
19
|
Deng W, Fu M, Cao Y, Cao X, Wang M, Yang Y, Qu R, Li J, Xu X, Yu J. Angelica sinensis polysaccharide nanoparticles as novel non-viral carriers for gene delivery to mesenchymal stem cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:1181-91. [PMID: 23727125 DOI: 10.1016/j.nano.2013.05.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 03/29/2013] [Accepted: 05/20/2013] [Indexed: 12/27/2022]
Abstract
UNLABELLED This study centers on the use of a nanoparticle based on the polysaccharide from Angelica sinensis (ASP) as an efficient and safe non-viral gene vector. After modification with branched low molecular weight polyethylenimine (1200 Da), the cationized ASP (cASP) was combined with the plasmid encoding transforming growth factor-beta 1 (TGF-β1) to form a spherical nano-scaled particle (i.e., cASP-pTGF-β1 nanoparticle). This nanoparticle was applied to transfect rat bone marrow mesenchymal stem cells and human umbilical cord mesenchymal stem cells. As a result, nanoparticles (cASP/pDNA weight ratio 10:1) had the greatest transfection efficiency in both cells, which was significantly higher than those of Lipofectamine2000 and PEI (25 kDa). This was in agreement with the findings of the semi-quantitative RT-PCR and live cell imaging. These nanoparticles were also less toxic than Lipofectamine2000 and PEI (25 kDa). Therefore, cASP could be a potential candidate for a novel non-viral gene vector. FROM THE CLINICAL EDITOR These authors demonstrate the use of a nanoparticle-based efficient and safe non-viral gene vector delivery system via a spherical nanoparticle based on a polysaccharide from Angelica sinensis, with parameters superior to Lipofectamine2000.
Collapse
Affiliation(s)
- Wenwen Deng
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Jingkou District, Zhenjiang, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Jin M, Zhao K, Huang Q, Xu C, Shang P. Isolation, structure and bioactivities of the polysaccharides from Angelica sinensis (Oliv.) Diels: A review. Carbohydr Polym 2012; 89:713-22. [DOI: 10.1016/j.carbpol.2012.04.049] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 04/17/2012] [Accepted: 04/23/2012] [Indexed: 01/12/2023]
|